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Abstract

This paper proposes a system optimal dynamic traffic assignment model that does not

require the network to be empty at the beginning or at the end of the planning horizon.

The model assumes that link travel times depend on traffic densities and uses a discretized

planning horizon. The resulting formulation is a nonlinear program with binary variables and

a time-expanded network structure. Under a relatively mild condition, the nonlinear program

has a feasible solution. When necessary, constraints can be added to ensure that the solution

satisfies the First-In-First-Out condition. Also included are approximation schemes based

on linear integer programs that can provide solutions arbitrarily close to that of the original

nonlinear problem.
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1 Introduction

Since Merchant and Nemhauser (see, [30] and [31]) first proposed their model in 1978, there have

been a number of papers (see, e.g., [13], [6], [44], [14], [24], [23], [48], [17], [27], [25], and [42])

discussing the variational inequalities or mathematical programming formulations for the dynamic

traffic assignment problem with the assumption that the planning horizon is a set of discrete

points instead of a continuous interval. Many of these papers use a dynamic or time-expanded

network (see, e.g., [1]) to simultaneously capture the topology of the transportation network and

the evolution of traffic over time. Implicitly or otherwise, these papers typically assume that

there is no traffic at the beginning of the planning horizon (or at time zero) and that all trips

must exit the network prior to the end. When there are cars at the time zero, the times at which

these cars enter the network must be known in order to determine when they will exit the arcs

on which they were travelling. In practice, data with such details do not generally exist.

There are two main factors that distinguish the models in papers referenced above. First,

some (e.g., [30], [13], [23], [6], [48], [25], [21]) seek a system optimal solution and others (e.g.,

[24], [44], [14], and [17]) compute a user equilibrium instead. The other factor is the travel cost

function used by these models. Among other parameters (physical or otherwise), a travel time

or cost function may depend on the number of cars on the link and the input and output rates.

Many (e.g., [11], [9], [7], [8], [29], [22], [16]) have analyzed the effects of travel cost functions on

various models. Some (e.g., [29] and [22]) have shown that some travel cost functions are not

consistent with the models that use them.

Similar to Carey and Srinivasan [12], Carey and Subrahmanian [13], Carey [6], Chen and

Hsueh [14] and Koufman et al. [25], the model in this paper is based on the time-expanded

network. However, instead of assuming that the network is empty at the beginning or at the

end, this paper treats the planning horizon as a circular interval instead of linear. For example,

consider the interval [0, 24], i.e. a 24-hour planning horizon. When viewed in a linear fashion, it

is typically assumed that there is no car in the network at times 0 and 24. In turn, this implies

there is no travel demand after time k < 24. Otherwise, cars that enter the network after time k

cannot reach their destinations by time 24, thereby leaving cars in the network at the end of the

horizon. On the other hand, if there is a car entering a street at 23:55h (11:55 PM) and exiting

at 24:06h (12:06 AM, the next day) in a circular planning horizon, the exit time of this car would
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be treated as 00:06h instead. When accounted in this manner, it is possible to determine the

exit time for every car that is in the network at time zero without requiring any additional data.

Additionally, models that view the planning horizon in a circular fashion are more general in

that they include those with a linear planning horizon. By setting the travel demands and other

variables during an appropriate time interval to zero, models with a circular planning horizon

effectively reduce to ones with a linear horizon.

It is often argued that the number of cars at the beginning and the end of the horizon are small

and solutions to DTA are not drastically affected by setting them to zero. When the paths that

these cars use do not overlap, the argument is valid. However, when these cars have to traverse

the same arc in reaching their destinations, the number of cars on the arc may be significant and

ignoring it may lead to a solution significantly different from the one that accounts for all cars.

This paper makes two main assumptions. One requires the link travel time at time t to be a

function of only the number of cars on the link at that time. Carey and Ge [11] show that the

solutions of models using functions of this type converge to the solution of the Lighthill-Whitham-

Richards model (see Lighthill and Whitham [28] and Richards [39]) as the discretization of links

into smaller segments is refined. Because minimizing the total travel time or delay mitigates its

occurrence, models discussed herein do not explicitly addresse spillback. On the other hand, the

models can be extended to handle spillback using a technique similar to the one in [26] or an

alternative travel time function that includes the effect of spillback (see, e.g., [34]). However, as

indicated in the reference, using such a function may not lead to a model with a solution.

For the remainder, Section 2 defines the concept of periodic planning horizon. Section 3 for-

mulates the system version of the discrete-time dynamic traffic assignment problem with periodic

planning horizon or DTDTA and prove that a feasible solution exists under a relatively mild

condition. To our knowledge, there are only four papers ( [3], [41], [44], and [47]) that address

the existence issue and some (see, e.g., [41] and [47]) consider this samll number to be lacking.

All four deal with user equilibrium problems instead of system optimal. Section 4 describes two

linear integer programs that provide bounds for DTDTA. Section 5 presents numerical results for

small test problems (we discuss algorithms for solving larger problems in a separate paper) and,

finally, Section 6 concludes the paper.
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2 Periodic Planning Horizon

The models in this paper assume that the planning horizon is a half-open interval of length T ,

i.e., [0, T ). Instead of viewing this interval in a linear fashion, the interval is treated in a circular

manner as shown in Figure 1. In doing so, time 0 and T are the same instant. For example,

time 0:00h and 24:00h (or midnight) are the same instant in a 24-hour day. For this reason, T is

excluded and the planning horizon is half-open. To make the discussion herein more intuitive, we

often refer to the planning horizon as a 24-hour day, i.e., T = 24. In theory, the planning horizon

can be of any length as long as events occur in a periodic fashion. If an event (e.g., five cars enter

a street) occurs at time t, then the same event also occurs at time t + kT , for all integer k ≥ 1.

 

 

 

 

0/T 

0 T 

vs 

Figure 1: Linear versus circular intervals.

Because the planning horizon is circular, events occurring tomorrow are assumed to occur in

the same interval that represents today. For example, consider a car that enters a street at t1

= 23:00h (or 11 PM) today and traverses the street until it leaves at t2 = 01:00h (or 1 AM)

tomorrow. (See Figure 2.) In a circular planning horizon, these two events, a car entering and

leaving a street, occur at time 23:00h and 01:00h in the same interval [0, 24). In general, if a car

enters a street at time t1 < T and takes τ < T units of time to traverse, then the two events are

assumed to occur at t1 and mod{t1 + τ, T} on the interval [0, T ).
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Figure 2: Events occurring in two consecutive planning horizons.

