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Optimal Relay Lo
ation for Resour
e-Limited Energy-EÆ
ientWireless Communi
ationIonut Cardei� Mihaela Cardei� Lusheng Wangy Baogang XuzDing-Zhu Du�Abstra
tIn the design of wireless networks, te
hniques for improving energy eÆ
ien
y and ex-tending network lifetime have great importan
e, parti
ularly for defense and 
ivil/res
ueappli
ations where resupplying transmitters with new batteries is not feasible. In thispaper we study a method for improving the lifetime of wireless networks by minimizingthe length of the longest edge in the inter
onne
ting tree with deploying additional relaynodes. Let P = fp1; p2; : : : ; png be a set of n terminals in the Eu
lidean plane. For apositive integer k, the bottlene
k Steiner tree problem (BSTP ) asks to �nd a Steinertree with at most k Steiner points su
h that the length of the longest edge in the tree isminimized. We give a ratio-p3+� polynomial time approximation algorithm for BSTP,where � is an arbitrary positive number.Keywords: wireless networks, power eÆ
ient, approximation algorithms, Steiner tree,bottlene
k Steiner tree.
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1 Introdu
tionRe
ent advan
es in a�ordable and eÆ
ient ele
troni
s have had a dramati
 impa
t on theavailability and performan
e of radio-frequen
y wireless 
ommuni
ation equipment. A 
on-siderable number of defense and 
ivil appli
ations involve deployment of 
omputing devi
esor sensors able to 
ommuni
ate digital information through wireless 
onne
tions. Ad-ho
wireless networks require no infrastru
ture, 
entral a

ess points or wired swit
hes. Thewireless nodes run 
ommuni
ation proto
ols that enable on-the-
y organization of traÆ
routing, so that all nodes a
hieve end-to-end 
onne
tivity by forwarding data pa
kets fromone node to a destination node a
ross multiple hops. The la
k of any infrastru
ture simpli-�es rapid network deployment, espe
ially useful in situations where human presen
e is notappropriate or even possible, be
ause of a dangerous environment. One representative ad-ho
 wireless network 
onsists of sensors 
apable of monitoring the environment and sendinga
ousti
, video or seismi
 information to a data 
olle
tion node. In most 
ases the sensorsare battery powered and therefore operate for a limited time before they 
onsume all powerand stop working. For radio-frequen
y wireless 
ommuni
ation, the transmission power re-quired for a radio signal to be re
eived at a destination node lo
ated at distan
e r from thesour
e is proportional to rk, with k 2 [2; 4℄. So, in order to prolong the network lifetime ingeneral, it is desirable to minimize the distan
e between nodes. When the node positionsare �xed, there are several di�erent methods to extend the network lifetime, mainly basedon power-aware routing and transmission s
heduling.This paper 
ontributes an algorithm for extending the lifetime of a wireless networkwhen n nodes have �xed lo
ations and a number of up to k additional nodes 
an be pla
edat arbitrary positions. The obje
tive of the algorithm is to build a spanning tree that
onne
ts the n �xed points and up to k additional nodes in the Eu
lidean plane, so thatthe length of the longest tree edge is minimized. Hen
e, the power required to transmiton the longest link is minimized also, and the network lifetime, in terms of 
onne
tivity, isextended.The problem des
ribed above is a variation of a Steiner tree problem, named bottlene
