
Double Variable Neighbourhood Search with Smoothing for the
Molecular Distance Geometry Problem

Leo Liberti1, Carlile Lavor2, Nelson Maculan3, Fabrizio Marinelli1

1 LIX, École Polytechnique, F-91128 Palaiseau, France
E-mail:{liberti,marinelli}@lix.polytechnique.fr

2 Department of Applied Mathematics (IMECC-UNICAMP), State University of Campinas,
CP 6065, 13081-970, Campinas-SP, Brazil
E-mail:clavor@ime.unicamp.br

3 COPPE – Systems Engineering, Federal University of Rio de Janeiro,
P.O. Box 68511, 21941-972 Rio de Janeiro, Brazil.
E-mail:maculan@cos.ufrj.br

April 30, 2007

Abstract

We discuss the geometrical interpretation of a well-known smoothing operator applied to the
Molecular Distance Geometry Problem, and we then describe a heuristic approach based on Variable
Neighbourhood Search on the smoothed and original problem. This algorithm often manages to find
solutions having higher accuracy than other methods. This is important as small differences in the
objective function value may point to completely different 3D molecular structures.

Keywords: molecular conformation, distance geometry, global optimization, global continuation,
variable neighbourhood search, smoothing.

1 Introduction

The Molecular Distance Geometry Problem (MDGP) is the problem of finding an embedding in R
3 of a

weighted graph G such that all Euclidean distances between points in the embedding are the same as the
corresponding edge weights in the graph. The main application is to find the three-dimensional structure
of a molecule given a subset of the atomic distances (these are usually found using NMR techniques)
[1, 15]. There are other applications in network localization [5] and graph drawing [2]. It has been shown
that the MDGP is NP-hard [17]; if G is a complete graph, however, the MDGP can be solved in linear
time [3]. The MDGP applied to protein backbones is susceptible of a discrete formulation which leads to
improved accuracy and efficiency [10].

Consider an undirected graph G = (V,E) with weights d : E → R+ where V is the set of vertices
(also called atoms) and E is the set of weighted edges (also called inter-atomic distances). Let N = |V |
and dij = d({i, j}) for {i, j} ∈ E. A solution of the MDGP is a set of points x1, . . . , xN ∈ R

3 satisfying

∀{i, j} ∈ E ||xi − xj || = dij . (1)

Notationally, each 3-vector xi has components (xi1, xi2, xi3), and we indicate the vector sequence (x1, . . . , xN)
by x. The MDGP can be naturally cast as a continuous nonconvex optimization problem minx f(x) with
the following objective function:

f(x) =
∑

{i,j}∈E

(||xi − xj ||2 − d2
ij)

2. (2)

Since each equation (1) must be satisfied, a candidate point x is a solution of the MDGP if and only
if f(x) = 0. Note that (2) has a large number of local minima, so this is a practically hard global
optimization problem. See [18] for an overview on the main solution methods used to tackle the MDGP.

One of the most promising methods for solving the MDGP is the Global Continuation Algorithm
(GCA) [13, 14]. The GCA relies on a class of smoothed objective functions derived from (2) by means of
a Gaussian transform. This class is indexed by a parameter λ; for λ = 0 we recover the original function
(2), and for large enough λ the smoothed function becomes convex. The GCA locally solves a sequence
of smoothed problems for decreasing values of λ. To assess solution accuracy, the authors of [13, 14] rely
on a different quality measure called the Largest Distance Error (LDE) defined as:

LDE(x) =
1

|E|
∑

{i,j}∈E

| ||xi − xj || − dij |
dij

. (3)

It is clear that x is a solution of the MDGP if and only if LDE(x) = 0. The GCA has been implemented
in the dgsol code, available from http://www.mcs.anl.gov/~more/dgsol/.

One of the striking features of dgsol is its speed and the fact that the time taken to solve the problem
seems to grow rather slowly as a function of the number of atoms in the molecule. On the other hand,
dgsol usually finds solutions whose LDE is relatively large (in the order of 0.01 or even 0.1). Since there
are many totally different 3D structures having small LDE (see for example Fig. 1), it is of paramount
importance to obtain solutions whose LDEs are very close to zero.

Figure 1: Different 3D graph embeddings with very similar objective function values (both values are in
the order of 10−11).

