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Well-posedness of constrained minimization problems via saddle-points
BIAGIO RICCERI

Dedicated to Professor Jean Saint Raymond on his sixtieth birthday, with my greatest
admiration and esteem

Here and in the sequel, X is a Hausdorff topological space, J, ® are two real-valued
functions defined in X, and a, b are two numbers in [—oo, +00], with a < b.

If a € R (resp. b € R), we denote by M, (resp. M;) the set of all global minima of
the function J + a® (resp. J + b®), while if a = —oco (resp. b = +00), M, (resp. My)
stands for the empty set. We adopt the conventions inf ) = +o0, sup () = —oo.

We also set

o := max {inf@,sup (‘D} ,
X M,y

B := min {s;p (ID,%ECI)} .

Note that, by Proposition 1 below, one has a < f3.

A usual, given a function f: X — R and a set C' C X, we say that the problem of
minimizing f over C' is well-posed if the following two conditions hold:

- the restriction of f to C has a unique global minimum, say Z ;
- every sequence {x,} in C such that lim,,~ f(z,) = infc f, converges to z.

A set of the type {z € X : f(x) < r} is said to be a sub-level set of f. Clearly,
when the sub-level sets of f are sequentially compact, the problem of minimizing f over a
sequentially closed set C' is well-posed if and only if fjc has a unique global minimum.

The aim of the present paper is to establish the following result:

THEOREM 1. - Assume that o < 8 and that, for each X\ €]a,b|, the function J + \P
has sequentially compact sub-level sets and admits a unique global minimum in X .

Then, for each r €|a, B|, the problem of minimizing J over ®~1(r) is well-posed.

Moreover, if we denote by Z, the unique global minimum of Jig—1(yy (1 €la, B[), the
functions r — &, and r — J(&,) are continuous in |o, B].

Theorem 1 should be regarded as the definitive abstract result coming out from the
saddle-point method developed in [4], [5], [6], [7], in specific settings.

The main tool used to prove Theorem 1 is provided by the following mini-max result:
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THEOREM 2. - Let I C R be an interval and f a real-valued function defined in
X x I. Assume that there exists a number p* > sup;infx f, and a point X eI such that,
for each p < p*, the following conditions hold:
(i) the set {\e€I: f(x,\) > p} is connected for all x € X ;
(ii) the set {x € X : f(x,\) < p} is sequentially closed for all A\ € I and sequentially
compact for A\ = A
(#ii)  for each compact interval T C I for which suppinfx f < p, there exists a continuous
function ¢ : T — X such that f(e(N), ) < p forall X € T.

Then, one has

sup inf f(x,\) = inf sup f(x, N) .
)\EI; zeX f( ) zeX )\EI; f( )

PROOF. We strictly follow the proof Theorem 2 of [3]. First, fix a non-decreasing
sequence {I,} of compact sub-intervals of I, with A € I, such that U,en1, = I. Now, fix
n € N. We claim that

sup inf f(x,\) = inf su T, ). 1
sup nf (r.0) = inf_ sup f(. ) 1)

Arguing by contradiction, suppose that

sup inf f(x,\) < inf su Ty A) .
AeimeXf( ) xeXAe}:if( )

Fix p satisfying
sup inf f(xz,\) < <min{ * inf supfx,/\} :
sup fnf (z,A) <p P, lnf sup (z,)

Set
S={(z,\) e X xI,: f(z,\) < p}

as well as, for each \ € I,,,
S*={reX:(x,\)eS}.
Since sup; infx f < p, one has SA £ for all X € I,,. Let I, = [an, b,]. Put
A=< (x,A\)eS:A<b,, sup f(x,s)>p
SEIN,bR]

and

B:{(a:,)\)GS:/\>an, sup f(x,s)>p} :

s€[an,A\[

Observe that S% x {a,} C A and S x {b,} C B. Indeed, let z; € S% and 2o € S’".
Since p < infy sup; f, there are t,s € I, such that min{f(x1,?), f(w2,5)} > p. Since
sup{ f(z1,an), f(z2,b,)} < p, it follows that ¢t > a,, and s < b,,. Consequently, (z1,a,) € A
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and (xg2,by,) € B. Furthermore, observe that if (xg, A\g) € A and if u €]\, b,] is such that
f(zo, ;) > p, then, in view of (i7), the set