3 Discrete-Time Dynamic Traffic Assignment Problem with a

Periodic Time Horizon

Although, it is possible to formulate the dynamic traffic assignment problem with a periodic time

horizon as an optimal control problem, solving it is typically troublesome (see, e.g., [33]). This

section presents a discrete-time version of the problem in which the interval [0, T ) is represented

as a set of discrete points, i.e., ∆ = {0, δ, 2δ, · · · , T − δ}, where δ = T
N and N is a positive

integer. (In general, the subdivision of the planning horizon need not be uniform. For example,

the subdivision during the period between 22:00h to 06:00h may be coarser than the one for the

period between 06:00h to 22:00h.) In order to avoid using fractional numbers in the set of indexes

and to simplify our presentation, we typically assume that δ = 1.

To formulate the problem, let G(N,A) represent the underlying transportation network where

N and A denote the set of nodes and arcs in the network, respectively. It is convenient to refer

to elements of A either as a single index a or a pair of indices (i, j). The latter is used when

it is necessary to reference the two ends of an arc explicitly. Furthermore, C is a set of origin-

destination (OD) pairs and the travel demand for OD pair k during the time interval [t, t + δ],

t ∈ ∆, is hk
t .

There is also a travel time function associated with each arc in the network. In the literature

(see, e.g., [45], [36] and [10]), these functions can depend on a number of factors such as in-

flow and out-flow rates and traffic densities. We assume in this formulation that φa, the travel

time associated with arc a, depends only on the number of cars on the arc. Furthermore, φa is
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continuous, non-decreasing and bounded by T , i.e., 0 < φa(w) < T , ∀w ∈ [0,Ma], where Ma is a

sufficiently large upper bound for the range of φa(w) and there is no feasible solution whose flow

on arc a can exceed Ma. In particular, φa(0) represents the free-flow travel time on arc a.

 

1 

2 3 

Figure 3: Three-node network.

We use the dynamic or time-expanded (TE) network (see, e.g., Section 19.6 in [1]) to determine

the state of vehicular traffic in the system at each time t ∈ ∆. To illustrate the concept of time

expansion, consider the static network with three nodes shown in Figure 3 or the three-node

network. In this network, all arcs have the same upper bound value, Ma = M , and there is only

one OD pair, (1, 3). Let planning horizon be the interval [0, 5) and δ = 1. Thus, ∆ = {0, 1, 2, 3, 4}.
The travel time function for every arc is φ and 1.5 ≤ φ(w) ≤ 4, ∀w ∈ [0,M ]. To construct the

TE network, the travel time also needs to be discretized. In general, the set of possible discrete

travel times of arc a is Γa = {s : s = dφa(w)
δ e, 0 ≤ w ≤ Ma}. For our example, the set of possible

discrete travel times for each arc is Γa = {2, 3, 4}, ∀a.

To incorporate the time component in the TE network, every node in the static network (or

static node) is ‘expanded’ or replicated once for each t ∈ ∆. For the three-node network, static

node 1 is transformed into five TE nodes, one for each t ∈ ∆, in the TE network. For example,

node 1 is expanded into nodes 10, 11, 12, 13, and 14 in the TE network. (See Figure 4.) Similarly,

each arc (i, j) in the static network (or static arc) is replicated once for each pair of (t, s), where

t ∈ ∆ and s ∈ Γ(i,j). Consider arc (1, 2) in the three-node network. Cars that enter this arc

at time 1 can take 2, 3, or 4 units of time to traverse depending (as assumed earlier) on the

number of cars on the arc at t = 1. To allow all possibilities, arc (1, 2) is expanded into three
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Figure 4: Time expansion of arc (1, 2) at t = 1.

TE arcs (11, 23), (11, 24), and (11, 20). The latter represents a car that enters arc (1,2) at time 1,

takes 4 units of time to traverse, and leaves the arc at time 5 or time 0 (or mod(1 + 4, 5)) of the

following day. Similar expansion applies to each t ∈ ∆. In general, each static arc (i, j) expands

into |∆| × |Γ(i,j)| TE arcs of the form (it, j mod (t+s,T )), ∀ t ∈ ∆, s ∈ Γ(i,j).

Figure 5 displays the complete time expansion of the three-node network. In addition to the

time-expanded nodes and arcs, the figure also displays the travel demand at the origin TE nodes

(i.e., node 1t, ∀t ∈ ∆) and decision variables gk
d(k)t

representing number of cars arriving at the

destination node d(k) of OD pair k at time t, i.e., at node 3t, ∀t ∈ ∆.

To reference flows on TE arcs, let yk
a(t,s) denote the amount of flow for commodity k that

enters static arc a at time t ∈ ∆, takes s ∈ Γa units of time to traverse it, and then exits the

arc at time mod{t + s, T}. In particular, if a = (i, j), then the subscript a(t, s) refers to TE arcs

of the form (it, j mod (t+s,T )), ∀ t ∈ ∆, s ∈ Γ(i,j). In addition, Ya(t,s) =
∑

k∈C yk
a(t,s) represents the

total flow on arc a(t, s).

To compute the time to traverse a static arc at time t, let

Ωa(t) = {(τ, s) : τ = [t− 1]T , [t− 2]T , · · · , [t− s]T , s ∈ Γa} .
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Figure 5: Time-expansion of the three-node network.
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where

[q]T =





q if q ≥ 0

T + q if q < 0

In words, Ωa(t) contains pairs of entrance, τ , and travel times, s, for static arc a such that, if a car

enters static arc a at time τ and takes s time units to traverse it, the car will still be on the arc

at time t. For example, if t = 11:00h and the time to traverse arc a is five hours for the previous

five consecutive time periods, then cars entering arc a at time τ = 10:00h, 9:00h, 8:00h, 7:00h,

and 6:00h will be on the arc at 11:00h. (We assume here that cars entering arc a at, e.g., 6:00h

are still on the arc at 11:00h even though it is scheduled or expected to leave at 11:00h.) When

t is relatively near the beginning of the planning horizon, the notation [·]T accounts for cars on

the arc at time t that enter it from the previous day. Continuing with the foregoing example, let

t = 3:00h instead. Then, cars entering arc a at time τ = 2:00h, 1:00h, 0:00h, 23:00h, and 22:00h

are still on the arc at 3:00h. Using the set Ωa(t), the total amount of flow on static arc a at time

t or xa(t) is
∑

(τ,s)∈Ωa(t)
Ya(τ,s).

