Skip to main content
Log in

Extremal problems for convex polygons

  • Original Paper
  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Consider a convex polygon V n with n sides, perimeter P n , diameter D n , area A n , sum of distances between vertices S n and width W n . Minimizing or maximizing any of these quantities while fixing another defines 10 pairs of extremal polygon problems (one of which usually has a trivial solution or no solution at all). We survey research on these problems, which uses geometrical reasoning increasingly complemented by global optimization methods. Numerous open problems are mentioned, as well as series of test problems for global optimization and non-linear programming codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Audet, C.: Optimisation globale structurée: propriétés, équivalences et résolution. Thèse de doctorat, École Polytechnique de Montréal, Canada (1997) http://www.gerad.ca/~charlesa/

  2. Audet C., Hansen P., Jaumard B., Savard G. (2000). A branch and cut algorithm for nonconvex quadratically constrained quadratic programming. Math. Program. Ser. A, 87(1):131–152

    Google Scholar 

  3. Audet, C., Hansen, P., Messine, F.: The small octagon with longest perimeter, Les Cahiers du GERAD, G-2005-49, 2005, www.gerad.ca. To appear in Journal of Combinatorial Theory, Series A

  4. Audet, C., Hansen, P., Messine, F.: Quatre petits octogones, Les Cahiers du GERAD, G-2005-93, 2005, www.gerad.ca. To appear in Matapli

  5. Audet C., Hansen P., Messine F., Perron S. (2004). The minimum diameter octagon with unit-length sides: Vincze’s wife’s octagon is suboptimal. J. Combinatorial Theory, Ser. A 108:63–75

    Article  Google Scholar 

  6. Audet C., Hansen P., Messine F., Xiong J. (2002). The largest small octagon. J. Combinatorial Theory, Ser. A, 98(1):46–59

    Article  Google Scholar 

  7. Bezdek A., Fodor F. (2000). On convex polygons of maximal width. Archiv der Mathematik 74(1):75–80

    Article  Google Scholar 

  8. Bieri H. (1961). Ungelöste Probleme: Zweiter Nachtrag zu Nr. 12. Elemente der Mathematik 16:105–106

    Google Scholar 

  9. Blåsjö V. (2005). The Isoperimetric Problem. Am. Math. Monthly 112:526–566

    Article  Google Scholar 

  10. Bondarenko, A., Bortz, D.M., Moré, J.J.: A Collection of Large-Scale Nonlinearly Constrained Optimization Test Problems. Argonne National Laboratory Research Report, August 20, 1998

  11. Conn, A.R., Gould, N., I.M., Toint, P.: LANCELOT, vol. 17 in Springer Ser. Comput. Math., Springer-Verlag, Berlin (1992)

  12. Croft H.T., Falconer K.J., Guy R.K. (1991). Unsolved Problems in Geometry. Springer, New York

    Google Scholar 

  13. Datta B. (1997). A discrete isoperimetric problem. Geometriae Dedicata 64:55–68

    Article  Google Scholar 

  14. Dolan, E.D., Moré, J.J.: Benchmarking Optimization Software with COPS. Argonne National Laboratory Research Report, November 2000 revised January 2, 2001

  15. Dolan, E.D., Moré, J.J., Munson, T.S.: Benchmarking Optimization Software with COPS 3.0. Argonne National Laboratory Research Report, February, 2004

  16. Erdős P. (1946). On sets of distances on n points. Am. Math. Monthly 53:248–250

    Article  Google Scholar 

  17. Fejes Tóth L. (1959). Uber eine Punktverteilung auf der Kugel. Acta Math. Hungarica 10:13–19

    Article  Google Scholar 

  18. Fletcher, R., Leyffer, S.: User Manual for FilterSQP, Report NA/181. University of Dundee (1998)

  19. Florian A. (1993). Extremum problems for convex discs and polyhedra. In: Gruber P.M., Wills J.M. (eds) Handbook of Convex Geometry, vol A, Chapter 16. Elsevier Science Publishers, Amsterdam, pp. 177–221

    Google Scholar 

  20. Gill, P.E., Murray, W., Saunders, M.A.: User’s Guide for SNOPT 5.3: A Fortran Package for Large-Scale Nonlinear Programming, Report NA97-5. University of California, CA (1997)

  21. Graham R.L. (1975). The largest small hexagon. J. Combinatorial Theory Series A 18:165–170

    Article  Google Scholar 

  22. Heath G.H. (1921). A History of Greek Mathematics. vol. 2. Clarendon Press Oxford, Oxford

    Google Scholar 

  23. Klein A., Wessler M. (2003). The largest small n-dimensional polytope with n + 3 vertices. J. Combinatorial Theory Series A 102:401–409

    Article  Google Scholar 

  24. Klein A., Wessler M. (2005). A correction to The largest small n − dimensional polytope with n + 3 vertices. J. Combinatorial Theory, Series A 112:173–174

    Article  Google Scholar 

  25. Lagouanelle, J.L., Messine, F.: Algorithme d’encadrement de l’optimum global d’une fonction différentiable. Comptes Rendus de l’Académie des Sciences, Numerical Analysis, T. 326, Série I, pp. 629–632, 1998