({z e X : f(z,p) > p} x [an, p[) NS

is sequentially open in S, contains (xg, A\g) and is contained in A. In other words, A is
sequentially open in S. Analogously, it is seen that B is sequentially open in S. We now
prove that S = AUB. Indeed, let (z,\) € S\ A. We have seen above that S** x {a, } C A,
and so A > a,. If A = b,, the fact that (z,\) € B has been likewise proved above.
Suppose A < b,,. Thus, we have SUDPge]Ab,] f(x,s) < p. From this, it clearly follows that
SUPse(a, A f (T, 8) > p (note that f(z,A) < p), and so (z,A) € B. Furthermore, we have
AN B = . Indeed, if (21, 1) € AN B, there would be t1,s1 € I,,, with t; < A1 < s1, such
that min{ f(z1,t1), f(z1,51)} > p. By (i), the set {s € I : f(z1,s) > p} is an interval, and
so we would have f(z1, A1) > p, against the fact that (z1, A1) € S. Now, in view of (i),
consider a continuous function ¢ : I,, — X such that

Fle(X), A) <p
for all A € I,,. Let h: I, - X x I, be defined by setting

h(A) = (#(A); A)

for all A € I,,. Since h is continuous, the set h(I,) is sequentially connected ([2], Theorem
2.2). But, having in mind that h(l,) C S and that h(l,) meets both A and B (since
h(ay,) € A and h(b,) € B), the properties of A, B proved above would imply that h(Z,) is
sequentially disconnected, a contradiction. So, (1) holds. Finally, let us prove the theorem.
Again arguing by contradiction, suppose that

sup inf f(x,\) < inf sup f(x, ) .
AeI;mEXf( ) reX Ael.?f( )

Choose r satisfying

sup inf f(x,\) < r <min< p*, inf sup f(x,\) ¢ .
up int () {o, nt s a0}

For each n € N, put
Cn:{xeX: sup f(:)s,)\)gr} .

Xel,
Note that C,, # (. Indeed, otherwise, we would have

< inf \) = inf \) < inf \) .
r_;gxfgﬁf(w, ) fgg;gxf(w, )_itgmlgxf(w, )

Consequently, {C},} is a non-increasing sequence of non-empty sequentially closed subsets
of the sequentially compact set {x € X : f(x,\) < p*}. Therefore, one has N,enC), # 0.
Let 2* € NpenChr. Then, one has

sup f(z*,\) = sup sup f(z",\) <r
AET neN el
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and so
inf sup f(z,\) <r,
a contradiction. The proof is complete. YA

We will also use the following proposition.

PROPOSITION 1 ([4], Proposition 1). - Let Y be a nonempty set, f,g : Y — R
two functions, and \, u two real numbers, with A < . Let §x be a global minimum of the
function f + \g and let §,, be a global minimum of the function f + ug.

Then, one has

9(G.) < g(x) -

If either gy or 9, is strict and 9y # Yu, then
9(9.) < g(9r) -

Proof of Theorem 1. First, for each A\ €|a,b[, denote by g, the unique global
minimum in X of J 4+ A®. Let us prove that the function A — ¢, is continuous in |a, b].
To this end, fix \* €]a,b[. Let {\,} be any sequence in |a, b| converging to A* and let
¢, d] Cla, b[ be a compact interval containing {\, }. Fix p > sup,,cn infzex (J(2)+1, 2 (2)).
Clearly, we have

U {zeX:J@) + () <p} C
A€E[c,d]

C{reX:J(@)+cP(x) <ptU{re X:J(x)+do(x) <p}.

From this, due to the choice of p, we infer that the sequence {7y, } is contained in the
the set on the right-hand side which is clearly sequentially compact. Hence, there is a
subsequence {g, } converging to some y* € X. Taking into account that the sequence
{®(9x,,)} is bounded (by Proposition 1) and that the function J + A*® is sequentially
lower semicontinuous, for each x € X, we then have

J) + A" e(y") < Iminf(T(gy,, ) + A @G, ) =

k—o0

= Hminf(J (G, ) + e @(@r,, ) + (A = An ) @(G,, ) =

k—o00

= Bminf(J(9x,,) + An, 2(9r,,) < lim (J(2) + An, B(2)) = J(2) + A" (2) -
—00 —0

Hence y* is the global minimum of J + A*®, that is y* = ¢,~, which shows the continuity
of A — g at \*. Now, fix r €], ] and consider the function f: X x R — R defined by

[l A) = J(x) + A(®(x) —7)

for all (x,\) € X x R. Clearly, the the restriction of the function f to X x]a, b[ satisfies
all the assumptions of Theorem 1. In particular, (7i7) is satisfied taking p(A) = 9.
Consequently, we have

sup in)f((J(as) +AMP(x) —71)) = ing( sup (J(x) + A(®(x) —1)) . (2)
AE]a,b[ € TEX Ne]a,b]



