Skip to main content
Log in

A new multiobjective simulated annealing algorithm

  • Original Paper
  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

A new multiobjective simulated annealing algorithm for continuous optimization problems is presented. The algorithm has an adaptive cooling schedule and uses a population of fitness functions to accurately generate the Pareto front. Whenever an improvement with a fitness function is encountered, the trial point is accepted, and the temperature parameters associated with the improving fitness functions are cooled. Beside well known linear fitness functions, special elliptic and ellipsoidal fitness functions, suitable for the generation on non-convex fronts, are presented. The effectiveness of the algorithm is shown through five test problems. The parametric study presented shows that more fitness functions as well as more iteration gives more non-dominated points closer to the actual front. The study also compares the linear and elliptic fitness functions. The success of the algorithm is also demonstrated by comparing the quality metrics obtained to those obtained for a well-known evolutionary multiobjective algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belisle, C.J.P., Romeijin, H.E., Smith, R.L.: Hide-and-Seek a Simulated Annealing Algorithm for Global Optimization. Technical Report, Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, No: 90–25 (1990)

  2. Chipperfield A., Fleming P.J. (1996). Multiobjective gas turbine engine controller design using genetic algorithms. IEEE Trans. Ind. Electron. 43(5): 1–5

    Article  Google Scholar 

  3. Coello C.A.C. (2003). Guest editorial: special issue on evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 7(2): 97–99

    Article  Google Scholar 

  4. Corona A., Marchesi M., Martini C., Ridella S. (1987). Minimizing multimodal functions of continuous variables with the simulated annealing algorithm. ACM Trans. Math. Softw. 13(3): 262–280

    Article  Google Scholar 

  5. Czyzak P., Jaszkiewicz A. (1998). Pareto simulated annealing - a metaheuristic technique for multiple objective combinatorial optimization. J. Multi-criteria Decision Anal. 7: 34–47

    Article  Google Scholar 

  6. Dakev N.V., Whidborne J.F., Chipperfield A.J., Fleming P.J. (1997). Evolutionary H-infinity design of an electromagnetic suspension control system for a maglev vehicle. Proc. Ins. Mech. Eng. Part I J. Sys. Control Eng. 211: 345–355

    Google Scholar 

  7. Deb K. (2001). Multiobjective Optimization Using Evolutionary Algorithms. Wiley, New York

    Google Scholar 

  8. Edgeworth, F.Y.: Mathematical Psychics; an Essay on the Application of Mathematics to Moral Sciences. C.K. Paul and Co., London (Reprints of Economic Classics, A.M. Kelley, New York, 1961) (1891)

  9. Haas O.C.L., Burnham K.J., Mills J.A. (1997). On improving physical selectivity in the treatment of cancer: a systems modeling and optimization approach. Control Eng. Pract. 5(12): 1739–1745

    Article  Google Scholar 

  10. Hajek B. (1988). Cooling schedules for optimal annealing. Math. Oper. Res. 13(2): 311–329

    Google Scholar 

  11. Hajela P. (1999). Nongradient methods in multidisciplinary design optimization—status and potential. J. Aircraft. 36(1): 255–265

    Article  Google Scholar 

  12. Hargraves C.R., Paris S.W. (1987). Direct trajectory optimization using non-linear programming and collocation. J. Guidance Control Dyn. 10(4): 339–342

    Google Scholar 

  13. Hartmann J.W., Coverstone-Caroll V.L., Williams S.N. (1998). Optimal interplanetary trajectories via a Pareto genetic algorithm. J. Astron. Sci. 46(3): 267–282

    Google Scholar 

  14. Hull D.G. (1997). Conversion of optimal control problems into parameter optimization problems. J. Guidance, Control Dyn. 20(1): 57–60

    Google Scholar 

  15. Karsli G. (2004). Simulated annealing for the generation of Pareto fronts with aerospace applications. MS Thesis, Middle East Technical University Libraries, Ankara, Turkey

    Google Scholar 

  16. Kirkpatrick S., Gelatt C.D., Vechi M.P. (1983). Optimization by simulated annealing. Science 220(4598): 671–680

    Article  Google Scholar 

  17. Knowles, J., Corne, D.: On metrics comparing non-dominated sets. In: Proceedings of the 2002 Congress on Evolutionary Computation, pp. 711–716. IEEE Press, Piscataway, NJ (2002)

