Skip to main content
Log in

A nonconvex dissipative system and its applications (I)

  • Original Paper
  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In order to study the uniformly translating solution of some non-linear evolution equations such as the complex Ginzburg–Landau equation, this paper presents a qualitative analysis to a Duffing–van der Pol non-linear oscillator. Monotonic property of the bounded exact solution is established based on the construction of a convex domain. Under certain parametric choices, one first integral to the Duffing–van der Pol non-linear system is obtained by using the Lie symmetry analysis, which constitutes one of the bases for further work of obtaining uniformly translating solutions of the complex Ginzburg–Landau equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gao D.Y. (2000). Duality Principles in Nonconvex Systems: Theory, Methods and Applications. Kluwer Academic Publishers, Boston

    Google Scholar 

  2. Gao, D.Y.: In: Proceedings of IUTAM Symposium on Duality, Complementarity and Symmetry in Nonlinear Mechanics. Kluwer Academic Publishers, Boston (2004)

  3. Kuyk W. (1977). Complementarity in Mathematics: A First Introduction to the Foundations of Mathematics and its History. D. Reidel Pub. Co., Boston

    Google Scholar 

  4. Klein Haneveld W.K. (1986). Duality in Stochastic Linear and Dynamic Programming. Springer-Verlag, New York

    Google Scholar 

  5. Ferris M.C., Mangasarian O.L., Pang J.S. (2001). Complementarity: Applications, Algorithms and Extensions. Kluwer Academic Publishers, Boston

    Google Scholar 

  6. Gao D.Y., Ogden R.W., Stavroulakis G. (2001). Nonsmooth and Nonconvex Mechanics: Modelling, Analysis and Numerical Methods. Kluwer Academic Publishers, London

    Google Scholar 

  7. Cottle R.W., Pang J.S., Stone R.E. (1992). The Linear Complementarity Problems. Academic Press, New York

    Google Scholar 

  8. Isac G. (1992). Complementarity Problems, Lecture Notes in Mathematics. Springer-Verlag, New York

    Google Scholar 

  9. Luo Z.Q., Pang J.S., Ralph D. (1996). Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge

    Google Scholar 

  10. Ferris M.C., Pang J.S. (1997). Engineering and economic applications of complementarity problems. SIAM Rev. 39: 669–713

    Article  Google Scholar 

  11. Pang J.S. (1994). Complementarity problems. In: Horst, R, Padalos, P. (eds) Handbook in Global Optimization., pp. Kluwer, Boston

    Google Scholar 

  12. Gao D.Y. (1998). Bi-complementarity and duality: A framework in nonlinear equilibria with applications to the contact problems of elastoplastic beam theory. J. Appl. Math. Anal. 221: 672–697

    Article  Google Scholar 

  13. Jordan D.W., Smith P. (1977). Nonlinear Ordinary Differential Equations. Clarendon Press, Oxford

    Google Scholar 

  14. Thompson J.M.T., Stewart H.B. (1986). Nonlinear Dynamics and Chaos. John Wiley & Sons, New York

    Google Scholar 

  15. Pezeshki C., Dowell E.H. (1987). An examination of initial condition maps for the sinusoidally excited buckled beam modeled by the Duffing’s equation. J. Sound Vibration 117: 219–232

    Article  Google Scholar 

  16. Moon F.C. (1987). Chaotic Vibrations: an Introduction for Applied Scientists and Engineers. John Wiley & Sons, New York

    Google Scholar 

  17. Dowell E.H., Pezeshki C. (1986). On the understanding of chaos in Duffing’s equation including a comparison with experiment. Trans. ASME J. Appl. Mech. 53: 5–9

    Article  Google Scholar 

  18. Ku Y.H., Sun X.G. (1990). Chaos and limit cycle in Duffing’s equation. J. Franklin Inst. 327: 165–195

    Article  Google Scholar 

  19. Battelli F., Palmer K.J. (1993). Chaos in the Duffing equation. J. Diff. Equs. 101: 276–301

    Article  Google Scholar 

  20. Senthil M., Lakshmanan M. (1995). Lie symmetries and infinite-dimensional Lie algebras of certain nonlinear dissipative systems. J. Phys. A (Math. Gen.) 28: 1929–1942

    Article  Google Scholar 

  21. Hsu L., Kamran N. (1988). Symmetries of second-order ordinary differential equations and Elie Cartan’s method of equivalence. Lett. Math. Phys. 15: 91–99