Note that
sup inf f(z,\) < sup inf f(x,\) <

A€]a,b[ TEX A€E[a,b)NR TEX
< inf sup f(z,\) = inf sup f(z, A
2€X \ela,b]NR (@3) T€X Nela,b] (@4)

and so from (2) it follows

sup in)f((J(as) + AMP(z) —1)) = ing( sup  (J(z) + AN(P(z) —7)) . (3)
A€[a,b]NR.TE TEX Nela,b)NR

Now, observe that the function inf,c x f(z,-) is upper semicontinuous in [a, )]V R and that

i S A) = e

if b = 400 (since r > infx ®), and

lim inf f(z,\) = —o0

A—>—ocoxeX

if @ = —oo (since r < supy ®). From this, it clearly follows that there exists A, € [a,b]NR
such that R R

inf f(x,\.,) = sup inf f(x,\.).

z€X ( ) A€[a,b]NR TEX ( )

Since

sup  f(z,A) = sup f(=z,A)
A€la,b]NR A€E]a,b|

for all z € X, the sub-level sets of the function supy¢(q,nr f(+; A) are sequentially compact.
Hence, there exists &, € X such that

sup  f(z,,A\) = inf sup f(x, ).
A€E[a,b]NR 2€X xela,b|NR

~

Then, thanks to (3), (Z,, A.) is a saddle-point of f, that is

~ ~

J(&r) + Ar(®(27) —7) = nf (J(2) + A (B(2) —7)) = J(ﬁfr)JrAE[SHbI]DﬂR)\(‘I’(@r) —7r). (4)

First of all, from (4) it follows that &, is a global minimum of J + A, ®. We now show that
®(z,) = r. We distinguish four cases.

- a = —o0 and b = co. In this case, the equality ®(z,) = r follows from the fact that
supyer AP (Z,) — r) is finite.

- a > —oo and b = +oo. In this case, the finiteness of supy¢jq yoof A(®(#,) — 1) implies
that ®(&,) < r. But, if ®(&,) < r, from (4), we would infer that \, = a and so &, € M,.
This would imply infy; ® < r, contrary to the choice of r.
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- a= —oo and b < +oo. In this case, the finiteness of supy¢j_ o ) A(®(2) — ) implies
that ®(&,) > r. But, if ®(&,) > r, from (4) again, we would infer \, = b, and so &, € M,
Therefore, sup,,, ® > r, contrary to the choice of r.

- —o0o0 < aand b < 400. In this case, if ®(Z,) # r, as we have just seen, we would have
either infyy, ® <1 or sup,,, ® > r, contrary to the choice of r.

Having proved that ®(z,) = r, we also get that Ay €la,b[. Indeed, if A\ € {a,b},
we would have either z, € M, or &, € M, and so either infy; & < r or supy, ® > 7,
contrary to the choice of r. From (4) once again, we furthermore infer that any global
minimum of Jjg-1(,) (and Z, is so) is a global minimum of J + A® in X. But, since
Ar €la,b[, J + A ® has exactly one global minimum in X which, therefore, coincides with
#,. Since the sub-level sets of J+ \, ® are sequentially compact, we then conclude that any
minimizing sequence in X for J + A ® converges to z,. But any minimizing sequence in
d~1(r) for J is a minimizing sequence for .J —i-/A\T(I), and so it converges to Z,.. Consequently,
the problem of minimizing J over ®~1(r) is well-posed, as claimed.

Now, let us prove the other assertions made in thesis. By Proposition 1, it clearly
follows that the function A — ®(g,) is non-increasing in Ja, b[ and that its range is contained
in [a, B]. On the other hand, by the first assertion of the thesis, this range contains |, 3[.
Of course, from this it follows that the function A\ — ®(g,) is continuous in |a,b[. Now,
observe that the function A\ — inf,c x(J(x) + A®(x)) is concave and hence continuous in
|a, b]. This, in particular, implies that the function A — J(g,) is continuous in |a, b[. Now,
for each r €la, B[, put

Ay ={\€la,b[: P(yn) =1} .