kSteiner tree problem (BSTP for short). A Steiner tree is an a
y
li
 network inter
onne
tinga set P of terminals and some other points. Every vertex in a Steiner tree other than aterminals is 
alled a Steiner point. The bottlene
k Steiner tree problem is de�ned as follows:given a set P of n terminals and a positive integer k, �nd a Steiner tree with at most kSteiner points su
h that the length of the longest edge in the tree is minimized. Contraryto the 
lassi
 Steiner tree problem, degree-2 Steiner points are allowed in BSTP. Instead ofminimizing the total length of the tree, here we want to minimize the length of the longestedge.The BSTP is NP-hard. The work in [10℄ shows that BSTP 
annot be approximated in2



polynomial time with performan
e ratios less than 2 and less thanp2 in the re
tilinear planeand the Eu
lidean plane, respe
tively. Moreover, a ratio-2 approximation algorithm wasintrodu
ed for both the re
tilinear plane and the Eu
lidean plane in [10℄. For the re
tilinearplane, this performan
e ratio is the best possible. A ratio-1.866 approximation algorithmfor the Eu
lidean plane has been des
ribed in [11℄. In this paper, we give a randomizedapproximation algorithm with performan
e ratio p3+ � for the Eu
lidean plane, where � isan arbitrary positive number.As mentioned above, this problem has an immediate appli
ation in the design of wirelessnetworks for extending their lifetime. A typi
al s
enario where the algorithm 
an be used,
onsists of n units (
ombat units, res
ue 
rews or sensors) that need to 
ommuni
ate. Thealgorithm determines the number and lo
ation of maximum k 
ommuni
ation relay nodes(mobile nodes, unmanned aerial vehi
les) deployed to improve 
onne
tivity and save powerfor the wireless network. The 
omputed tree spanning at most n+ k nodes 
ould be usedto route traÆ
 between nodes.This paper 
ontinues in se
tion 2 with a presentation of other te
hniques to optimizepower 
onsumption in wireless networks. Se
tion 3 presents the main theorem that provesthep3+� approximation performan
e and 
ontinues with the algorithm des
ription. Se
tion4 
on
ludes the paper with some �nal remarks.2 Related WorkThe re
ent advan
es in wireless te
hnology have stimulated a strong resear
h 
urrent inpower eÆ
ien
y for wireless networks. In [2℄, Chang and Tassiulas formulate the maximumlifetime routing problem for a wireless network as a linear program, similar to the maximum
ow problem with node 
apa
ities. Their goal is to maximize the time until the networkpartitions, whi
h is similar to our goal. Their algorithm 
omputes optimal data 
ows for thesingle and the multi-
ommodity 
ases and they also 
onsider a version for power-eÆ
ientrouting with delay 
onstraints, where the delay is given by the number of intermediaryhops. Furthermore, Chang and Tassiulas extend their model in [3℄, and introdu
e a new
lass of 
ow augmentation and 
ow redire
tion algorithms that employ shortest paths andpower 
onsumption balan
e a
ross nodes, proportional to their energy reserves, in orderto maximize the network lifetime. Their approa
hes 
onsider stati
 networks and 
ompute
ow-based optimal routes, while our algorithm works on optimal pla
ement of Steiner points- 
ommuni
ation relays - that redu
e the power 
onsumption for the bottlene
k edges inthe network.In [9℄, Slijep
evi
 and Potkonjak study the problem of pla
ement of wireless nodes(sensors) into a monitored area and transmission s