There are two additional sets of decision variables. One set consists of za(t,s), a binary variable

that equals one if it takes between (s− δ) and s units of time to traverse arc a at time t. In the

formulation below, the value of za(t,s) depends on xa(t) and, for each t, za(t,s) = 1 for only one

s ∈ Γa. The other set consists of gk, a vector with a component for each node in the TE network.

Component it of gk is set to zero if i is not the destination node of OD pair k. Otherwise, gk
d(k)t

,

where d(k) denotes the destination node of OD pair k, is a decision variable that represents the

amount of flow for commodity k that reaches its destination, d(k), at time t.

Below is a mathematical formulation of the discrete-time dynamic traffic assignment problem

with periodic planning horizon (DTDTA).

min
(x,y,z,g)

∑

t∈∆

∑

a∈A

[
φa(xa(t))

∑

s∈Γa

Ya(t,s)

]

subject to:

Byk + gk = bk ∀k ∈ C (1)
∑

t∈∆

gk
d(k)t

=
∑

t∈∆

hk
t ∀k ∈ C (2)

Ya(t,s) =
∑

k∈C

yk
a(t,s) ∀t ∈ ∆, a ∈ A and s ∈ Γa (3)
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xa(t) =
∑

(τ,s)∈Ωa(t)

Ya(τ,s) ∀t ∈ ∆ and a ∈ A (4)

∑

s∈Γa

za(t,s) = 1 ∀t ∈ ∆ and a ∈ A (5)

∑

s∈Γa

(s− δ)za(t,s) ≤ φa(xa(t)) ≤
∑

s∈Γa

sza(t,s) ∀t ∈ ∆ and a ∈ A (6)

Ya(t,s) ≤ Maza(t,s) ∀t ∈ ∆, a ∈ A and a ∈ Γa (7)

yk
a(t,s) ≥ 0, gk

d(k)t
≥ 0, xa(t) ≥ 0, za(t,s) ∈ {0, 1} ∀t ∈ ∆, a ∈ A, s ∈ Γa and k ∈ C (8)

In the objective function,
∑

s∈Γa
Ya(t,s) represents the number of cars that enter arc a at time

t and, based on our assumption, these cars experience the same travel time, φa(xa(t)). Thus,

the goal of this problem is to minimize the total travel time or delay. Using constraint (3), the

objective function can be equivalently written as

min
(x,y,z,g)

∑

t∈∆

∑

a∈A


φa(

∑

(τ,s)∈Ωa(t)

Ya(τ,s))
∑

s∈Γa

Ya(t,s)




or, more compactly, as

minΦ(Y )T Y,

where Y and Φ(Y ) are vectors of arc flows (Ya(t,s)) and travel times (φa(
∑

(τ,s)∈Ωa(t)
Ya(τ,s))) whose

components are defined so that their inner product is consistent with the summations.

Constraint (1) ensures that flows are balanced at each node in the TE network. In this

constraint, B denotes the node-arc incidence matrix of the TE network and bk is a constant

vector with a component for each TE node and defined as follows:

bk
it =





0 if i 6= o(k)

hk
t if i = o(k)

where o(k) denotes the origin node of OD pair k. Constraint (2) guarantees that the number of

cars arriving at the destination node d(k) equals the total travel demand of OD pair k during the

planning horizon. Then, constraint (3) computes the total flow on each TE arc and (4) determines

the number of cars that are still on static arc a at time t.

In combination, the next three constraints, i.e., constraints (5) - (7), compute the travel time

for the cars that enter arc a at time t and only allow flows to traverse the corresponding arc in
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the TE network. In particular, constraint (5), in conjunction with (6), chooses one (discretized)

travel time s ∈ Γa that best approximates φa(xa(t)), i.e., φa(xa(t)) ∈ (s− δ, s]. When a represents

arc (i, j), constraint (7) only allows arc (it, imod(t+s,T )) to have a positive flow. Otherwise, (7)

forces flows on arc (it, imod(t+τ,T )), for τ ∈ Γa and τ 6= s, to be zero. Finally, constraint (8) makes

sure that appropriate decision variables are either nonnegative or binary.

As formulated above, the travel time associated with za(t,s) in equation (6) can only take on

discrete values from the set Γa while the travel time in the objective function varies continuously.

Although it may be more consistent to use discrete values of travel times in the objective function,

the above model would provide a better solution because the true travel time is used to calculate

the total delay. The model also has interesting properties discussed in Section 4. In addition, the

treatments of travel times in both the objective function and constraints can be made consistent

by solving the (approximation) refinement problem also discussed in the same section.

Under a relatively mild sufficient condition, we show below that DTDTA has a solution by

constructing a feasible solution. In fact, the solution we construct below is generally far from

being optimal. However, it suffices for the purpose of proving existence. Let Ra(t) be a set of

discrete times at which a car enters arc a and still remains on the arc at time t. Below, we refer

to Ra(t) as the enter-remain set. Given xa(t), Ra(t) ⊆ ∆ is a union of two sets, i.e.,

Ra(t) = {w ∈ ∆ : w ≤ (t−1), w+
⌈

φ(xa(w))
δ

⌉
≥ t}∪{w ∈ ∆ : w ≥ (t+1), w+

⌈
φ(xa(w))

δ

⌉
−T ≥ t}.

In addition, let ua(t) denote the total flow into arc a at time t. When ua(t) is given for each t ∈ ∆,

the lemma below shows that a set of xa(t), Ya(t,s), and za(t,s) consistent with constraints (4)-(7)

and relevant conditions in (8) exists when Ma is sufficiently large.

Lemma 1 Assume that ua(t) is known for a given a ∈ A and all t ∈ ∆. If Ma is sufficiently

large, then there exists a set of xa(t), Ya(t,s) and za(t,s) that satisfies constraints (4) to (7) and the

relevant conditions in (8).

Proof: (Because a is given, we discard the subscript a in places where there is no confusion in

order to simplify our notation.) Below, we construct sequences {sm
t }, {zm

a(t,s)}, {Y m
a(t,s)}, {xm

a(t)}
and {Rm

t } whose limits yield the set of decision variables feasible to constraints stated above.