  26. Larman, D.G., Tamvakis, N.K.: The decomposition of the n-sphere and the boundaries of plane convex domains. In Convexity and graph theory (Jerusalem, 1981), volume 87 of North-Holland Math. Stud., pp. 209–214. North-Holland, Amsterdam (1984)

  27. Messine, F.: Méthodes d’optimisation globale basées sur l’analyse d’intervalles pour la résolution de problèmes avec contraintes. Thèse de doctorat, INPT-ENSEEIHT, Toulouse, 1997, www.enseeiht.fr/~messine

  28. Messine F. (2004). Deterministic global optimization using interval contraint propagation techniques. RAIRO Oper. Res. 38(4):277–294

    Article  Google Scholar 

  29. Messine, F., Lagouanelle, J.L.: Enclosure Methods for Multivariate Differentiable Functions and Application to Global Optimization. J. Universal Computer Sci., 4(6), pp. 589–603. Springer-Verlag, Berlin (1998)

  30. Moore R.E. (1966). Interval Analysis. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  31. Mossinghoff M.J. (2006). A $1 problem. American Mathematical Monthly 15:385–402

    Article  Google Scholar 

  32. Mossinghoff, M.J.: Isodiametric Problems for Polygons. preprint, 2005

  33. Murtagh, B.A., Saunders, M.A.: MINOS 5.5 user’s guide, report SOL 83-20R, Standford University, revised July 1998

  34. Pillichshammer F. (2001). A note on the sum of distances under a diameter constraint. Archiv der Math. 77:195–199

    Article  Google Scholar 

  35. Pillichshammer F. (2003). On extremal point distributions in the Euclidean plane. Acta Math. Hungarica 98:311–321

    Article  Google Scholar 

  36. Ratschek H., Rokne J. (1988). New Computer Methods for Global Optimization. Ellis Horwood, Chichester

    Google Scholar 

  37. Rechenberg I. (2000). Case studies in evolutionary experimentation and computation. Comput Methods Appl. Mech. Eng. 186:125–140

    Article  Google Scholar 

  38. Reinhardt K. (1922). Extremale polygone gegebenen durchmessers. Jahresber. Deutsch. Math. Verein 31:251–270

    Google Scholar 

  39. Reuleaux, F.: The Kinematics of Machinery, translation of german original. New York, Dover (1963).

  40. Schäffer J.J. (1958). Ungelöste Probleme: Nachtrag zu Nr. 12. Elemente der Math. 13:85–86

    Google Scholar 

  41. Sherali H.D., Adams W.P. (1999). A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer, Dordrecht/Boston/London

    Google Scholar 

  42. Sherali H.D., Alameddine A. (1992). A new reformulation-linearization technique for bilinear programming problems. J. Glob. Optim. 2(4):379–410

    Article  Google Scholar 

  43. Sherali H.D., Tuncbilek C.H. (1992). A global optimization algorithm for polynomial programming problems using a reformulation–linearization technique. J. Global Optimization 2(1):101–112

    Article  Google Scholar 

  44. Schildbach, W.: Maximum-area Polygons, http://www.fermi.franken.de/wscildbach/ngonmax/index.html, 1997

  45. http://www.packomania.com, updated by E. Specht

  46. Spellucci, P.: DONLP2 short users guide. Technische Universitt Darmstadt, (1999)

  47. Szabó P.G., Markót M.C., Csendes T. (2005). Global optimization in geometry - circle packing into the Square. In: Audet C., Hansen P., Savard G. (eds) Essays and Surveys in Global Optimization. Kluwer, Dordrecht, pp. 233–266

    Chapter  Google Scholar 

  48. Tamvakis N.K. (1987). On the perimeter and the area of the convex polygon of a given diameter. Bull. Greek Math. Soc. 28:115–132

    Google Scholar 

  49. Thomas I. (1941). Illustrating the History of Greek Mathematics, vol. 2. Harvard University Press, Cambridge

    Google Scholar 

  50. Vanderbei R.J. (2000). LOQO User’s Manual – Version 4.05. Technical Report. Princeton University, Princeton

    Google Scholar 

  51. Vincze S. (1950). On a geometrical extremum problem. Acta Sci. Math. Szeged 12:136–142

    Google Scholar 

  52. Waltz R., Nocedal J. (2003). KNITRO User’s Manual – Version 3.1 Technical Report 5. Northwestern University, Evanston

    Google Scholar 

  53. Wolf R. (1999). Averaging distances in real quasihypermetric Banach spaces of finite dimention. Isral J. Math. 110:125–152

    Google Scholar 

  54. Woodall D.R. (1971). Thrackles and deadlock. In: Welsh D.J.A. (eds) Combinatorial Mathematics and Its Applications. Academic Press, New York

    Google Scholar 

  55. Yuan, B.: The Largest Small Hexagon. M.Sc. thesis, Department of Mathematics, National University of Singapore (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Messine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Audet, C., Hansen, P. & Messine, F. Extremal problems for convex polygons. J Glob Optim 38, 163–179 (2007). https://doi.org/10.1007/s10898-006-9065-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-006-9065-5

Keywords

Navigation