heduling to a
hieve full 
overage withminimal power utilization. Their heuristi
 solution for the Set K-Cover problem partitions3



the wireless nodes into mutually ex
lusive sets, where nodes in ea
h set fully 
over themonitored area. Sin
e at one time only one set of nodes is a
tive, and the disjoint sets arerotated, signi�
ant power savings are a
hieved and the network lifetime is extended. Theproposed te
hnique works well for appli
ations that do not need 
ontinuous 
onne
tivity forall nodes, sensor networks, for instan
e.A novel power-aware routing method is des
ribed by Li et al. in [6℄. The authors modelthe network lifetime as the earliest time when a message 
annot be transmitted and proposea routing algorithm, named max�min zPmin�path, that 
onsumes at most z Pmin powerwhile maximizing the minimal residual power fra
tion.Steiner trees have been a 
onstant sour
e of interesting problems with relevant appli
a-tions in the wireless networking domain. For variations of Steiner tree problems and theirappli
ations please refer to [1, 4, 5, 8℄.3 Ratio-p3 approximation algorithm for BSTPIn this se
tion, we present a ratio-p3 approximation algorithm for BSTP in the Eu
lideanplane. We start by de�ning some key notions.De�nition 1 A full 
omponent of a Steiner tree is a subtree in whi
h ea
h terminal is aleaf and ea
h internal node is a Steiner point.De�nition 2 A Steiner tree for n terminals is a k-restri
ted Steiner tree if ea
h full
omponent spans at most k terminals.The next theorem 
hara
terizes the performan
e of our approximation algorithm forBSTP:Theorem 1 Let T be an optimum Steiner tree for BSTP. Then, there exists a 3-restri
tedSteiner tree with the same number of Steiner points as T su
h that the longest edge in thetree is at most p3 times the optimum.Proof. We assume that T is rooted by arbitrarily sele
ting a Steiner point as its root.We will modify T bottom up into a 3-restri
ted Steiner tree without in
reasing the numberof Steiner points su
h that the length of the longest edge is at most p3 times the optimum.Without loss of generality, we assume that T is a full Steiner tree, i.e., every internal nodein T is a Steiner point and every leaf in T is a terminal.We organize the nodes in T level by level (ignoring degree-2 Steiner points). Level 1 isthe lowest level. Level i is the level above level i � 1. Let v be a node at level 3 that hassome grand
hildren. Let v0 be a 
hild of v. If v0 is a Steiner point, we 
an assume that the4



degree of v0 is 3, i.e., v0 has two 
hildren that are terminals. Otherwise, suppose that v0 has3 or more 
hildren that are terminals, say, a, b, and 
. Assume that a, b, 
 are positioned
lo
kwise around v0. Then the three angles 6 av0b, 6 bv0
 and 6 
v0a form 360o. Thus, at leastone of the three angles 6 av0b, 6 bv0
 and 6 
v0a is at most 120o. Without loss of generality,assume that 6 av0b � 120o and av0 is not shorter than bv0. Then jabj � p3jav0j.Let m be the number of degree-2 Steiner points (not in
luding v0) in the path from ato v0. We 
onstru
t a new Steiner tree T 0 by removing all the edges on T , and dire
tly
onne
ting a and b with m degree-2 Steiner points so that the length of ea
h edge in thesegment ab is at most p3. Now, we need only to 
onsider the tree obtained from T 0 byremoving a and all the degree-2 nodes on the path 
onne
ting a and b in T 0.From now on, we assume that the degree of v0 is at most 3. We 
onsider two 