For m = 1, let
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• s1
t = dφa(0)/δe, i.e., s1

t is the discretized free flow travel time for arc a,

• z1
a(t,s1

t )
= 1 and z1

a(t,s) = 0, ∀s ∈ ∆, s 6= s1
t ,

• Y 1
a(t,s1

t )
= ua(t) and Y 1

a(t,s) = 0, ∀s ∈ ∆, s 6= s1
t ,

• R1
t = {ω ∈ ∆ : ω ≤ (t− 1), ω + s1

ω ≥ t} ∪ {ω ∈ ∆ : ω ≥ (t + 1), ω + s1
ω − T ≥ t}, and

• x1
a(t) =

∑
ω∈R1

t
Y 1

a(ω,s1
ω).

As defined above, R1
t is the enter-remain set based on the travel time s1, a vector of s1

ω, ∀ω ∈ ∆.

For m ≥ 2, let

• sm
t = dφa(xm−1

a(t) )/δe,

• zm
a(t,sm

t ) = 1 and zm
a(t,s) = 0, ∀s ∈ ∆, s 6= sm

t ,

• Y m
a(t,sm

t ) = ua(t) and Y m
a(t,s) = 0, ∀s ∈ ∆, s 6= sm

t ,

• Rm
t = {ω ∈ ∆ : ω ≤ (t− 1), ω + sm

ω ≥ t} ∪ {ω ∈ ∆ : ω ≥ (t + 1), ω + sm
ω − T ≥ t}, and

• xm
a(t) =

∑
ω∈Rm

t
Y m

a(ω,sm
ω ).

Sequences {sm
t }, {xm

a(t)} and {Rm
t } constructed above are monotonically non-decreasing. Con-

sider the sequence {sm
t }. Observe that s2

t ≥ s1
t , ∀ t ∈ ∆ because x1

a(t) ≥ 0, ∀ t ∈ ∆, and as assumed

earlier φa(·) is non-decreasing. It follows that, for any t ∈ ∆, ω+s2
ω ≥ ω+s1

ω ≥ t and ω+s2
ω−T ≥

ω + s1
ω−T ≥ t. Thus, ω ∈ R1

t implies that ω ∈ R2
t , i.e., R1

t ⊆ R2
t for all t ∈ ∆. The latter and the

fact that ua(t) is nonnegative imply that x2
a(t) =

∑
ω∈R2

t
Y 2

a(ω,s2
ω) ≥

∑
ω∈R1

t
Y 1

a(ω,s1
ω) = x1

a(t), ∀ t ∈ ∆.

Assume that the claim is true up to some fixed m. For all t ∈ ∆, sm+1
t = dφa(xm

a(t))/δe ≥
dφa(xm−1

a(t) )/δe = sm
t , because xm

a(t) ≥ xm−1
a(t) and φa(·) is non-decreasing. Using an argument

similar to above, Rm
t ⊆ Rm+1

t and xm+1
a(t) ≥ xm

a(t). Thus, the three sequences are monotonically

non-decreasing. In addition, all three sequences are bounded, i.e., sm
t < T , Rm

t ⊆ ∆, and

xm
a(t) ≤

∑
t∈∆ ua(t) and, therefore, convergent. Let s∞t , R∞

t , and x∞a(t) be their limits. Based

on our construction, s∞t = dφa(x∞a(t))/δe, z∞a(t,s∞t ) = 1 and z∞a(t,s) = 0, ∀ s ∈ ∆, s 6= s∞t . In

combination, these ensure that constraints (5) and (6) are satisfied. Our construction also implies

that Y ∞
a(t,s∞t ) = ua(t) and Y ∞

a(t,s) = 0, ∀s ∈ ∆, s 6= s∞t . Because Ma is sufficiently large, Y ∞
a(t,s)

satisfies constraint (7).
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In the limit, R∞
t = {ω ∈ ∆ : ω ≤ (t− 1), ω + s∞ω ≥ t} ∪ {ω ∈ ∆ : ω ≥ (t + 1), ω + s∞ω − T ≥

t}. Thus, R∞
t is consistent with s∞ and x∞a(t) =

∑
ω∈R∞t

Y ∞
a(ω,s∞ω ) =

∑
(τ,s)∈Ωa(t)

Y ∞
a(τ,s) because

Y ∞
a(t,s) = 0, ∀s ∈ ∆, s 6= s∞t . So, x∞a(t) satisfies (4). Furthermore, x∞a(t) and Y ∞

a(t,s) are both

nonnegative and z∞a(t,s) is binary. Thus, the proof is complete. ¥

In the above proof, if, for some m, sm
t is larger than the maximum travel time for arc a, i.e.,

max{s : s ∈ Γa} (or, equivalently, xm
a(t) > Ma), then ua(t) is infeasible or not compatible with the

upper bound Ma.

To establish the existence of a feasible solution to DTDTA, recall that G(N, A) denotes the

(static) transportation network. For the theorem below, assume without loss of generality that

each node in N can be either an origin or destination, but not both. If node i is both an origin

and a destination, then we create a dummy node i′ and use node i as the origin node and i′ as

a destination. For example, consider OD pairs (i, j) and (j, i). In this case, i and j are both

origins and destinations. When the dummy nodes are added, the two OD pairs become (i, j′)

and (j, i′). Let pk denote a path in G(N,A) connecting the OD pair k, i.e., pk ∈ P k. The set of

these paths, Ψ = {pk : k ∈ C}, induces a subgraph G(N̂ , Â), where N̂ ⊆ N and Â ⊆ A denote

the sets of nodes and arcs, respectively, belonging to the paths in Ψ. For each i ∈ N̂ , define

[i+] = {(i, j) : (i, j) ∈ Â} and [i−] = {(j, i) : (j, i) ∈ Â}. In words, [i+] and [i−] are the sets

of arcs in G(N̂ , Â) that emanate from and terminate at node i, respectively. Also, let order(i)

denote a topological order of node i (see [1]). If (i, j) ∈ Â and G(N̂ , Â) can be topologically

ordered, then order(i) < order(j).

Theorem 1 Assume that Ma is sufficiently large for all a ∈ Â and a node can be either an origin

or a destination, but not both. Then, DTDTA has a feasible solution, if there exists a path pk for

each k ∈ C such that the subgraph they induce is acyclic.