    Google Scholar 

  22. Zhang Z.F., Ding T.R., Huang W.Z., Dong Z.X. (1997). Qualitative Analysis of Nonlinear Differential Equations. Science Press, Beijing

    Google Scholar 

  23. Cartwright M.L. (1952). Van der Pol’s equation for relaxation oscillations (Contributions to the Theory of Nonlinear Oscillations), Vol. II, pp. 3–18. Princeton University Press, Princeton

    Google Scholar 

  24. Davis R.T., Alfriend K.T. (1967). Solutions to van der Pol’s equation using a perturbation method. Int. J. Non-Linear Mech. 2: 153–162

    Article  Google Scholar 

  25. Chandrasekar V.K., Senthilvelan M., Lakshmanan M. (2004). New aspects of integrability of force-free Duffing–van der Pol oscillator and related nonlinear systems. J. Phys. A 37: 4527–4534

    Article  Google Scholar 

  26. Loria A., Panteley E., Nijmeijer H. (1998). Control of the chaotic Duffing equation with uncertainty in all parameters. IEEE Trans. Circuits Syst. I 45: 1252–1255

    Article  Google Scholar 

  27. Chen G., Dong X. (1998). From Chaos to Order: Perspetives, Methodologies and Applications. World Scientific Press, Singapore

    Google Scholar 

  28. Jiang Z.P. (2002). Advanced feedback control of the chaotic Duffing’s equation. IEEE Trans. Circuits Syst. I 49: 244–249

    Article  Google Scholar 

  29. Nijmeijer H., Berghuis H. (1995). On Lyapunov control of the Duffing equation. IEEE Trans. Circuits Syst. I 42: 473–477

    Article  Google Scholar 

  30. Holmes P.J. (1979). A nonlinear oscillator with a strange attractor. Proc. R. Sot. 292: 419–448

    Google Scholar 

  31. Holmes P.J., Moon F.C. (1983). Strange attractors and chaos in nonlinear mechanics. J. Appl. Mech. 50: 1021–1032

    Article  Google Scholar 

  32. Seydel R. (1985). Attractors of a Duffing equation-dependence on the exciting frequency. Phys. D 17: 308–312

    Article  Google Scholar 

  33. Holmes P.J., Whitley D. (1983). On the attracting set for Duffing’s equation. Phys. D 7: 111–123

    Article  Google Scholar 

  34. McCartin B.J. (1992). An alternative analysis of Duffing’s equation. SIAM Rev. 34: 482–491

    Article  Google Scholar 

  35. Blair K.B., Krousgrill C.M., Farris T.N. (1997). Harmonic balance and continuation techniques in the dynamic analysis of Duffing’s equation. J. Sound Vibration 202: 717–731

    Article  Google Scholar 

  36. Holmes P.J. (1981). New Approaches to Nonlinear Problems in Dynamics. SIAM, Philadelphia, PA

    Google Scholar 

  37. Habets P., Metzen G. (1989). Existence of perodic solutions of Duffing’s equation. J. Diff. Equs. 78: 1–32

    Article  Google Scholar 

  38. Wang H.Z., Li Y. (1994). Existence and uniqueness of periodic solutions for Duffing equation. J. DifF. Equs. 108: 152–169

    Article  Google Scholar 

  39. Wang C.W. (1998). Multiplicity of periodic solutions for Duffing equation under nonuniform non-resonance conditions. Proc. Am. Math. Soc. 126: 1725–1732

    Article  Google Scholar 

  40. Ding T., Iannacci R., Zanolin F. (1991). On periodic solutions of sublinear Duffing equations. J. Math. Anal. Appl. 158: 316–332

    Article  Google Scholar 

  41. Fang T., Dowell E.H. (1987). Numerical simulations of jump phenomena in stable Duffing systems. Int. J. Non-Linear Mech. 22: 267–274

    Article  Google Scholar 

  42. Khuri S.A., Xie S.S. (1999). On the numerical verification of the asymptotic expansion of Duffing’s equation. Int. J. Comput. Math. 72: 325–330

    Article  Google Scholar 

  43. Matsuo T., Kishima A. (1992). Numerical analysis of bifurcations in Duffing’s equation with hysteretic functions. Electron. Comm. Japan Part III Fund. Electron. Sci. 75: 61–71

    Article  Google Scholar 

  44. Zhang J.Y. (1987). Geometrical Analysis and Bifurcations of Ordinary Differential Equations. Peking University Press, Peking

