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Well-posedness of constrained minimization problems via saddle-points

BIAGIO RICCERI

Dedicated to Professor Jean Saint Raymond on his sixtieth birthday, with my greatest

admiration and esteem

Here and in the sequel, X is a Hausdorff topological space, J,Φ are two real-valued
functions defined in X , and a, b are two numbers in [−∞,+∞], with a < b.

If a ∈ R (resp. b ∈ R), we denote by Ma (resp. Mb) the set of all global minima of
the function J + aΦ (resp. J + bΦ), while if a = −∞ (resp. b = +∞), Ma (resp. Mb)
stands for the empty set. We adopt the conventions inf ∅ = +∞, sup ∅ = −∞.

We also set

α := max

{

inf
X

Φ, sup
Mb

Φ

}

,

β := min

{

sup
X

Φ, inf
Ma

Φ

}

.

Note that, by Proposition 1 below, one has α ≤ β.

A usual, given a function f : X → R and a set C ⊆ X , we say that the problem of
minimizing f over C is well-posed if the following two conditions hold:

- the restriction of f to C has a unique global minimum, say x̂ ;

- every sequence {xn} in C such that limn→∞ f(xn) = infC f , converges to x̂.

A set of the type {x ∈ X : f(x) ≤ r} is said to be a sub-level set of f . Clearly,
when the sub-level sets of f are sequentially compact, the problem of minimizing f over a
sequentially closed set C is well-posed if and only if f|C has a unique global minimum.

The aim of the present paper is to establish the following result:

THEOREM 1. - Assume that α < β and that, for each λ ∈]a, b[, the function J + λΦ
has sequentially compact sub-level sets and admits a unique global minimum in X.

Then, for each r ∈]α, β[, the problem of minimizing J over Φ−1(r) is well-posed.

Moreover, if we denote by x̂r the unique global minimum of J|Φ−1(r) (r ∈]α, β[), the
functions r → x̂r and r → J(x̂r) are continuous in ]α, β[.

Theorem 1 should be regarded as the definitive abstract result coming out from the
saddle-point method developed in [4], [5], [6], [7], in specific settings.

The main tool used to prove Theorem 1 is provided by the following mini-max result:
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THEOREM 2. - Let I ⊆ R be an interval and f a real-valued function defined in

X × I. Assume that there exists a number ρ∗ > supI infX f , and a point λ̂ ∈ I such that,

for each ρ ≤ ρ∗, the following conditions hold:

(i) the set {λ ∈ I : f(x, λ) > ρ} is connected for all x ∈ X ;

(ii) the set {x ∈ X : f(x, λ) ≤ ρ} is sequentially closed for all λ ∈ I and sequentially

compact for λ = λ̂ ;

(iii) for each compact interval T ⊆ I for which supT infX f < ρ, there exists a continuous

function ϕ : T → X such that f(ϕ(λ), λ) < ρ for all λ ∈ T .

Then, one has

sup
λ∈I

inf
x∈X

f(x, λ) = inf
x∈X

sup
λ∈I

f(x, λ) .

PROOF. We strictly follow the proof Theorem 2 of [3]. First, fix a non-decreasing

sequence {In} of compact sub-intervals of I, with λ̂ ∈ I1, such that ∪n∈NIn = I. Now, fix
n ∈ N. We claim that

sup
λ∈In

inf
x∈X

f(x, λ) = inf
x∈X

sup
λ∈In

f(x, λ) . (1)

Arguing by contradiction, suppose that

sup
λ∈In

inf
x∈X

f(x, λ) < inf
x∈X

sup
λ∈In

f(x, λ) .

Fix ρ satisfying

sup
λ∈In

inf
x∈X

f(x, λ) < ρ < min

{

ρ∗, inf
x∈X

sup
λ∈In

f(x, λ)

}

.

Set
S = {(x, λ) ∈ X × In : f(x, λ) < ρ}

as well as, for each λ ∈ In,

Sλ = {x ∈ X : (x, λ) ∈ S} .

Since supIn infX f < ρ, one has Sλ 6= ∅ for all λ ∈ In. Let In = [an, bn]. Put

A =

{

(x, λ) ∈ S : λ < bn , sup
s∈]λ,bn]

f(x, s) > ρ

}

and

B =

{

(x, λ) ∈ S : λ > an , sup
s∈[an,λ[

f(x, s) > ρ

}

.

