Skip to main content
Log in

Exact Penalty Functions for Constrained Minimization Problems via Regularized Gap Function for Variational Inequalities

  • Original Paper
  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

By using the regularized gap function for variational inequalities, we introduce a new penalty function P α(x) for the problem of minimizing a twice continuously differentiable function in a closed convex subset of the n-dimensional space \(\mathbb{R}^n\). Under certain assumptions, it is shown that any stationary point of the penalty function P α(x) satisfies the first-order optimality condition of the original constrained minimization problem, and any local (or global) minimizer of P α(x) on \(\mathbb{R}^n\) is a locally (or globally) optimal solution of the original optimization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Contaldi G., Di Pillo G., Lucidi S. (1993). A continuously differentiable exact penalty function for nonlinear programming problems with unbounded feasible set. Oper. Res. Lett. 14: 153–161

    Article  Google Scholar 

  2. Pillo G.D., Grippo L. (1986). A continuously differentiable exact penalty function for nonlinear programming problems with inequality constraint. Math. Program. 36:1–18

    Google Scholar 

  3. Pillo G.D., Grippo L. (1989). Exact penalty functions in constrained optimization. SIAM J. Cont. Optim. 27:1333–1360

    Article  Google Scholar 

  4. Facchinei F., Lucidi S. (1992). A class of methods for optimization problems with simple bounds. Optim. 26:239–259

    Google Scholar 

  5. Fletcher R.E. (1970). A class of methods for nonlinear programming with termination and convergence properties. In: Abadie J. (eds) Integer and Nonlinear Programming. North-Holland, Amsterdam, pp. 157–173

    Google Scholar 

  6. Fukushima M. (1992). Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math. Program. 53:99–110

    Article  Google Scholar 

  7. Glad T., Polak E. (1979). A multiplier method with automatic limitation of penalty growth. Math. Program. 17:251–296

    Article  Google Scholar 

  8. Hiriart-Urruty J.-B., Lemaréchal C. (1993). Convex Analysis and Minimization Algorithms I. Springer-Verlag, New York

    Google Scholar 

  9. Harker P.T., Pang J.-S. (1990). Finite dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Program. 48:161–220

    Article  Google Scholar 

  10. Huyer W., Neumaier A. (2003). A new exact penalty function. SIAM J. Optim. 13:1141–1158

    Article  Google Scholar 

  11. Li W. (1996). Differentiable piecewise quadratic exact penalty functions for quadratic programs with simple bound constraints. SIAM J. Optim. 6:299–315

    Article  Google Scholar 

  12. Li W. (1997). A merit function and a Newton-type method for symmetric linear complementarity problems. In: Ferris M., Pang J.-S. (eds) Complementarity and Variational Problems, Proceedings of International Conference on Complementarity Problems, held at the Johns Hopkins University, November 1–4, 1995. SIAM, Philadelphia, pp. 181–203

    Google Scholar 

  13. Li W., Swetits J. (1993). A Newton method for convex regression, data smoothing, and quadratic programming with bounded constraints. SIAM J. Optim. 3:466–488

    Article  Google Scholar 

  14. Li W., Swetits J. (1997). A new algorithm for strictly convex quadratic programs. SIAM J. Optim. 7:595–619

    Article  Google Scholar 

  15. Lucidi S. (1992). New results continuously differentiable exact penalty functions. SIAM J. Optim. 2:558–574

    Article  Google Scholar 

  16. Tao P.D., Hoai An L.T (1996). Difference of convex functions optimization algorithms (DCA) for globally minimizing nonconvex quadratic forms on Euclidean balls and spheres. Oper. Res. Lett. 19:207–216

    Article  Google Scholar 

  17. Williamson R.-E., Crowell R.H., Trotter H.F. (1968). Calculus of Vector Functions, (2nd edn). Prentice-Hall Inc., NJ

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Peng, J. Exact Penalty Functions for Constrained Minimization Problems via Regularized Gap Function for Variational Inequalities. J Glob Optim 37, 85–94 (2007). https://doi.org/10.1007/s10898-006-9038-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-006-9038-8

Keywords

Navigation