Proof: Let Ψ be a set of paths, one per OD pair, such that the subgraph, G(N̂ , Â), it induces

has no cycle. Thus, N̂ can be ordered topologically. (See [1].) Below, we construct a feasible

solution one arc at a time and in a topological order using Lemma 1 and only the paths in Ψ.

The latter implies that Ya(t,s) = yk
a(t,s) = xa(t) = 0 for all a /∈ Â.

Let node i ∈ N̂ be of (topological) order 1 and, for each arc a in [i+], define Q(a) to be the

set of paths in Ψ that contain or use arc a, i.e., Q(a) = {k : a ∈ pk, k ∈ C}. (It is not necessary
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to index Q(a) with i because each arc a can belong to only one [i+].) For each k ∈ Q(a), arc a

must be the first arc in path pk because node i is of order 1. Let ua(t) =
∑

k∈Q(a) hk
t . Because

Ma is sufficiently large, Lemma 1 ensures that there exist xa(t), Ya(t,s), and za(t,s) feasible to (4)

- (7) and the relevant conditions in (8). Let yk
a(t,s∞

a(t)
) = hk

t and yk
a(t,s) = 0, ∀ s ∈ ∆, s 6= s∞a(t). So

constructed, these yk
a(t,s)’s are consistent with Ya(t,s) and satisfy the flow balance equation (1) for

node i.

To construct the variables xa(t), Ya(t,s), za(t,s), and yk
a(t,s) for arcs emanating from nodes of

higher order, assume that the decision variables for arcs emanating from nodes with order m or

less have been constructed and let node i be of order (m + 1).

Case 1: The set [i+] is empty. Then, i must be a destination node for some commodity k,

i.e., i = d(k). For â ∈ [i−], k ∈ Q(â) and t ∈ ∆, set

gk
d(k)t

=
∑

{bt: bt+s∞ba(bt)=t}
yk
ba(bt,s∞ba(bt))

+
∑

{bt: bt+s∞ba(bt)−T=t}
yk
ba(bt,s∞ba(bt))

.

For each k ∈ Q(â), every demand hk
t uses arc â. Thus, gk

d(k)t
as constructed must satisfy the

appropriate constraints in (1) and (2).

Case 2: The set [i+] is not empty. Let â ∈ [i−], also a nonempty set. Assume that â = (q, i).

Then, order(q) < order(i) and, by the above assumption, xba(t), Yba(t,s), zba(t,s), and yk
ba(t,s) are

available.

Consider an arc a ∈ [i+]. For each â ∈ [i−], define Q(â, a) = {k : â ∈ pk, a ∈ pk, k ∈ C} and,

for each k ∈ Q(â, a), let uk
a(t) denote the flow into arc a at time t for OD pair k. Then,

uk
a(t) =

∑

{bt: bt+s∞ba(bt)=t}
yk
ba(bt,s∞ba(bt))

+
∑

{bt: bt+s∞ba(bt)−T=t}
yk
ba(bt,s∞ba(bt))

,

and the total flow into arc a at time t is ua(t) =
∑

k∈Q(ba,a) uk
a(t). Because Ma is sufficiently large,

Lemma 1 ensures that xa(t), Ya(t,s), yk
a(t,s) and za(t,s) feasible to relevant constraints exist.

Thus, when carried out in the topological order for every arc in Â, the above process must

produce a feasible solution to DTDTA. ¥

The theorem above assumes that each Ma is sufficiently large so that it is feasible to send

the entire flow for each OD pair along a single path. Although this assumption appears to be

stringent, it can be made less so by allowing the flow for each OD pair to traverse over several
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paths as long as they do not induce cycles in G(N̂ , Â). With more cumbersome notation, the

above argument can be extended to the case with multiple paths per OD pair as well.

When applied to the above example in which the OD pairs (i, j) and (j, i) become (i, j′) and

(j, i′), the acyclic subgraph assumption implies that the paths from i to j′ and from j to i′ cannot

form a cycle. Intuitively, this means that there must exist two routes between the original nodes

i (e.g., home) and j (e.g., work) with no road in common. These routes need not be optimal

and there is no requirement in our formulation or algorithms to use them. They are used only to

established the existence in Theorem 1.

The First-In-First-Out (FIFO) condition requires that cars entering an arc at time t must leave

the arc before those entering after time t. In the literature, many (see, e.g., [35], [47], and [34])

assume that the travel cost function satisfied certain conditions to ensure FIFO. To avoid making

additional assumptions, we ensure FIFO by adding the following constraints to DTDTA instead.

Doing so may make the problem harder to solve because of the additional constraints.

t +
∑

s∈Γa

sza(t,s) ≤ t +
∑

s∈Γa

sza(t,s), ∀a ∈ A1 and t, t ∈ ∆ : (t + δ) ≤ t

t +
∑

s∈Γa

sza(t,s) ≤ (t + T ) +
∑

s∈Γa

sza(t,s), ∀a ∈ A1 and t, t ∈ ∆ : (t + δ) ≤ t

When t and t represent two instances of time on the same day, the first inequality ensures that

cars entering arc a at time t leave the arc before those that enter at time t > t. On the other hand,

t and t may refer to times on consecutive days, e.g., t = 08:00h today and t = 09:00h yesterday.

Because of our periodic assumption, these two times are on the same interval [00:00h, 24:00h) and

t (incorrectly) appears to be an earlier time than t. To distinguish times on consecutive days and

preserve FIFO, the second equation represents today’s time t (e.g., 08:00h of today) as (t + T )

(e.g., as 08:00h of yesterday plus T ) and forces cars entering the arc at this time to depart after

those that enter at yesterday’s time t (e.g., 09:00h yesterday).

4 Bounds for DTDTA

As formulated in the previous section, DTDTA is a nonlinear optimization problem with binary

decision variables, a difficult class of problems to solve. This section describes mixed integer

programs for obtaining an approximate solution to DTDTA as well as bounds for the optimal

delay.
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Figure 6: φa(xa(t)) ∈ (s− δ, s] versus xa(t) ∈ (φ−1
a (s− δ), φ−1

a (δ)].

Except for constraint (6), the constraints for DTDTA are linear. To develop a linear version

of (6), assume that the travel time function, φa, is invertible for all a ∈ A. For example, if φa

is a continuous and increasing function, then φ−1
a exists on the interval [φa(0), φa(Ma)]. (See

Figure 6.) Under this assumption, φa(xa(t)) ∈ (s− δ, s] if and only if xa(t) ∈ (φ−1
a (s− δ), φ−1

a (δ)].