In a previous paper [8], we tested three different general-purpose global optimization methods on
several MDGP instances, concluding that Variable Neighbourhood Search (VNS) was the best. Notice
that VNS was also used to find the 3D structure of molecules by minimizing a potential energy objec-
tive function [4]. In this paper, we combine ideas from both GCA and VNS algorithms to obtain a
method which we call Double VNS with Smoothing (DVS). Although considerably slower than dgsol,
the solutions obtained by DVS generally have a much smaller LDE. DVS is a classical two-phase global
optimization algorithm with diversification in the first phase and intensification in the second phase.
More precisely, DVS solves a smoothed version of the problem using VNS, then tightens the bounds
around the smoothed solution, and finally applies VNS to the original problem with restricted bounds.
The bounds are restricted following a geometrical interpretation of the smoothed problem, which makes
it possible to relate the smoothing parameter to the bounds where the solution to the original MDGP
should lie.

The rest of this paper is organized as follows. In Section 2 we discuss the geometrical interpretation
of the MDGP smoothing proposed by [13], which leads to some indications as to the bound restriction
at each DVS iteration. In Section 3 we present the DVS algorithm. In Section 4 we report on the
computational results. Section 5 concludes the paper.

2

2 Geometrical interpretation of smoothing

As (2) is a nonconvex function with a considerable number of local minima, it makes sense to look for
a smoothing (i.e. a function in some sense “close” to (2) with fewer local minima). In [13], a family of
smoothings for (2) is proposed which depends on a unique smoothing parameter λ̄ ∈ [λ̄L, λ̄U]: for λ̄ = λ̄L

we recover the original objective (2), and for λ̄ = λ̄U we get a convex smoothing. The smoothing family
f̄λ̄(x) given by [13] (and employed in the GCA) is derived as the closed analytical form of a Gaussian
integral:

f̄λ̄(x) = f(x) +
∑

{i,j}∈E

(10λ̄2||xi − xj ||2) + γ̄, (4)

where γ̄ is a constant and f is given by (2). We shall call this smoothing the Moré-Wu smoothing.
It should be clear that, since the nonconvexities in (2) arise from the negative cross product terms
−2

∑

{i,j}∈E d2
ij ||xi − xj ||2, the smoothing f̄λ̄(x) tends to eliminate these nonconvexities by adding the

positive term
∑

{i,j}∈E(10λ̄2||xi − xj ||2) to the original objective function f(x). This implies that the

quartic terms
∑

{i,j}∈E ||xi − xj ||4 have a bigger effect in the minimization process. Intuitively speaking,

f̄λ̄ describes a configuration where atoms whose distance dij is small tend to be positioned even closer
together, whilst the relative position of far away atoms remains roughly unchanged; in other words, close
atoms tend to be clustered together in the smoothed function. We shall now formalize this geometric
intuition.

We introduce a function F which associates to each vector of squared NMR distances (denoted by
d2 = (d2

ij | {i, j} ∈ E)) the MDGP objective function (2):

F (d2) =
∑

{i,j}∈E

(||xi − xj ||4 − 2d2
ij ||xi − xj ||2 + d4

ij).

Notice we obviously have (F (d2))(x) ≡ f(x). We re-state the Moré-Wu smoothing as follows, introducing
the smoothing parameter λ = λ̄

√
5 and ignoring the constant γ̄:

fλ(x) = f(x) + 2
∑

{i,j}∈E

(λ2||xi − xj ||2). (5)

Now, we define the Moré-Wu smoothing operator (denoted by �) as follows:

λ2 � F (d2) = fλ(x) − γ, (6)

where γ = λ2(λ2|E| − 2
∑

{i,j}∈E d2
ij). It turns out that the Moré-Wu smoothing operator acts by

shortening the square of the distances:

2.1 Theorem

λ2 � F (d2) = F (d2 − λ2), where d2 − λ2 is the vector (d2
ij − λ2 | {i, j} ∈ E).

Proof.

λ2 � F (d2) =
∑

{i,j}∈E

(||xi − xj ||4 − 2(d2
ij − λ2)||xi − xj ||2 + d4

ij) − γ

=
∑

{i,j}∈E

(||xi − xj ||4 − 2(d2
ij − λ2)||xi − xj ||2 + (d2

ij − λ2)2)

=
∑

{i,j}∈E

(||xi − xj ||2 − (d2
ij − λ2))2

= F (d2 − λ2),

3

where γ in the first equation was replaced by its definition in terms of λ and dij and carried into the
sum. 2

By Theorem 2.1, for all pairs of atoms {i, j} ∈ E such that λ ≥ dij , the corresponding term contributing
to the objective function is (||xi − xj ||2 + λ2 − d2

ij)
2. This is a convex term with minima attained at

xi = xj ; in other words, atoms whose distances are shorter than λ will tend, if possible, to collapse into
the same spatial positions. Pairs of atoms which are further away than λ will, if possible, be positioned

at a shorter distance
√

d2
ij − λ2. This observation is based on a term-by-term analysis of a non-separable

function, so it is of course only true if λ is large enough to make f̄λ convex (in which case we obtain
the trivial solution xi = 0 for all i ∈ V). Its usefulness, however, is that it formalizes an insight as to
the general behaviour of a molecule in space in function of a smooth transformation of its associated
objective function.