ases.Case 1. Every edge below v in T has length no more than 1. We 
onsider the 
asewhere v has 4 grand
hildren. The 
ase where v has 3-
hildren is simpler and is left to theinterested readers.We �rst 
onsider that v is a degree-3 node. (See Figure 1.a.) In this 
ase, we assumethat 6 bv0
 > 120Æ and 6 dfe > 120Æ. Otherwise, assume that 6 dfe � 120Æ, then we 
andire
tly 
onne
t d and e. The length of edge de is at most p3. Therefore, we haveminf 6 dfv; 6 efvg < 360Æ � 120Æ2 = 120Æ and minf 6 
v0v; 6 bv0vg < 120Æ;i.e., minfjdvj; jevjg < p3 and minfj
vj; jbvjg < p3: (1)Without loss of generality, assume that6 dfv = � = minf 6 vv0v; 6 vv0
; 6 dfv; 6 efvg (2)and 6 vv0
 � 6 vv0b: (3)We will �nd a point h on edge vv0 su
h that maxfj
hj; jbhj; jdhjg � p3, and 
onstru
t anew tree by removing nodes v0 and f , adding edges 
h, 
v, dh, bh, and 
onne
ting d ande dire
tly with a Steiner point w on the middle of de. (See Figure 1.b.) Then, we 
an
ontinue the modi�
ation pro
ess with n� 3 terminals in P [ fvg � fb; 
; d; eg.By (1) and (3), we know that j
hj � p3 for any h on the edge vv0. So, we need only to
hoose an h to guarantee jbhj � p3 and jdhj � p3.First we suppose that � < 90Æ, then we take h to be the point on edge vv0 su
h thatjvhj = 2 � p3. It is 
lear that jbhj � p3. Note that jdvj � 1 and jfvj � 1. By triangleinequality, jdhj � jdvj + jvhj. It is easy to see that jdvj � p2 when 6 dfv < 90o. (dv is thethird edge in �dfv.) Thus,jdhj � jdvj+ jvhj � p2 + 2�p3 < p3:5
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wFigure 1: a. The original tree. b. The modi�ed tree.Now we suppose that 90Æ � � < 120Æ. By (2) and (3), we know that 6 bv0v < 360Æ �120Æ � � = 240Æ � �. We 
hoose h to be the point on edge vv0 su
h that jvhj = p3 � jdvj.By (1), jvhj > 0. It is easy to see thatjv0hj � 1� jvhj= 1� (p3� jdvj) (4)= 1�p3 +qjdf j2 + jfvj2 � 2jdf jjfvj 
os �)� 1�p3 +p2� 2 
os �: (5)By triangle inequality, jdhj � jdvj+ jvhj = p3: (6)Using (5), we have jbhj2 = jbv0j2 + jv0hj2 � 2jbv0jjv0hj 
os 6 bv0v� 1 + (1�p3 +p2� 2 
os �)2�2(1�p3 +p2� 2 
os �) 
os(240Æ � �)= 1 + (1�p3 +p2� 2 
os �)2+2(1�p3 +p2� 2 
os �) sin(� + 30Æ)= 1 + (1�p3 + 2 sin �2)2+2(1�p3 + 2 sin �2) sin(� + 30Æ) = G(�):Set H(�) = G(�)� (p3)2.H(�) = 1 + (1�p3 + 2 sin �2)2 + 2(1 �p3 + 2 sin �2) sin(� + 30Æ)� 36



= �2 + (1�p3 + 2 sin �2)2 + 2(1�p3 + 2 sin �2) sin(� + 30Æ):We will show that H(�) � 0 for � 2 [90Æ; 120Æ℄. Then, 
ombined with (6), h is 
ertainlya 
orre
t 
hoi
e.dHd� = 2(1�p3 + 2 sin �2) 
os �2 + 2(1 �p3 + 2 sin �2) 
os(� + 30Æ)+2 sin(� + 30Æ) 
os �2 ;d2Hd�2 = (p3� 1) sin �2 + 2(p3� 1) sin(� + 30Æ) + 2 
os �+5 
os(3�2 + 30Æ)� 
os �2 
os(� + 30Æ);d3Hd�3 = p3� 12 
os �2 + 2(p3� 1) 
os(� + 30Æ)� 2 sin ��7 sin(3�2 + 30Æ) + 12 
os �2 sin(� + 30Æ);d4Hd�4 = �p3� 14 sin �2 � 2(p3� 1) sin(� + 30Æ)� 2 
os ��212 
os(3�2 + 30Æ)� 14 sin �2 sin(� + 30Æ) + 12 
os �2 
os(� + 30Æ):If 90Æ � � � 120Æ, then �p32 � 
os(3�2 + 30Æ) � �1, so it is easy to see thatd4Hd�4 (�) > 0:This means that d3Hd�3 (�) is stri
tly an in
reasing fun
tion on [90Æ; 120Æ℄. Byd3Hd�3 (90Æ) < 0 and d3Hd�3 (120Æ) > 0;we know that d3Hd�3 (�) = 0 has a unique solution, say �0 2 (90Æ; 120Æ). d2Hd�2 (�) is de
reasingon (90Æ; �0), and is in
reasing on (�0; 120Æ). Therefore, the maximum value of d2Hd�2 (�) on[90Æ; 120Æ℄ should be either � = 90Æ or � = 120Æ, i.e.,d2Hd�2 (�) � maxfd2Hd�2 (90Æ); d2Hd�2 (120Æ)g < 0 for � 2 [90Æ; 120Æ℄:So, dHd� (�) is stri
tly de
