Skip to main content
Log in

Molecular conformation of n-alkanes using terrain/funneling methods

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Understanding molecular conformation is a first step in understanding the waxing (or formation of crystals) of petroleum fuels. In this work, we study the molecular conformation of typical fuel oils modeled as pure n-alkanes. A multi-scale global optimization methodology based on terrain methods and funneling algorithms is used to find minimum energy molecular conformations of united atom n-alkane models for diesel, home heating, and residual fuel oils. The terrain method is used to gather average gradient and average Hessian matrix information at the small length scale while funneling is used to generate conformational changes at the large length scale that drive iterates to a global minimum on the potential energy surface. In addition, the funneling method uses a mixture of average and point-wise derivative information to produce a monotonically decreasing sequence of objective function values and to avoid getting trapped at local minima on the potential energy surface. Computational results clearly show that the calculated united atom molecular conformations are comprised of zigzag structure with considerable wrapping at the ends of the molecule and that planar zigzag conformations usually correspond to saddle points. Furthermore, the numerical results clearly demonstrate that our terrain/funneling approach is robust and fast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Turner W.R. (1971). Normal alkanes. Ind. Eng. Chem. Prod. Res. 10: 238–260

    Article  Google Scholar 

  • Larini L., Barbieri A., Prevosto D., Rolla P. and Leporini D. (2005). Equilibrated polyethylene single-molecule crystals: molecular dynamics simulations and analytic model of the global minimum of the free energy landscape. J. Phys.: Condens. Matter. 17: L199–L208

    Article  Google Scholar 

  • Levy A.V. and Montalvo A. (1985). The tunneling algorithm for the global minimization of functions. SIAM J. Sci. Stat. Comp. 6: 15–29

    Article  Google Scholar 

  • Bahren J. and Protopopescu V. (1996). Generalized TRUST algorithms for global optimization. In: Floudas, C.A. and Pardalos, P.M. (eds) State of the Art in Global Optimization., pp 163–180. Kluwer, Dordrecht

    Google Scholar 

  • Maranas C.D. and Floudas C.A. (1995). Finding all solutions to nonlinearly constrained systems of equations. J. Global Optim. 7: 143–182

    Article  Google Scholar 

  • Maranas C.D. and Floudas C.A. (1992). A global optimization approach to Lennard-Jones microclusters. J. Chem. Phys. 97: 7667–7678

    Article  Google Scholar 

  • Androulakis I.P., Maranas C.D. and Floudas C.A. (1997). Prediction of oligopeptide conformations via deterministic global optimization. J. Global Optim. 11: 1–34

    Article  Google Scholar 

  • Maranas C.D. and Floudas C.A. (1997). Global optimization in generalized geometric programming. Comput. Chem. Eng. 21: 351–369

    Article  Google Scholar 

  • Westerberg K.M. and Floudas C.A. (1999). Locating all transition states and studying the reaction pathways of potential energy surfaces. J. Chem. Phys. 110: 9259–9295

    Article  Google Scholar 

  • Klepeis J.L., Floudas C.A. and Morikis D. (1999). Predicting peptide structures using NMR data and deterministic global optimization. J. Comput. Chem. 20: 1354–1370

    Article  Google Scholar 

  • Sun A.C., Seider, W.D.: Homotopy-continuation algorithm for global optimization. In Floudas, C.A., Pardalos, P.M. (eds.) Recent Advances in Global Optimization, pp. 561–592. Princeton Univ. Press (1992)

  • Piela L., Kostrowicki J. and Scheraga H.A. (1989). The multiple minima problem in conformational analysis of molecules. Deformation of the potential energy hypersurface by the diffusion equation method. J. Phys. Chem. 93: 3339–3346

    Google Scholar 

  • Hansen E.R. (1980). Global optimization using interval analysis—the multidimensional case. Numer. Math. 34: 247–270

    Article  Google Scholar 

  • Lin Y. and Stadtherr M.A. (2005). Deterministic global optimization of molecular structures using interval analysis. J. Comput. Chem. 26: 1413–1420

    Article  Google Scholar 

  • Lucia A. and Yang F. (2002). Global terrain methods. Comput. Chem. Eng. 26: 529–546

    Article  Google Scholar 

  • Lucia A. and Yang F. (2003). Multivariable terrain methods. AIChE J. 49: 2553–2563

    Article  Google Scholar 

  • Lucia A., DiMaggio P.A. and Depa P. (2004). A geometric terrain methodology for global optimization. J. Global Optim. 29: 297–314