Observe that San × {an} ⊆ A and Sbn × {bn} ⊆ B. Indeed, let x1 ∈ San and x2 ∈ Sbn .
Since ρ < infX supIn f , there are t, s ∈ In such that min{f(x1, t), f(x2, s)} > ρ. Since
sup{f(x1, an), f(x2, bn)} < ρ, it follows that t > an and s < bn. Consequently, (x1, an) ∈ A
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and (x2, bn) ∈ B. Furthermore, observe that if (x0, λ0) ∈ A and if µ ∈]λ0, bn] is such that
f(x0, µ) > ρ, then, in view of (ii), the set

({x ∈ X : f(x, µ) > ρ} × [an, µ[) ∩ S

is sequentially open in S, contains (x0, λ0) and is contained in A. In other words, A is
sequentially open in S. Analogously, it is seen that B is sequentially open in S. We now
prove that S = A∪B. Indeed, let (x, λ) ∈ S \A. We have seen above that San ×{an} ⊆ A,
and so λ > an. If λ = bn, the fact that (x, λ) ∈ B has been likewise proved above.
Suppose λ < bn. Thus, we have sups∈]λ,bn] f(x, s) ≤ ρ. From this, it clearly follows that
sups∈[an,λ[

f(x, s) > ρ (note that f(x, λ) < ρ), and so (x, λ) ∈ B. Furthermore, we have
A∩B = ∅. Indeed, if (x1, λ1) ∈ A∩B, there would be t1, s1 ∈ In, with t1 < λ1 < s1, such
that min{f(x1, t1), f(x1, s1)} > ρ. By (i), the set {s ∈ I : f(x1, s) > ρ} is an interval, and
so we would have f(x1, λ1) > ρ, against the fact that (x1, λ1) ∈ S. Now, in view of (iii),
consider a continuous function ϕ : In → X such that

f(ϕ(λ), λ) < ρ

for all λ ∈ In. Let h : In → X × In be defined by setting

h(λ) = (ϕ(λ), λ)

for all λ ∈ In. Since h is continuous, the set h(In) is sequentially connected ([2], Theorem
2.2). But, having in mind that h(In) ⊆ S and that h(In) meets both A and B (since
h(an) ∈ A and h(bn) ∈ B), the properties of A,B proved above would imply that h(In) is
sequentially disconnected, a contradiction. So, (1) holds. Finally, let us prove the theorem.
Again arguing by contradiction, suppose that

sup
λ∈I

inf
x∈X

f(x, λ) < inf
x∈X

sup
λ∈I

f(x, λ) .

Choose r satisfying

sup
λ∈I

inf
x∈X

f(x, λ) < r < min

{

ρ∗, inf
x∈X

sup
λ∈I

f(x, λ)

}

.

For each n ∈ N, put

Cn =

{

x ∈ X : sup
λ∈In

f(x, λ) ≤ r

}

.

Note that Cn 6= ∅. Indeed, otherwise, we would have

r ≤ inf
x∈X

sup
λ∈In

f(x, λ) = sup
λ∈In

inf
x∈X

f(x, λ) ≤ sup
λ∈I

inf
x∈X

f(x, λ) .

Consequently, {Cn} is a non-increasing sequence of non-empty sequentially closed subsets

of the sequentially compact set {x ∈ X : f(x, λ̂) ≤ ρ∗}. Therefore, one has ∩n∈NCn 6= ∅.
Let x∗ ∈ ∩n∈NCn. Then, one has

sup
λ∈I

f(x∗, λ) = sup
n∈N

sup
λ∈In

f(x∗, λ) ≤ r
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and so
inf
x∈X

sup
λ∈I

f(x, λ) ≤ r ,

a contradiction. The proof is complete. △

We will also use the following proposition.

PROPOSITION 1 ([4], Proposition 1). - Let Y be a nonempty set, f, g : Y → R

two functions, and λ, µ two real numbers, with λ < µ. Let ŷλ be a global minimum of the

function f + λg and let ŷµ be a global minimum of the function f + µg.

Then, one has

g(ŷµ) ≤ g(ŷλ) .

If either ŷλ or ŷµ is strict and ŷλ 6= ŷµ, then

g(ŷµ) < g(ŷλ) .