Thus, the requirement (s − δ)za(t,s) < φa(xa(t)) ≤ sza(t,s) is equivalent to φ−1
a (s − δ)za(t,s) <

xa(t) ≤ φ−1
a (s)za(t,s). Recall that Γa = {s : s = dφa(w)

δ e, 0 ≤ w ≤ Ma}. Let s1 = dφa(0)
δ e. Then,

(s1− δ) 6∈ [φa(0), φa(Ma)] and φ−1
a (s1− δ) is not well defined. (In Figure 6, φ−1

a (s1− δ) = φ−1
a (1)

is not well defined.) In this paper, we set φ−1
a (s1 − δ) = 0. Using this convention, constraint (6)

can be replaced by the following linear equivalence:

∑

s∈Γa

φ−1
a (s− δ)za(t,s) < xa(t) ≤

∑

s∈Γa

φ−1
a (s)za(t,s) ∀t ∈ ∆ and a ∈ A (9)

The following lemma implies that there exist linear functions that approximate the objective

function of DTDTA.
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Lemma 2 There exist vectors ql and qu such that qT
l Y ≤ Φ(Y )T Y ≤ qT

u Y for all Y feasible to

DTDTA.

Proof: As defined earlier, Φ(Y )T Y =
∑
t∈∆

∑
a∈A

φa(xa(t))

[
∑

s∈Γa

Ya(t,s)

]
. From constraint (6), the

following hold for any feasible solution to DTDTA:

∑

t∈∆

∑

a∈A

[∑

s∈Γa

(s− δ)za(t,s)

][ ∑

s∈Γa

Ya(t,s)

]
≤ Φ(Y )T Y ≤

∑

t∈∆

∑

a∈A

[∑

s∈Γa

sza(t,s)

][∑

s∈Γa

Ya(t,s)

]

The summand of the last set of summations (i.e.,

[
∑

s∈Γa

sza(t,s)

][
∑

s∈Γa

Ya(t,s)

]
) can be simplified.

Constraint (7) implies that Ya(t,s) > 0 only if za(t,s) = 1. In addition, constraint (5) ensures that,

for each pair (a, t), za(t,s) = 1 for some s ∈ Γa and za(t,s) = 0,∀ s ∈ Γa, s 6= s. This implies that

Ya(t,s) ≥ 0 and Ya(t,s) = 0, ∀ s ∈ Γa, s 6= s and
[∑

s∈Γa

sza(t,s)

][∑

s∈Γa

Ya(t,s)

]
= sYa(t,s) =

∑

s∈Γa

sYa(t,s).

A similar result holds for the first set of summations. Thus, the above inequalities reduce to the

following
∑

t∈∆

∑

a∈A

∑

s∈Γa

(s− δ)Ya(t,s) ≤ Φ(Y )T Y ≤
∑

t∈∆

∑

a∈A

∑

s∈Γa

sYa(t,s).

Let ql and qu be two constant vectors with a component for each arc in the TE network such

that [ql]a(t,s) = (s− δ) and [qu]a(t,s) = s, respectively, for all a ∈ A, t ∈ ∆, and s ∈ Γa. Then,

qT
l Y =

∑

t∈∆

∑

a∈A

∑

s∈Γa

(s− δ)Ya(t,s) ≤ Φ(Y )T Y ≤
∑

t∈∆

∑

a∈A

∑

s∈Γa

sYa(t,s) = qT
u Y. ¥

Let S(δ) denote the feasible region defined by linear constraints (1) - (5), (9), (7), and (8)

and, for convenient, (Y,Z) represents an element in S(δ). In addition, let (Y l, Z l), (Y ∗, Z∗),

and (Y u, Zu) be solutions to the lower-bound problem (or min{qT
l Y : (Y, Z) ∈ S(δ)}), the

original problem (or min{Φ(Y )T Y : (Y, Z) ∈ S(δ)}), and the upper-bound problem (or min{qT
u Y :

(Y, Z) ∈ S(δ)}), respectively. Then, the following lemma holds.

Lemma 3 For any δ > 0, qT
l Y l ≤ Φ(Y ∗)T Y ∗ ≤ qT

u Y u ≤ qT
u Y l.

Proof: In following sequence of inequalities, the first one holds because Y ∗ is feasible to the

lower-bound problem and the second follows from Lemma 2:

qT
l Y l ≤ qT

l Y ∗ ≤ Φ(Y ∗)T Y ∗.
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Similarly, the following sequence also holds

Φ(Y ∗)T Y ∗ ≤ Φ(Y u)T Y u ≤ qT
u Y u.

Combining the above two sequences yield the first two inequalities in the lemma.

Finally, the last inequality holds because Y l is not necessarily optimal to min{qT
u Y : (Y, Z) ∈

S(δ)}. ¥

In view of the above lemma, the solutions to the upper and lower-bound problems are approxi-

mations of the solution to the original problem. The theorem below states that the approximation

can be made arbitrarily close to the original problem by choosing a sufficiently small δ.

Theorem 2 Given ε > 0, there exists δ > 0 such that qT
u Y u − Φ(Y ∗)T Y ∗ ≤ ε and Φ(Y ∗)T Y ∗ −

qT
l Y l ≤ ε.

Proof: By construction, qu = ql +δe, where e is (1, 1, · · · , 1)T . Let Hk denote the travel demand

for OD pair k during the entire planning horizon, i.e., Hk =
∑

t∈∆ hk
t and set H =

∑
k∈C Hk.

For each t ∈ ∆, sa(t) is such that sa(t) ∈ Γa and zl
a(t,sa(t)) = 1. In words, sa(t) is the approximate

travel time for (static) arc a at time t in the optimal solution (Y l, Z l).