reasing on [90Æ; 120Æ℄, and then we have for � 2 [90Æ; 120Æ℄,dHd� (�) � dHd� (120Æ) > 0:Now, we know that H(�) is a stri
tly in
reasing 
ontinuous fun
tion on [90Æ; 120Æ℄.Therefore, H(�) � H(120Æ) = 0:7



Case 2. Some edges below v have length greater than 1. Let u be a Steiner point whi
his a 
hild of v and has degree 3, x and y the two terminals 
onne
ted to u.Without loss of generality, suppose that juxj � juyj, ux and uy have l and k Steinerpoints (both in
luding u), respe
tively. Let z be the point on uy su
h that juzj = l. Then,we 
an assume that zy 
ontains k � l Steiner points (in
luding z), and ux and uz 
ontaintotally 2(l � 1) Steiner points (not in
luding u and z). We dire
tly 
onne
t x and z andequally insert d1:155le � 1 Steiner points into xz. Then, the length of ea
h edge on xz is2ld1:115le � p3:After that, we still have 2(l � 1) � (d1:115le � 1) = 2l � 1 � d1:115le = b0:885l
 � 1Steiner points whi
h 
an be used to equally break ux into smaller edges. Then, by insertingb0:885l
 � 1 Steiner points into ux, ea
h edge on ux has length at mostlb0:885l
 � p3 if l � 3:By this operation, u is 
hanged into a vertex of degree 2 in the new tree, then we 
an
ontinue the pro
ess with n� 1 terminals in P [ fug n fx; yg.Now we turn into the situation when l � 2. If k > l, we dire
tly 
onne
t x and y andinsert k � 1 Steiner points into xy, then u be
omes a vertex of degree 2 and ea
h edge onxy is at most 53 < p3.Next, we assume that k = l. Let m be the number of Steiner points on vu (not in
ludingv). (1) l = 2. If 6 xuy � 120Æ, jxyj � 2p3, we 
an 
onne
t x and y by inserting a uniqueSteiner point to break xy into two pie
es of length at most p3, then u is 
hanged into avertex of degree 2. If 6 xuy > 120Æ, then one of 6 xuv and 6 yuv is less than 120Æ. Assume6 xuv < 120Æ. Then, jvxj � m +p3. We dire
tly 
onne
t x and v and sele
t a point z inxv su
h that jvzj = 1, and then insert m� 1 Steiner points into xz to break it into equallypie
es, and 
onne
t x and y and insert two Steiner points to break xy into equally pie
es.Thus, z be
omes a vertex of degree 2 and ea
h edge below z has length at most p3 (notethat u is no longer in the new tree). We 
an now 
ontinue the pro
ess with n� 1 terminals(P [ fzg) n fx; yg.(2) l = 1, i.e., juxj � 1 and juyj � 1. In this 
ase, m � 2 (the 
ase m = 1 has beendis
ussed in Case 1). If 6 xvy � 120Æ, then we 
onne
t x and y dire
tly. If 6 xuy > 120Æ,then we 
an assume 6 xuv < 120Æ. We (1) dire
tly 
onne
t x and v and sele
t a point z inxv su
h that jvzj = 1, and then insert m� 2 Steiner points into xz to break it into equallypie
es, and (2) 
onne
t x and y and insert a Steiner point to break xy into two pie
es. We
an 
ontinue the pro
ess with n� 1 terminals (P [ fzg) n fx; yg.8



The algorithm for �nding the approximation of an optimal 3-restri
ted Steiner tree isthe same as that of [11℄. It uses the notion of hypergraph, de�ned as H = (V; F ), where V isa set of verti
es and a F is the set of edges, whi
h is an arbitrary family of subsets of V . Aweighted hypergraph H = (V; F;w) is a hypergraph su
h that ea
h edge e in F has a weightw(e). An r-hypergraph Hr(V; F;w) is a weighted hypergraph, ea
h edge having 
ardinalityat most r.The following theorem, introdu
ed in [7℄, proves the existen
e of a randomized algorithmfor 
omputing a minimum spanning tree for a weighted 3-hypergraph:Theorem 2 There exists with probability at least 0:5 a randomized algorithm for the mini-mum spanning tree problem for 3-hypergraphs, running in poly(n;wmax) time, where n is thenumber of nodes in the hypergraph and wmax is the largest weight of edges in the hypergraph.We 