    Article  Google Scholar 

  • Lucia A., DiMaggio P.A. and Depa P. (2004). Funneling algorithms for multi-scale optimization on rugged terrains. Ind. Eng. Chem. Res. 43: 3770–3781

    Article  Google Scholar 

  • Metropolis N., Rosenbluth A., Rosenbluth M., Teller A. and Teller E. (1953). Equation of state calculations by fast computing machines. J. Chem. Phys. 21: 1087–1092

    Article  Google Scholar 

  • Kirkpatrick S., Gelatt C.D. and Vecchi M.P. (1983). Optimization by simulated annealing. Science 220: 671–680

    Article  Google Scholar 

  • DeJong K.: Ph.D. Dissertation, University of Michigan (1976)

  • Holland J.H. (1992). Genetic algorithms. Sci. Am. 267: 66

    Article  Google Scholar 

  • Aluffi-Pentini F., Parisi V. and Zirilli F. (1985). Global optimization and stochastic differential equations. J. Opt. Theory and Appl. 47: 1–16

    Article  Google Scholar 

  • Bilbro G.L. (1994). Fast stochastic global optimization. IEEE Trans. Sys. Man. Cyber 4: 684–689

    Article  Google Scholar 

  • Sevick E.M., Bell A.T. and Theodorou D.N. (1993). A chain of states method for investigating infrequent events in processes occurring in multistate, multidimensional systems. J. Chem. Phys. 98: 3196–3212

    Article  Google Scholar 

  • Scheraga H.A. (1974). Prediction of protein conformation. In: Anfinsen, C.B. and Schechter, A.N. (eds) Current Topics in Biochemistry., pp 1. Acad. Press, New York

    Google Scholar 

  • Pincus M.R., Klausner R.D. and Scheraga H.A. (1982). Calculation of the three dimensional structure of the membrane-bound portion of melittin from its amino acid sequence. Proc. Nat. Acad. Sci. 79: 5107–5110

    Article  Google Scholar 

  • Gibson K.D. and Scheraga H.A. (1987). Revised algorithm for the build-up procedure for predicting protein conformation by energy minimization. J. Comput. Chem. 8: 826–834

    Article  Google Scholar 

  • Jones D.T., Taylor W.R. and Thornton J.M. (1992). A new approach to protein folding recognition. Nature 358: 86–89

    Article  Google Scholar 

  • Muller K. and Brown L.D. (1979). Location of saddle points and minimum energy paths by a constrained simplex optimization procedure. Theor. Chim. Acta. 53: 75–93

    Article  Google Scholar 

  • Cerjan C.J. and Miller W.H. (1981). On finding transition states. J. Chem. Phys. 75: 2800–2806

    Article  Google Scholar 

  • Baker J. (1986). An algorithm for the location of transition states. J. Comput. Chem. 7: 385–395

    Article  Google Scholar 

  • Henkelman G., Johannesson G. and Jonsson H. (2000). Methods for finding saddle points and minimum energy paths. In: Schwartz, S.D. (eds) Progress in Theoretical Chemistry and Physics, pp 269–300. Kluwer, Dordrecht Netherlands

    Google Scholar 

  • Deaven D.M., Tit N., Morris J.R. and Ho K.M. (1996). Structural optimization of Lennard-Jones clusters by a genetic algorithm. Chem. Phys. Lett. 256: 195–200

    Google Scholar 

  • Niesse J.A. and Mayne H.R. (1996). Global geometry optimization of atomic clusters using a modified genetic algorithm in space-fixed coordinates. J. Chem. Phys. 105: 4700–4706

    Article  Google Scholar 

  • Wales D.J. and Doye J.P.K. (1997). Global optimization by basin hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A. 101: 5111–5116

    Article  Google Scholar 

  • Doye J.P.K. and Wales D.J. (2002). Saddle points and dynamics of Lennard-Jones clusters, solids and supercooled liquids. J. Chem. Phys. 116: 3777–3788

    Article  Google Scholar 

  • Matro A., Freeman D.L. and Doll J.D. (1994). Locating transition states using double-ended classical trajectories. J. Chem. Phys. 101: 10458–10463

    Article  Google Scholar 

  • Gregurick S.K., Alexander M.H. and Hartke B. (1996). Global geometry optimization of (Ar) n and B(Ar) n clusters using a modified genetic algorithm. J. Chem. Phys. 104: 2684–2691

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Lucia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gattupalli, R.R., Lucia, A. Molecular conformation of n-alkanes using terrain/funneling methods. J Glob Optim 43, 429–444 (2009). https://doi.org/10.1007/s10898-007-9206-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-007-9206-5

Keywords

Navigation