Proof of Theorem 1. First, for each λ ∈]a, b[, denote by ŷλ the unique global
minimum in X of J + λΦ. Let us prove that the function λ → ŷλ is continuous in ]a, b[.
To this end, fix λ∗ ∈]a, b[. Let {λn} be any sequence in ]a, b[ converging to λ∗ and let
[c, d] ⊂]a, b[ be a compact interval containing {λn}. Fix ρ > supn∈N infx∈X(J(x)+λnΦ(x)).
Clearly, we have

⋃

λ∈[c,d]

{x ∈ X : J(x) + λΦ(x) ≤ ρ} ⊆

⊆ {x ∈ X : J(x) + cΦ(x) ≤ ρ} ∪ {x ∈ X : J(x) + dΦ(x) ≤ ρ} .

From this, due to the choice of ρ, we infer that the sequence {ŷλn
} is contained in the

the set on the right-hand side which is clearly sequentially compact. Hence, there is a
subsequence {ŷλnk

} converging to some y∗ ∈ X . Taking into account that the sequence
{Φ(ŷλn

k
)} is bounded (by Proposition 1) and that the function J + λ∗Φ is sequentially

lower semicontinuous, for each x ∈ X , we then have

J(y∗) + λ∗Φ(y∗) ≤ lim inf
k→∞

(J(ŷλnk
) + λ∗Φ(ŷλnk

)) =

= lim inf
k→∞

(J(ŷλnk
) + λnk

Φ(ŷλnk
) + (λ∗ − λnk

)Φ(ŷλnk
)) =

= lim inf
k→∞

(J(ŷλnk
) + λnk

Φ(ŷλnk
)) ≤ lim

k→∞
(J(x) + λnk

Φ(x)) = J(x) + λ∗Φ(x) .

Hence y∗ is the global minimum of J + λ∗Φ, that is y∗ = ŷλ∗ , which shows the continuity
of λ → ŷλ at λ∗. Now, fix r ∈]α, β[ and consider the function f : X ×R → R defined by

f(x, λ) = J(x) + λ(Φ(x)− r)

for all (x, λ) ∈ X ×R. Clearly, the the restriction of the function f to X×]a, b[ satisfies
all the assumptions of Theorem 1. In particular, (iii) is satisfied taking ϕ(λ) = ŷλ.
Consequently, we have

sup
λ∈]a,b[

inf
x∈X

(J(x) + λ(Φ(x)− r)) = inf
x∈X

sup
λ∈]a,b[

(J(x) + λ(Φ(x)− r)) . (2)
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Note that
sup

λ∈]a,b[

inf
x∈X

f(x, λ) ≤ sup
λ∈[a,b]∩R

inf
x∈X

f(x, λ) ≤

≤ inf
x∈X

sup
λ∈[a,b]∩R

f(x, λ) = inf
x∈X

sup
λ∈]a,b[

f(x, λ)

and so from (2) it follows

sup
λ∈[a,b]∩R

inf
x∈X

(J(x) + λ(Φ(x)− r)) = inf
x∈X

sup
λ∈[a,b]∩R

(J(x) + λ(Φ(x)− r)) . (3)

Now, observe that the function infx∈X f(x, ·) is upper semicontinuous in [a, b]∩R and that

lim
λ→+∞

inf
x∈X

f(x, λ) = −∞

if b = +∞ (since r > infX Φ), and

lim
λ→−∞

inf
x∈X

f(x, λ) = −∞

if a = −∞ (since r < supX Φ). From this, it clearly follows that there exists λ̂r ∈ [a, b]∩R

such that
inf
x∈X

f(x, λ̂r) = sup
λ∈[a,b]∩R

inf
x∈X

f(x, λ̂r) .

Since
sup

λ∈[a,b]∩R

f(x, λ) = sup
λ∈]a,b[

f(x, λ)

for all x ∈ X , the sub-level sets of the function supλ∈[a,b]∩R f(·, λ) are sequentially compact.
Hence, there exists x̂r ∈ X such that

sup
λ∈[a,b]∩R

f(x̂r, λ) = inf
x∈X

sup
λ∈[a,b]∩R

f(x, λ) .