Then, the following sequence must hold:

0 ≤ (qu − ql)T Y l

= δeT Y l

= δ
∑
a∈A

∑
k∈C

∑
t∈∆

∑
s∈Γa

yk
a(t,s)

= δ
∑
a∈A

∑
k∈C

∑
t∈∆

yk
a(t,sa(t))

≤ δ
∑
a∈A

∑
k∈C

Hk

= δH
∑
a∈A

1

= δH |A|

The first inequality follows from Lemma 3. Then, the above relationship between qu and ql and

letting
∑

k∈C yk
a(t,s) denote individuals components of Y l yield the first two equalities. The third

equality follows from the definition of sa(t). Following this, the second inequality holds because

the total amount of flow on (static) arc a for OD pair k during the entire planning horizon cannot

exceed Hk. The sum of the latter is H, a constant that can be factored out of the summation
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over A. This validates the penultimate equality. Finally, the last equality follows from the fact

that
∑

a∈A 1 simply denotes the number of elements in the set A. Choosing δ = ε
H|A| guarantees

that qT
u Y l − qT

l Y l ≤ ε. When combined with the results in Lemma 2, the latter implies that

qT
u Y u − Φ(Y ∗)T Y ∗ ≤ ε and Φ(Y ∗)T Y ∗ − qT

l Y l ≤ ε. ¥

The approximate solution Y u can be improved by solving an additional nonlinear program.

In particular, consider the approximation refinement problem min{Φ(Y )T Y : (Y, Zu) ∈ S(δ)},
i.e., this is the original problem with Z = Zu. Doing so makes it possible to remove TE arcs cor-

responding to zu
a(t,s) = 0 from the TE network and discard decision variables xa(t) and constraints

(5) and (7) from the problem. In DTDTA, we use xa(t), the number of cars on arc a at time t,

to compute the travel time on arc a and, subsequently, to select which TE arc to use or which

za(t,s) to set to one. Thus, when Z is given, xa(t) becomes unnecessary. Additionally, let s(t) be

such that zu
a(t,s(t)) = 1 for each t ∈ ∆. Then, constraint (9), originally (6), reduces to requiring

∑
(τ,s)∈Ωa(t)

Ya(τ,s) to be in the interval (s(t)− δ, s(t)]. In other words, the original problem with

Z = Zu is a nonlinear multi-commodity flow problem with the latter as side constraints.

Let Ŷ u be an optimal solution to min{Φ(Y )T Y : (Y, Zu) ∈ S(δ)}. Then, the following

corollary shows that Ŷ u better approximates Y ∗.

Corollary 1 Φ(Y ∗)T Y ∗ ≤ Φ(Ŷ u)T Ŷ u ≤ Φ(Y u)T Y u ≤ qT
u Y u

Proof: In the above sequence of inequalities, the first one follows because Y ∗ is optimal to the

original problem and Ŷ u is only feasible. The second holds because Y u is feasible to min{Φ(Y )T Y :

(Y, Zu) ∈ S(δ)}. Finally, the last is due to Lemma 2. ¥

5 Computational Results

We conducted numerical experiments using small test networks to empirically verify our under-

standing of DTDTA as well as to evaluate the efficiency and effectiveness of the approximation

schemes discussed in previous sections.

In all problems, the planning horizon is [0, 10) and the travel cost functions are either linear,

i.e., φ(w) = 1.5 + 2.5( w
100), or quadratic, i.e. φ(w) = 1.5 + 2.5( w

100)2, where w is the number of

cars on the arc. We consider the three different demand patterns displayed in Table 1.
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Time

Traffic Intensity 0 1 2 3 4 5 6 7 8 9 Total

Low 20 25 30 35 40 40 35 30 25 20 300

Medium 30 35 40 45 50 50 45 40 35 30 400

High 40 45 50 55 60 60 55 50 45 40 500

Table 1: Demand patterns

In all three patterns, travel demands at discrete points increases gradually until time 4, levels off

briefly, and then decreases gradually after time 5. The individual demands in the three patterns

are different and represent three traffic intensities: low, medium, and high. We used GAMS [20]

to implement and solve all problems using NEOS Server of Optimization [32]. In particular,

we used SBB [40] to solve our nonlinear integer programming problem, i.e., DTDTA, XPress-

XP [46] to solve our linear integer programs, i.e., the lower and upper-bound problems, and

CONOPT [15] to solve our linearly constrained optimization problems, i.e., the approximation

refinement problems. All CPU times reported herein are from the NEOS server.

To empirically verify that DTDTA problem is not convex, we first consider the two-arc network

in Figure 7 that has one OD pair. We let δ = 1. Thus, the discrete-time planning horizon is

∆ = {0, 1, · · · , 9}. We use the above quadratic travel time function for both arcs and the function

yields travel times in the interval [1.5, 4.0]. Because δ = 1, the set of discrete travel times is

Γ = {2, 3, 4}. Using the low traffic intensity demand pattern in Table 1, we solved DTDTA using

SBB and terminated it when the relative optimality gap is less than 0.005 (or 0.5%). There are

 

1 2 

a1 

a2 

Figure 7: Two-arc network.
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Solution 1 Solution 2

Inflow Travel time Inflow Travel time

Time a1 a2 a1 a2 a1 a2 a1 a2

0 0 20 1.600 1.500 20 0 1.500 1.600

1 25 0 1.500 1.600 0 25 1.600 1.500

2 0 30 1.656 1.500 30 0 1.500 1.656

3 35 0 1.500 1.725 0 35 1.725 1.500

4 0 40 1.806 1.500 40 0 1.500 1.806

5 40 0 1.500 1.900 0 40 1.900 1.500

6 0 35 1.900 1.500 35 0 1.500 1.900

7 30 0 1.500 1.806 0 30 1.806 1.500

8 0 25 1.725 1.500 25 0 1.500 1.725

9 20 0 1.500 1.656 0 20 1.656 1.500

Table 2: Optimal solutions to the two-arc problem.

two optimal solutions (see Table 2) to the two-arc problem with an optimal total delay of 450.

Consider the first solution, labelled ‘Solution 1’, in the Table 2. At time 0, there are 20 cars

to travel from node 1 to node 2. At this time, there are also 20 cars already on arc a1. These

cars enter the arc at time 9 and have not reached their destination at time 0. Because DTDTA

assumes that the time to traverse arc a1 depends on the number of cars on the arc at the entrance

time, the travel time for arc a1 at time 0 is 1.5 + 2.5( 20
100)2 = 1.6. On the other hand, there is

no car on a2 at time 0. Cars that enter the arc at time 8 already left the arc by time 0. Thus,

the travel time for a2 at time 0 is 1.5, the free-flow travel time. To minimize the travel time, all

20 cars entering the network at time 0 must travel on a2. In fact, every car in Solution 1 travels

at the free-flow travel time of 1.5. Thus, there cannot be any solution with less total delay and

Solution 1 must be optimal. Because of the symmetry in the data, switching the flows between

the two arcs in the network yields Solution 2, another optimal solution. Furthermore, it is easy

to verify that every convex combination of these two solutions is feasible to DTDTA and yields,

on the other hand, a larger total delay, thereby confirming empirically that the objective function
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is not convex.