    Google Scholar 

  45. Chen Y.Z. (2002). Solutions of the Duffing equation by using target function method. J. Sound Vibration 256: 573–578

    Article  Google Scholar 

  46. Ince E.L. (1956). Ordinary Differential Equations. Dover Publications, New York

    Google Scholar 

  47. Lawden D.F. (1989). Elliptic Functions and Applications. Springer-Verlag, New York

    Google Scholar 

  48. Hale J.K., Spezamiglio A. (1985). Perturbation of homoclinics and subharmonics in Duffing’s equation. Nonlin. Anal. 9: 181–192

    Article  Google Scholar 

  49. van Saarloos W., Hohenberg P.C. (1992). Fronts, pulses, sources and sinks in generalized complex Ginzburg-Landau equations. Phys. D 56: 303–367

    Article  Google Scholar 

  50. Brand H.R., Deissler R.J. (1989). Interaction of localized solutions for subcritical bifurcations. Phys. Rev. Lett. 63: 2801–2804

    Article  Google Scholar 

  51. van Saarloos W., Hohenberg P.C. (1990). Pulses and fronts in the complex Ginzburg-Landau equation near a subcritical Bifurcation. Phys. Rev. Lett. 64: 749–752

    Article  Google Scholar 

  52. Kolodner P. (1992). Extended states of nonlinear traveling-wave convection (I)—the Eckhaus instability. Phys. Rev. E 46: 6431–6451

    Google Scholar 

  53. Brand H.R., Deissler R.J. (1992). Eckhaus and Benjamin–Feir instabilities near a weakly inverted bifurcation. Phys. Rev. A 45: 3732–3736

    Article  Google Scholar 

  54. Pang P.H., Wang M.X. (2003). Qualitative analysis of a ratio-dependent predator–prey system with diffusion. Proc. Roy. Soc. Edinburgh Sect. A 133: 919–942

    Article  Google Scholar 

  55. Baker R.L. (1999). The qualitative analysis of a dynamical system of differential equations arising from the study of multilayer scales on pure metals. Proc. Am. Math. Soc. 127: 753–761

    Article  Google Scholar 

  56. Akuezue H.C., Baker R.L., Hirsch M.W. (1994). The qualitative analysis of a dynamical system modeling the formation of multilayer scales on pure metals. SIAM J. Math. Anal. 25: 1167–1175

    Article  Google Scholar 

  57. Bluman G.W., Anco S.C. (2002). Symmetry and Integration Methods for Differential Equations. Springer-Verlag, New York

    Google Scholar 

  58. Olver P.J. (1993). Applications of Lie Groups to Differential Equations. Springer-Verlag, New York

    Google Scholar 

  59. Hydon P.E. (1998). Discrete point symmetries of ordinary differential equations. Proc. Roy. Soc. Lond. A 454: 1961–1972

    Article  Google Scholar 

  60. Clarkson P.A. (1995). Nonclassical symmetry reductions of the Boussinesq equation, Solitons in science and engineering: theory and applications. Chaos Solitons Fractals 5: 2261–2301

    Article  Google Scholar 

  61. Ibragimov N.H. (1994). CRC Handbook of Lie Group Analysis of Differential Equations (I): Symmetries, Exact Solutions and Conservation Laws. CRC Press, Boca Raton

    Google Scholar 

  62. Bluman, G.W., Kumei S.: Symmetries and Differential Equations. Springer-Verlag (1991)

  63. Lakshmanan M., Kaliappan P. (1983). Lie transformations, nonlinear evolution equations and Painlevé forms. J. Math. Phys. 24: 795–806

    Article  Google Scholar 

  64. Feng, Z., Gao, D.Y.: Exact solutions to a nonconvex dissipative system, following paper, J. Global Optim (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaosheng Feng.

Additional information

Dedicated to Professor G. Strang on the occasion of his 70th birthday

The work has been presented at the International Conference on Complementarity, Duality, and Global Optimization in Science and Engineering, Virginia Tech. University, Blacksburg, Virginia, August 15–17, 2005. The author would like to thank the organizers Professors David Y. Gao and Hanif D. Sherali for their generous support. This work is partly supported by NSF Grant CCF–0514768.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, Z. A nonconvex dissipative system and its applications (I). J Glob Optim 40, 623–636 (2008). https://doi.org/10.1007/s10898-006-9115-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-006-9115-z

Keywords

AMS (MOS) Subject Classification

Navigation