It is interesting to observe what happens if the smoothing terms 2λ||xi −xj ||2 are proportional to the
distances dij . Let

f̃λ(x) = f(x) + 2
∑

{i,j}∈E

(λ2d2
ij ||xi − xj ||2),

and define the scaling operator (denoted by ⊗) as follows:

λ2 ⊗ F (d2) = f̃λ(x) − γ̃, (7)

where γ̃ = (λ4 − 1)
∑

{i,j}∈E d4
ij . It turns out that this type of smoothing is in fact a scaling (thus the

operator name).

2.2 Proposition

λ2 ⊗ F (d2) = F (λ2d2), where λ2d2 is the vector (λ2d2
ij | {i, j} ∈ E).

Proof. The proof is by direct computation, similar to that of Theorem 2.1. 2

The geometrical interpretation of Prop. 2.2 is simply that all inter-atomic distances are scaled by a factor
λ. It shows that the weights of the smoothing terms should not be proportional to the distances, for
otherwise the problem is simply scaled rather than actually smoothed.

2.1 Bounds tightening

The aim of this section is to show how to use the geometrical interpretation of smoothing to derive some
indications as to how to tighten the bounds at each iteration of the DVS algorithm (i.e. after the solution
of each smoothed problem and before the solution of the original problem).

Suppose x̄ is a global optimum of the smoothing λ2 � F (d2) for some λ > 0. According to Theorem
2.1 and Prop. 2.2, this is likely to represent a molecule where the closer atoms are clustered together
(possibly even at the same position), whereas the more distant atoms are at a smaller distance. With
this information, we can try to enforce meaningful lower and upper bounds xL, xU on the atomic position
variables x to restrict the search in a subsequent iteration. We recall that as λ → 0, f̄λ → f ; in other
words, the smoothings become more and more nonconvex and more difficult to minimize. In order for
intensification to occur in the second phase, the desirable behaviour is that the bounds should get tigther
as λ decreases.

For a given λ > 0, the smoothed function λ2 � F (d2) = f̄λ roughly describes a configuration where

the inter-atomic distance between atoms i and j is d̄ij =
√

d2
ij − λ2. Let ξij = dij − d̄ij be the difference

between the smoothed and the original distance, let x̄ be the global minimizer of f̄λ(x) and x∗ the globally

4

optimal solution of the original objective function f(x). For any atom pairs {i, j} ∈ E, if we assume that
x∗

j = x̄j (i.e. atom j is fixed after the solution of the smoothed problem), then x∗
i is on the surface of a

sphere Sij centered at x∗
j with radius dij . Similarly, for any atom i ∈ V , if we assume that x∗

j = x̄j for
all j ∈ V : {i, j} ∈ E, x∗

i is on the intersection of the surfaces of the spheres Sij . Naturally, since the
smoothing may not actually describe any feasible molecule, this intersection may be empty (see Fig. 2;
the figure shows the pairwise intersections of the spheres, which give a meaningful boundary for the
position of the atom once the neighbourhing atoms are perturbed).

���
�

���
�

���
�

���
�

PSfrag replacements

d̄ij1
d̄ij2

d̄ij3

Sij1

Sij2

Sij3

i

j1

j2

j3

ξij1

ξij2

ξij3

Figure 2: Likely positions of atom i when the adjacent atoms are fixed (viewed in 2D).

If we now allow the previously fixed atoms j ∈ V : {i, j} ∈ E to be perturbed, the position of the
i-th atom is likely to be in Si =

⋂

j Sij . For algorithmic reasons (see Sect. 3.1) we are interested in a
box-shaped neighbourhood of Si. More precisely, for each i ∈ V we wish to find the tightest interval
[xL

ik, xU
ik] containing xik (for 1 ≤ k ≤ 3) such that the box [xL

i1, x
U
i1]× [xL

i2, x
U
i2]× [xL

i3, x
U
i3] contains Si. For

each i ∈ V we can therefore solve 6N convex problems defined for different 1 ≤ k ≤ 3 and b ∈ {0, 1}:

(−1)b min(−1)bxik
∑

h≤3

(xih − x̄jh)2 ≤ d2
ij ∀ j ∈ V : {i, j} ∈ E (8)

where the optimum yields xL
ik for b = 0 and xU

ik for b = 1. Because of the (relative) computational cost
of solving 6N convex problems (8) at each step of the DVS algorithm (see Sect. 3), we content ourselves
with an approximation.