  18. Kubotani H., Yoshimura K. (2003). Performance evaluation of acceptance probability functions for multiobjective SA. Comput. Oper. Res. 30: 427–442

    Article  Google Scholar 

  19. Luc̆ić P., Teodorović D. (1999). Simulated annealing for the multiobjective aircrew rostering problem. Trans. Res. Part A 33: 19–45

    Google Scholar 

  20. Lu P., Khan M.A. (1994). Nonsmooth trajectory optimization: An approach using continuous simulated annealing. J. Guidance Control Dyn. 17(4): 685–691

    Google Scholar 

  21. Miettinen K. (1999). Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston

    Google Scholar 

  22. Messac A., Mattson C.A. (2004). Normal constraint method with guarantee of even representation of complete pareto frontier. AIAA J 42(10): 2101–2111

    Article  Google Scholar 

  23. Pareto, V.: In: Schwier, A.S., Page, A.N. (eds.) Manual of Political Economy (translated from 1927 French edition by Ann S. Schwier) Augustus M. Kelley Publishers, New York (1971)

  24. Rajesh J.K., Gupta S.K., Rangaiah G.P., Ray A.K. (2001). Multiobjective optimization of industrial hydrogen plants. Chem. Eng. Sci. 56: 999–1010

    Article  Google Scholar 

  25. Romeijn H.E., Smith R.L. (1994). Simulated annealing for constrained global optimization. J. Glob. Optim. 5: 101–126

    Article  Google Scholar 

  26. Shaver, D.A., Hull, D.G.: Advanced launch system trajectory optimization using suboptimal control. AIAA Paper 90–3413 (1990)

  27. Siarry P., Berthian G., Durbin F., Hamesy J. (1997). Enhanced simulated annealing for globally minimizing functions of many continuous variables. ACM Trans. Math. Softw. 23(2): 209–228

    Article  Google Scholar 

  28. Suman B. (2003). Simulated annealing-based multiobjective algorithms and their application for system reliability. Eng. Optim. 35(4): 391–416

    Article  Google Scholar 

  29. Suppaptnarm A., Seffen K.A., Parks G.T., Clarkson P.J. (2000). Simulated annealing: an alternative approach to true multiobjective optimization. Eng. Optim. 33(1): 59–85

    Article  Google Scholar 

  30. Teghem J., Tuyttens D., Ulungu E.L. (2000). An interactive heuristic method for multi-objective combinatorial optimization. Comput Oper Res 27: 621–634

    Article  Google Scholar 

  31. Tekinalp, O., Arslan, E.M.: Optimal mid-course trajectories for precision guided munitions with collocation and nonlinear programming. In: Proceedings of the 20th Congress of the International Council of Aeronautical Sciences, vol. 1, pp. 593–600. AIAA, Reston, VA (1996)

  32. Tekinalp O., Bingol M. (2004). Simulated annealing for missile optimization: Developing method and formulation techniques. J. Guidance, Control Dyn. 27(4): 616–626

    Google Scholar 

  33. Tekinalp, O., Utalay, S.: Simulated annealing for missile trajectory planning and multidisciplinary missile design optimization. AIAA Paper No: 2000-0684 (2000)

  34. Ulungu E.L., Teghem J., Fortmeps P.H., Tuyttnes D. (1999). MOSA method: A Tool for solving multiobjective combinatorial optimization problems. J. Multi-Criteria Decision Anal. 8: 221–236

    Article  Google Scholar 

  35. Vanderbilt D., Lougie S.G. (1984). A Monte Carlo simulated annealing approach to optimization over continuous variables. J. Comput. Phys. 56: 259–271

    Article  Google Scholar 

  36. Whidborne J.F., Gu D.-W., Postlethwaite I. (1997). Simulated annealing for multi-objective control system design. IEE Proc. Control Theory Appl. 144(6): 582–588

    Article  Google Scholar 

  37. Zitzler E. (2003). Performance assessment of multiobjective optimizers: An analysis and review. IEEE Trans. Evol. Comput. 7(2): 117–137

    Article  Google Scholar 

  38. Wu J., Azarm S. (2001). Metrics for quality assesment of a multiobjective design optimization solution Set. ASME J. Mech. Des. 123: 18–25

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozan Tekinalp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tekinalp, O., Karsli, G. A new multiobjective simulated annealing algorithm. J Glob Optim 39, 49–77 (2007). https://doi.org/10.1007/s10898-006-9120-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-006-9120-2

Keywords

Navigation