Let us prove that the multifunction » — A, is upper semicontinuous in |o, 5[. Of course,
it is enough to show that the restriction of the multifunction to any bounded open sub-
interval of |a, B[ is upper semicontinuous. So, let s,t €]a, B[, with s < t. Let u,v €|a,b]
be such that ®(y,) =t, ®(9,) = s. By Proposition 1, we have

U A Cp, v .

re€ls,t|

Then, to show that the restriction of multifunction » — A, to]s, ¢ is upper semicontinuous,
it is enough to prove that its graph is closed in |s, t[x[u,v] ([1], Theorem 7.1.16). But,
this latter fact follows immediately from the continuity of the function A — ®(g,). At this
point, we observe that, for each r €]a, [, the function A — g, is constant in A,. Indeed,
let A\, € A, with X # p. If it was g\ # 9, by Proposition 1 it would follow

r=®(Gx) # ®Gu) =1,

an absurd. Hence, the function » — Z,, as composition of the upper semicontinuous
multifunction »r — A, and the continuous function A — g, is continuous. Analogously,
the continuity of the function r — J(&,) follows observing that it is the composition of
r — A, and the continuous function A — J(). The proof is complete. A

REMARK 1. - We want to point out that, under the assumptions of Theorem 1, we
have actually proved that, for each r €]a, 8], there exists A, €]a,b] such that the unique
global minimum of J + \,.® belongs to ®~1(r).

6



When a > 0, we can obtain a conclusion dual to that of Theorem 1, under the same
key assumption.

THEOREM 3. - Let a > 0. Assume that, for each X €la,b[, the function J + AP has
sequentially compact sub-level sets and admits a unique global minimum in X.
Set

v 1= max {1§f J, sup J} ,

Mg

0 := min {Sup J, ipr} )
X

M,

where

) M, ifa>0
Ma:{

0 ifa=0,
. Mb ifb<+OO
Mb:{

infx ® ifb=+oo .

Assume that v < 9.
Then, for each r €]vy,d][, the problem of minimizing ® over J~1(r) is well-posed.
Moreover, if we denote by T, the unique global minimum of ® ;-1 (r €|y, 4[), the
functions r — Z, and r — ®(&,) are continuous in |7, J|.

PROOF. Let p €]b=!,a~![. Then, since p~! €]a,b[ and
O+ pd = p(J+p'®),

we clearly have that the function J+ u® has sequentially compact sub-level sets and admits
a unique global minimum. At this point, the conclusion follows applying Theorem 1 with
the roles of J an ® interchanged. A

We now state the version of Theorem 1 obtained in the setting of a reflexive Banach
space endowed with the weak topology.

THEOREM 4. - Let X be a sequentially weakly closed set in a reflexive real Banach
space. Assume that o < B and that, for each X €la,b[, the function J + AP is sequentially
weakly lower semicontinuous, has bounded sub-level sets and has a unique global minimum
m X.

Then, for each r €la, B[, the problem of minimizing J over ®~1(r) is well-posed in
the weak topology.

Moreover, if we denote by Z, the unique global minimum of Jig—1(yy (r €la, B[), the
functions r — &, and r — J(&,) are continuous in |a, B, the first one in the weak topology.

PROOF. Our assumptions clearly imply that, for each A €]a,b[, the sub-level sets
of J + A® are sequentially weakly compact, by the Eberlein- Smulyan theorem. Hence,
considering X with the relative weak topology, we are allowed to apply Theorem 1, from
which the conclusion directly follows. A



Analogously, from Theorem 3 we get

THEOREM 5. - Let a > 0 and let X be a sequentially weakly closed set in a reflexive
real Banach space. Assume that, for each A €la,b|, the function J + AP is sequentially
weakly lower semicontinuous, has bounded sub-level sets and has a unique global minimum
in X. Assume also that v < &, where 7,9 are defined as in Theorem 3.

Then, for each r €]v,d[, the problem of minimizing ® over J=1(r) is well-posed in the
weak topology.

Moreover, if we denote by I, the unique global minimum of ® ;-1 (r €]v,0]), the
functions r — &, and r — ®(&,) are continuous in |y, [, the first one in the weak topology.

Finally, it is worth noticing that Theorem 1 also offers the perspective of a novel way
of seeing whether a given function possesses a global minimum. Let us formalize this using
Remark 1.

THEOREM 6. - Assume that b > 0 and that, for each A €]0,b[, the function J+A® has
sequentially compact sub-level sets and admits a unique global minimum, say Y. Assume
also that

lim ®(gy) <sup® . (5)
X

A—0t

Then, one has
lim ®(yy) = i]r\14f<I> )

A—0t

where M is the set of all global minima of J in X.

PROOF. We already know that the function A\ — ®(g,) is non-increasing in ]a, b| and
that its range is contained in [«, 5]. We claim that

8= lim ®(g) .

A—01

Assume the contrary. Let us apply Theorem 1, with a = 0 (so, My = M), using the
conclusion pointed out in Remark 1. Choose r satisfying

lim ®(gy) <r<p.
Jim (ga) <7<

Then, (since also a < r) it would exist A, €]0,b[ such that ®(g5 ) = r, contrary to the
choice of r. At this point, the conclusion follows directly from (5). A
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