Since each point x̃i ∈ Si must fall in each sphere Sij , one has x̄jk − dij ≤ x̃ik ≤ x̄jk + dij for any k, j.
Motivated by this fact, for all i ∈ V, k ≤ 3 we define:

xL
ik = max{−dij + x̄jk | j ∈ V : {i, j} ∈ E} (9)

xU
ik = min{dij + x̄jk | j ∈ V : {i, j} ∈ E}. (10)

It is easy to show that the cartesian product across all k ≤ 3 of [xL
ik, xU

ik] contains the set Si (for all
i ∈ V), although it may not in general be the tightest such box.

A more accurate approximation can be derived by iteratively determining a sequence of box-shaped
domains the first of which corresponds to the tightest box containing a given sphere Si1 (in an arbitrary
sequence), the last of which is a box-shaped neighbourhood of Si, and the h-th of which is the tightest
box containing the exact intersection of the h-th sphere with the (h− 1)-th box-shaped domain. At each

5

iteration, the box-shaped domain can be determined by finding the points on the frontier of (11) that
minimize/maximize the coordinate axes. More precisely, let Ni = |δ(i)| for all i ∈ V , B0 = R

3 and Bh

be the tightest box [Lh1, Uh1] × [Lh2, Uh2] × [Lh3, Uh3] containing Sih ∩ Bh−1, 1 ≤ h ≤ |δ(i)|. It is easy
to see that, for 1 ≤ k ≤ 3, [L1k, U1k] = [x̄1k − di1, x̄1k + di1] and [xL

ik, xU
ik] = [LNik, UNik].

The approximation of the box-shaped neighbourhood of Si can be therefore obtained starting from
B0 and iteratively determining Bh, until h = Ni. By definition Bh is the smallest box containing all the
points y satisfying

{

∑3
k=1(yk − x̄hk)2 ≤ d2

hk

Lh−1,k ≤ yk ≤ Uh−1,k 1 ≤ k ≤ 3
(11)

Without loss of generality suppose Bh 6= ∅. Let Cl, 1 ≤ l ≤ q ≤ 6, be the intersection arc between Sih

and the l-th facet of Bh−1, and C =
⋃

l≤q,k≤3{ȳ ∈ Cl|ȳk ≤ yk,∀y ∈ Cl}. Moreover, let Y be the set of
intersection points between Sih and the edges of Bh−1. Therefore, for 1 ≤ k ≤ 3,

Lhk = min{ min
y∈C∪Y

{yk},ΓL
k } and Uhk = max{ max

y∈C∪Y
{yk},ΓU

k },

where

ΓL
k =

{

x̄hk − dih if x̄hk − dih satisfies (11)
+∞ otherwise

and

ΓU
k =

{

x̄hk + dih if x̄hk + dih satisfies (11)
−∞ otherwise.

3 The algorithm

The DVS algorithm is basically a two-level VNS search within a GCA-type framework. The GCA works
by locally solving a sequence of Moré-Wu smoothings min f̄λ̄k

(x). At step k, the GCA obtains the next
iterate xk+1 by locally solving the current smoothing min f̄λ̄k

(x) from the initial starting point xk. The
problem of this approach is that its search scope is not global enough. There is no guarantee that the
global optimum of the initial smoothing will be traced homotopically to the global optimum of the original
problem. Moreover, the local solution algorithm may fail to solve even the initial “mildly nonconvex”
smoothing to global optimality.

In the DVS, the local search phase is replaced by a two-level VNS. The global solution x̄ to the
smoothed problem min fλk

(x) (see Eq. (5)) is found by means of a formulation-based VNS for NLPs
[8, 9]. Next, an attempt to find the global solution x∗ of min f(x) is performed by restricting the original
problem to a neighbourhood of x̄ (as detailed in Section 2) and solving this restriction with the same
formulation-based VNS.

3.1 VNS Solver

We employed the VNS solver described in [9]. The search space is defined as the hyper-parallelepiped
given by the set of variable ranges xL ