Skip to main content
Log in

Lipschitz behavior of convex semi-infinite optimization problems: a variational approach

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper we make use of subdifferential calculus and other variational techniques, traced out from [Ioffe, A.D.: Metric regularity and subdifferential calculus. Uspekhi Mat. Nauk 55, 3(333), 103–162; Engligh translation Math. Surveys 55, 501–558 (2000); Ioffe, A.D.: On rubustness of the regularity property of maps. Control cybernet 32, 543–554 (2003)], to derive different expressions for the Lipschitz modulus of the optimal set mapping of canonically perturbed convex semi-infinite optimization problems. In order to apply this background for obtaining the modulus of metric regularity of the associated inverse multifunction, we have to analyze the stable behavior of this inverse mapping. In our semi-infinite framework this analysis entails some specific technical difficulties. We also provide a new expression of a global variational nature for the referred regularity modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Azé D., Corvellec J.-N. and Lucchetti R.E. (2002). Variational pairs and applications to stability in nonsmooth analysis. Nonlinear Anal. 49: 643–670

    Article  Google Scholar 

  2. Cánovas, M.J., Klatte, D., López, M.A., Parra, J.: Metric regularity in convex semi-infinite optimization under canonical perturbations, SIAM J. Optim. (in press)

  3. Dontchev A.L., Lewis A.S. and Rockafellar R.T. (2003). The radius of metric regularity. Trans. Amer. Math. Society 355: 493–517

    Article  Google Scholar 

  4. De Giorgi E., Marino A. and Tosques M. (1980). Problemi di evoluzione in spazi metrici e curve di massima pendenza. Atti Acad. Nat. Lincei, Rend, Cl. Sci. Fiz. Mat. Natur. 68: 180–187

    Google Scholar 

  5. Goberna M.A. and López M.A. (1998). Linear Semi-Infinite Optimization. John Wiley & Sons, Chichester (UK)

    Google Scholar 

  6. Henrion R. and Klatte D. (1994). Metric regularity of the feasible set mapping in semi-infinite optimization. Appl. Math. Optimiz. 30: 103–109

    Article  Google Scholar 

  7. Ioffe, A.D.: Metric regularity and subdifferential calculus. Uspekhi Mat. Nauk 55, 3 (333), 103–162; English translation Math. Surveys 55, 501–558 (2000)

  8. Ioffe A.D. (2003). On rubustness of the regularity property of maps. Control Cybernet. 32: 543–554

    Google Scholar 

  9. Klatte D. and Kummer B. (2002). Nonsmooth Equations in Optimization. Regularity, Calculus, Methods and Applications. Kluwer Academic Publ., Dordrecht

    Google Scholar 

  10. Mordukhovich B.S. (2006). Variational Analysis and Generalized Differentiation (I,II). Springer-Verlag, Berlin

    Google Scholar 

  11. Rockafellar R.T. (1970). Convex Analysis. Princeton University Press, Princeton, NJ

    Google Scholar 

  12. Rockafellar R.T. and Wets R.J.-B. (1997). Variational Analysis. Springer-Verlag, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Parra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cánovas, M.J., Hantoute, A., López, M.A. et al. Lipschitz behavior of convex semi-infinite optimization problems: a variational approach. J Glob Optim 41, 1–13 (2008). https://doi.org/10.1007/s10898-007-9205-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-007-9205-6

Keywords

Mathematics Subject Classification

Navigation