Additionally, the “extreme” travel behavior displayed in Table 2 may not be intuitive. This is

due to the assumption that the system operator is extremely sensitive to the difference in travel

times and is willing to switch routes in order to save a minute amount of travel time.
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Figure 8: Four-node network.

When the network is large, it would be too time-consuming to solve DTDTA optimally or

otherwise. In our experiments, we consider four approximate solutions to DTDTA: (Y l, Z l),

(Y U , ZU ), (Ŷ l, Z l), and (Ŷ U , ZU ), where the last two are refinements of the first two. To evaluate

the quality and the computation times of these solutions, we consider the four-node network in

Figure 8 with two OD pairs, (1, 4) and (2, 4). In our experiments, both OD pairs have the same

demand pattern and all arcs have the same travel cost function, linear or quadratic, as specified

above.

First, we solved the lower and upper-bound problems with using two levels of discretization,

δ = 1 and δ = 0.5. As before, when δ = 1, the discrete-time planning horizon is ∆ = {0, 1, · · · , 9}.
On the other hand, when δ = 0.5, ∆ becomes {0, 0.5, 1, 1.5, · · · , 9, 9.5}. For the comparison below

(see Tables 3 and 4), we assume that, when δ = 0.5, there is no demand at fractional times ( e.g.,

at 0.5, 1.5, 2.5, etc.) and the demands at integral times (i.e., 1, 2, 3, etc.) are as shown in Table

1.

For both types of travel cost functions, the size of the optimality gap (i.e., qT
u Y u − qT

l Y l)

decreases by approximately 50% as δ decreases from 1 to 0.5. However, the results in Tables 3

and 4 suggest that the reduction in the gap is due mainly to the improvement in the solution, Y l,
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of the lower-bound problem. The approximate travel delays as estimated by Y u change relatively

little for the two values of δ.

Traffic δ = 1 δ = 0.5

Intensity qT
l Y l qT

u Y u Gap qT
l Y l qT

u Y u Gap

low 820.0 1580.0 760.0 1187.5 1560.0 372.5

medium 1200.0 2230.0 1030.0 1705.0 2230.0 525.0

high 1500.0 2875.0 1375.0 2187.5 2870.0 682.5

Table 3: Solutions from the lower and upper-bound problems using the linear travel cost function.

Traffic δ = 1 δ = 0.5

Intensity qT
l Y l qT

u Y u Gap qT
l Y l qT

u Y u Gap

Low 600.0 1200.0 600.0 900.0 1200.0 300.0

Medium 822.2 1644.5 822.2 1233.3 1644.5 411.1

High 1124.5 2248.9 1124.5 1686.7 2248.9 562.2

Table 4: Solutions from the lower and upper-bound problems using the quadratic travel cost

function.

Tables 5 and 6 compare the solutions from DTDTA, (Y ∗, Z∗), against two approximations,

(Ŷ u, Zu) and (Ŷ l, Z l). As in the two-node problem, we solve DTDTA using SBB to obtain a

(integer) solution (Y ∗, Z∗) with less than 0.5% relative optimality gap. To obtain (Ŷ u, Zu), we

first solve the upper-bound problem using XPress-MP to obtain (Y u, Zu), a (integer) solution

with less than 0.5% optimality gap, and, then, solve the approximation refinement problem (with

Z = Zu) using CONOPT to obtain (Ŷ u, Zu). The solution (Ŷ l, Z l) are obtained in the same

manner. In the two tables, the CPU times for the two approximations are times for solving both

bounding and refinement problems.

For both linear and quadratic travel time functions, the two approximation schemes provide

solutions with relatively small errors using much less CPU time required to solve DTDTA (see the

ratios of the cpu times in Tables 5 and 6). For quadratic travel time functions, the approximate
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solutions are identical to DTDTA solutions, except for the high traffic intensity case when the

approximate solutions are slightly better (by 0.06%).

(Y ∗, Z∗) (Ŷ u, Zu) (Ŷ l, Zl) Rel. cpu

Traffic cpu∗ cpuu cpul Err Ratio

Intensity Delay (sec) Delay (sec) Delay (sec) (%) cpu∗
cpuu

cpu∗
cpul

Low 1337.50 27.42 1385.00 2.57 1392.50 2.38 3.55 10.7 11.5

Medium 1800.00 15.92 1866.30 2.66 1815.30 2.90 0.85 6.0 5.5

High 2290.00 95.02 2327.50 4.07 2315.00 1.25 1.09 23.3 76.0

Table 5: Quality of refined upper and lower-bound solutions: linear travel cost function.

(Y ∗, Z∗) (Ŷ u, Zu) (Ŷ l, Zl) Rel. cpu

Traffic cpu∗ cpuu cpul Err Ratio

Intensity Delay (sec) Delay (sec) Delay (sec) (%) cpu∗
cpuu

cpu∗
cpul

Low 1054.50 0.88 1054.50 0.09 1054.50 0.08 0.00 9.8 11.0

Medium 1543.80 6.62 1543.80 0.14 1543.80 0.34 0.00 47.3 19.5

High 2129.80 501.17 2128.60 0.10 2128.60 0.13 -0.06 5011.7 3855.2

Table 6: Quality of refined upper and lower-bound solutions: quadratic travel cost function.

6 Conclusion

This paper formulates a discrete-time dynamic traffic assignment problem (DTDTA) in which the

planning horizon is treated in a circular fashion and events occur periodically. Doing so allows

positive flows on the network both at the beginning and at the end of the planning horizon. The

structure underlying the formulation is the time-expansion of the (static) network representation

of streets and highways. The resulting problem is a nonlinear program with binary variables, a

difficult class of problems to solve. Alternatively, two linear integer programs are constructed to

obtain approximate solutions and bounds on the total travel delay. It is shown that solutions

from the latter can be made arbitrarily close to solutions of DTDTA. Furthermore, numerical
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results from small test problems suggest that solving linear integer program is more efficient.
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