Then, thanks to (3), (x̂r, λ̂r) is a saddle-point of f , that is

J(x̂r) + λ̂r(Φ(x̂r)− r) = inf
x∈X

(J(x)+ λ̂r(Φ(x)− r)) = J(x̂r) + sup
λ∈[a,b]∩R

λ(Φ(x̂r)− r) . (4)

First of all, from (4) it follows that x̂r is a global minimum of J + λ̂rΦ. We now show that
Φ(x̂r) = r. We distinguish four cases.
- a = −∞ and b = ∞. In this case, the equality Φ(x̂r) = r follows from the fact that
supλ∈R

λ(Φ(x̂r)− r) is finite.
- a > −∞ and b = +∞. In this case, the finiteness of supλ∈[a,+∞[ λ(Φ(x̂r) − r) implies

that Φ(x̂r) ≤ r. But, if Φ(x̂r) < r, from (4), we would infer that λ̂r = a and so x̂r ∈ Ma.
This would imply infMa

Φ < r, contrary to the choice of r.
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- a = −∞ and b < +∞. In this case, the finiteness of supλ∈]−∞,b] λ(Φ(x̂r) − r) implies

that Φ(x̂r) ≥ r. But, if Φ(x̂r) > r, from (4) again, we would infer λ̂r = b, and so x̂r ∈ Mb.
Therefore, supMb

Φ > r, contrary to the choice of r.
- −∞ < a and b < +∞. In this case, if Φ(x̂r) 6= r, as we have just seen, we would have
either infMa

Φ < r or supMb
Φ > r, contrary to the choice of r.

Having proved that Φ(x̂r) = r, we also get that λ̂r ∈]a, b[. Indeed, if λ̂r ∈ {a, b},
we would have either x̂r ∈ Ma or x̂r ∈ Mb and so either infMa

Φ ≤ r or supMb
Φ ≥ r,

contrary to the choice of r. From (4) once again, we furthermore infer that any global

minimum of J|Φ−1(r) (and x̂r is so) is a global minimum of J + λ̂rΦ in X . But, since

λ̂r ∈]a, b[, J + λ̂rΦ has exactly one global minimum in X which, therefore, coincides with

x̂r. Since the sub-level sets of J+λ̂rΦ are sequentially compact, we then conclude that any
minimizing sequence in X for J + λ̂rΦ converges to x̂r. But any minimizing sequence in
Φ−1(r) for J is a minimizing sequence for J+λ̂rΦ, and so it converges to x̂r. Consequently,
the problem of minimizing J over Φ−1(r) is well-posed, as claimed.

Now, let us prove the other assertions made in thesis. By Proposition 1, it clearly
follows that the function λ → Φ(ŷλ) is non-increasing in ]a, b[ and that its range is contained
in [α, β]. On the other hand, by the first assertion of the thesis, this range contains ]α, β[.
Of course, from this it follows that the function λ → Φ(ŷλ) is continuous in ]a, b[. Now,
observe that the function λ → infx∈X(J(x) + λΦ(x)) is concave and hence continuous in
]a, b[. This, in particular, implies that the function λ → J(ŷλ) is continuous in ]a, b[. Now,
for each r ∈]α, β[, put

Λr = {λ ∈]a, b[: Φ(ŷλ) = r} .

Let us prove that the multifunction r → Λr is upper semicontinuous in ]α, β[. Of course,
it is enough to show that the restriction of the multifunction to any bounded open sub-
interval of ]α, β[ is upper semicontinuous. So, let s, t ∈]α, β[, with s < t. Let µ, ν ∈]a, b[
be such that Φ(ŷµ) = t, Φ(ŷν) = s. By Proposition 1, we have

⋃

r∈]s,t[

Λr ⊆ [µ, ν] .

Then, to show that the restriction of multifunction r → Λr to ]s, t[ is upper semicontinuous,
it is enough to prove that its graph is closed in ]s, t[×[µ, ν] ([1], Theorem 7.1.16). But,
this latter fact follows immediately from the continuity of the function λ → Φ(ŷλ). At this
point, we observe that, for each r ∈]α, β[, the function λ → ŷλ is constant in Λr. Indeed,
let λ, µ ∈ Λr with λ 6= µ. If it was ŷλ 6= ŷµ, by Proposition 1 it would follow

r = Φ(ŷλ) 6= Φ(ŷµ) = r ,

an absurd. Hence, the function r → x̂r, as composition of the upper semicontinuous
multifunction r → Λr and the continuous function λ → ŷλ, is continuous. Analogously,
the continuity of the function r → J(x̂r) follows observing that it is the composition of
r → Λr and the continuous function λ → J(ŷλ). The proof is complete. △

REMARK 1. - We want to point out that, under the assumptions of Theorem 1, we
have actually proved that, for each r ∈]α, β[, there exists λ̂r ∈]a, b[ such that the unique

global minimum of J + λ̂rΦ belongs to Φ−1(r).
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When a ≥ 0, we can obtain a conclusion dual to that of Theorem 1, under the same
key assumption.

THEOREM 3. - Let a ≥ 0. Assume that, for each λ ∈]a, b[, the function J + λΦ has

sequentially compact sub-level sets and admits a unique global minimum in X.

Set

γ := max

{

inf
X

J, sup
M̂a

J

}

,

δ := min

{

sup
X

J, inf
M̂b

J

}

,

where

M̂a =

{

Ma if a > 0

∅ if a = 0 ,

M̂b =

{

Mb if b < +∞

infX Φ if b = +∞ .

Assume that γ < δ.

Then, for each r ∈]γ, δ[, the problem of minimizing Φ over J−1(r) is well-posed.

Moreover, if we denote by x̃r the unique global minimum of Φ|J−1(r) (r ∈]γ, δ[), the
functions r → x̃r and r → Φ(x̃r) are continuous in ]γ, δ[.

PROOF. Let µ ∈]b−1, a−1[. Then, since µ−1 ∈]a, b[ and

Φ + µJ = µ(J + µ−1Φ) ,

we clearly have that the function J+µΦ has sequentially compact sub-level sets and admits
a unique global minimum. At this point, the conclusion follows applying Theorem 1 with
the roles of J an Φ interchanged. △

We now state the version of Theorem 1 obtained in the setting of a reflexive Banach
space endowed with the weak topology.

THEOREM 4. - Let X be a sequentially weakly closed set in a reflexive real Banach

space. Assume that α < β and that, for each λ ∈]a, b[, the function J + λΦ is sequentially

weakly lower semicontinuous, has bounded sub-level sets and has a unique global minimum

in X.

Then, for each r ∈]α, β[, the problem of minimizing J over Φ−1(r) is well-posed in

the weak topology.

Moreover, if we denote by x̂r the unique global minimum of J|Φ−1(r) (r ∈]α, β[), the
functions r → x̂r and r → J(x̂r) are continuous in ]α, β[, the first one in the weak topology.

PROOF. Our assumptions clearly imply that, for each λ ∈]a, b[, the sub-level sets
of J + λΦ are sequentially weakly compact, by the Eberlein- Smulyan theorem. Hence,
considering X with the relative weak topology, we are allowed to apply Theorem 1, from
which the conclusion directly follows. △
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Analogously, from Theorem 3 we get

THEOREM 5. - Let a ≥ 0 and let X be a sequentially weakly closed set in a reflexive

real Banach space. Assume that, for each λ ∈]a, b[, the function J + λΦ is sequentially

weakly lower semicontinuous, has bounded sub-level sets and has a unique global minimum

in X. Assume also that γ < δ, where γ, δ are defined as in Theorem 3.

Then, for each r ∈]γ, δ[, the problem of minimizing Φ over J−1(r) is well-posed in the

weak topology.

Moreover, if we denote by x̃r the unique global minimum of Φ|J−1(r) (r ∈]γ, δ[), the
functions r → x̃r and r → Φ(x̃r) are continuous in ]γ, δ[, the first one in the weak topology.

Finally, it is worth noticing that Theorem 1 also offers the perspective of a novel way
of seeing whether a given function possesses a global minimum. Let us formalize this using
Remark 1.

THEOREM 6. - Assume that b > 0 and that, for each λ ∈]0, b[, the function J+λΦ has

sequentially compact sub-level sets and admits a unique global minimum, say ŷλ. Assume

also that

lim
λ→0+

Φ(ŷλ) < sup
X

Φ . (5)

Then, one has

lim
λ→0+

Φ(ŷλ) = inf
M

Φ ,

where M is the set of all global minima of J in X.

PROOF. We already know that the function λ → Φ(ŷλ) is non-increasing in ]a, b[ and
that its range is contained in [α, β]. We claim that

β = lim
λ→0+

Φ(ŷλ) .

Assume the contrary. Let us apply Theorem 1, with a = 0 (so, M0 = M), using the
conclusion pointed out in Remark 1. Choose r satisfying

lim
λ→0+

Φ(ŷλ) < r < β .

Then, (since also α < r) it would exist λ̂r ∈]0, b[ such that Φ(ŷ
λ̂r
) = r, contrary to the

choice of r. At this point, the conclusion follows directly from (5). △
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