Skip to main content
Log in

Application of lower bound direct method to engineering structures

  • Original Paper
  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Direct methods provide elegant and efficient approaches for the prediction of the long-term behaviour of engineering structures under arbitrary complex loading independent of the number of loading cycles. The lower bound direct method leads to a constrained non-linear convex problem in conjunction with finite element methods, which necessitates a very large number of optimization variables and a large amount of computer memory. To solve this large-scale optimization problem, we first reformulate it in a simpler equivalent convex program with easily exploitable sparsity structure. The interior point with DC regularization algorithm (IPDCA) using quasi definite matrix techniques is then used for its solution. The numerical results obtained by this algorithm will be compared with those obtained by general standard code Lancelot. They show the robustness, the efficiency of IPDCA and in particular its great superiority with respect to Lancelot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Melan E. (1936) Theorie Statisch Unbestimmter Systeme aus Ideal-Plastischem Baustoff. Sitber. Akad. Wiss. Wien, Abt. IIA 145, 195–218

    Google Scholar 

  2. Koiter W.T. (1960) General theorems for elastic-plastic solids. In: Sneddon I.N., Hill R. (eds) Progress in Solid Mechanics. North-Holland, Amsterdam, pp. 165–221

    Google Scholar 

  3. Hachemi A., Weichert D. (1998) Numerical shakedown analysis of damaged structures. Comput. Methods Appl. Mech. Eng 160, 57–70

    Article  Google Scholar 

  4. Akoa F., Le Thi Hoai An, Pham Dinh Tao (2004) An interior point algorithm with DC regularisation for nonconvex quadratic programming. In: Le Thi Hoai An, Pham Dinh Tao (eds) Modelling, Computation and Optimization in Information Systems and Management Sciences. Hermes Science, London, pp. 87–96

    Google Scholar 

  5. Hachemi A., Le Thi Hoai An, Mouhtamid S., Pham Dinh Tao. (2004) Large-scale nonlinear programming and lower bound direct method in engineering applications. In: Le Thi Hoai An, Pham Dinh Tao (eds) Modelling, Computation and Optimization in Information Systems and Management Sciences. Hermes Science, London, pp. 299–310

    Google Scholar 

  6. Conn A.R., Gould N.I.M., Toint Ph.L. (1992) LANCELOT: A Fortran Package for Large-Scale Nonlinear Optimization (Release A). Springer - Verlag, Berlin

    Google Scholar 

  7. Weichert D., Hachemi A., Schwabe F. (1999) Shakedown analysis of composites. Mech. Res. Comm. 26, 309–318

    Article  Google Scholar 

  8. Hachemi A., Schwabe F., Weichert D. (2000) Failure investigation of fiber-reinforced composite materials by shakedown analysis. In: Weichert D., Maier G. (eds) Inelastic Analysis of Structures under Variable Loads: Theory and Engineering Applications. Kluwer Academic Publishers, Dordrecht, pp. 107–119

    Google Scholar 

  9. König J.A., Kleiber M. (1978) On a new method of shakedown analysis. Bull. Acad. Polon. Sci. Sér. Sci. 26, 165–171

    Google Scholar 

  10. Akoa F.: Approches de point intérieur et de la programmation DC en optimisation non convexe. Codes et simulations numériques industrielles. PhD Thesis, Insa - Rouen, January 2005.

  11. Le Thi Hoai An: Analyse numérique des algorithmes de l’optimization D.C: Approches locale et globale, PhD Thesis, University of Rouen, December 1994.

  12. Le Thi Hoai An, Pham Dinh Tao: DC programming: theory, algorithms and applications. the state of the art (28 pages), In: Proceedings (containing the refereed contributed papers) of The First International Workshop on Global Constrained Optimization and Constraint Satisfaction (Cocos’ 02), Valbonne-Sophia Antipolis, France, October 2–4, 2002.

  13. Le Thi Hoai An: Contribution à l’optimisation non convexe et l’optimisation globale: Théorie, et Applications. Habilitation à Diriger des Recherches (HDR), Université de Rouen, Juin 1997.

  14. Pham Dinh Tao, Le Thi Hoai (1997) An Convex analysis approach to DC programming: theory, algorithms and applications. Acta Mathematica Vietnamica (dedicated to Professor Hoang Tuy on the occasion of his 70th birthday) 22(1), 289–355

    Google Scholar 

  15. Pham Dinh Tao, Le Thi Hoai An (1998) DC optimization algorithm for solving the trust region problem. SIAM J. Optim., 8(2): 476–505

    Article  Google Scholar 

  16. Pham Dinh Tao, Le Thi Hoai An (2003) Large scale molecular optimization from distance matrices by a DC optimization approach. SIAM J. Optim, 14(1): 77–116

    Article  Google Scholar 

  17. Le Thi Haoi An, Pham Dinh Tao (2005) The DC (difference of convex functions) Programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann. Oper Res. 133, 23–46

    Article  Google Scholar 

  18. Altman A., Gondzio J.: Regularized symmetric Indefinite Systems in Interior Point Methods for Linear and Quadratic Optimization. Logilab Technical Report 1998.6

  19. Saunders M. (1996) Cholesky-based methods for sparse least squares: the benefits of regularization. In: Adams L., Nazareth L. (eds) Linear and Nonlinear Conjugate Gradient-Related Methods. SIAM Philadelphia, USA, pp. 92–100

    Google Scholar 

  20. Saunders M., Tomlin J.A.: Solving regularized linear programs using barrier methods and KKT systems. Technical Repport SOL 96-4, Systems Optimization Laboratory, Department of Operations Research, Stanford University, Stanford, CA 94305, USA, December 1996.

  21. Vanderbei R.J., Shanno D. (1999) An Interior-Point Algorithm for Nonconvex Nonlinear Pro- gramming. Statistics and Operations Research. Princeton SOR-97-21 Comput. Optim. App. 13, 231–252

    Google Scholar 

  22. Vanderbei R.J.: An Interior-Point Algorithm for Quadratic Programming. Statistics and Operations Research, Princeton SOR-94-15 (1994)

  23. Vanderbei R.J. (1995) Symmetric quasi-definite matrices. SIAM J. Optim 5(1): 100–113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pham Dinh Tao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

François, A., Abdelkader, H., An, L.T.H. et al. Application of lower bound direct method to engineering structures. J Glob Optim 37, 609–630 (2007). https://doi.org/10.1007/s10898-006-9069-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-006-9069-1

Keywords

Navigation