onstru
t a weighted 3-hypergraph H3(V; F;w) from the set P of terminals. Herethe vertex set for the hypergraph, V = P , and and the edge set F = f(a; b)ja 2 P and b 2Pg [ f(a; b; 
)ja 2 P and b 2 P and 
 2 Pg. To obtain the weight of ea
h edge in F , weneed to know B, the length of the longest edge in an optimal solution for BSTP. It is hardto �nd the exa
t value of B. However, we 
an �nd an approximate value, B0, that is atmost (1 + �)B for any �, in time poly(n; �), as illustrated in steps 1 and 2 in the algorithmlisted below. Interested readers 
an �nd more details for determining B0 in [11℄.Theorems 1 and 2 prove the existen
e of the p3 + � approximation algorithm and itsperforman
e:Theorem 3 For any given � > 0, there exists with probability at least 0:5 a randomizedalgorithm that 
omputes a Steiner tree with n terminals and at most k Steiner points su
hthat the length of the longest edge in the approximated tree is at most p3 + � multipliedwith the length of the longest edge in the optimum tree. The algorithm running time is1� � poly(n; k).Next we present the Bottlene
k Steiner tree approximation algorithm:Input: A set P of n terminals in the Eu
lidean plane, an integer k and a positive num-ber �.Output: A 3-restri
ted Steiner tree T with at most k Steiner points.Step 1. Call the ratio-2 approximation algorithm for BSTP from [10℄ and obtain a numberX as the length of the longest edge.Step 2. For B = X2 ; X2 (1 + �); X2 (1 + 2�); � � � ; X2 (1 + �� d1� e) do:Step 2.1. Constru
t a weighted hypergraph H3(V; F;w) ([11℄).9



Step 2.2. Call the randomized algorithm from [7℄ to 
ompute a minimum spanning tree Tfor H3(V; F;w).Step 3. Consider the solution T 0 of the smallest B su
h that w(T 0) � k.Step 4. Repla
e every edge f of the minimum spanning tree T 0 on H3(V; F;w) with aSteiner tree with w(f) Steiner points su
h that the maximum length of ea
h edge in thetree is at most B, and output the obtained tree.Thee work in [11℄ analyses the polynomial running time of this algorithm.4 Con
lusionsEÆ
ient energy management is an important issue in the design of wireless networks withbattery-powered nodes. For appli
ations where repla
ing drained batteries is not feasible,extending the network lifetime by prolonging the network 
onne
tivity, may signify thesu

ess or failure of a mission. Existing methods for improving energy 
onsumption arebased on 
omputing optimal 
ows, transmission s
heduling or power-aware routing.In this paper we present an approximation algorithm for the NP-
omplete bottlene
kSteiner tree problem in the Eu
lidean plane, and we prove a p3+ � performan
e ratio. Theoutput of the polynomial-time algorithm 
onsists of a Steiner tree with n �xed terminalnodes and up to k Steiner nodes su
h that the length of the longest edge in the tree isminimized. This algorithm helps designing power-eÆ
ient wireless networks by 
omputingthe lo
ation of maximum k additional 
ommuni
ation relay nodes so that the resultingspanning tree of at most n + k nodes minimizes the length of the longest edge. Thus, thetransmission power for the longest link is minimized, and, as a result, the time until the�rst node drains its battery and stops transmitting, breaking the network 
onne
tivity, isprolonged.A
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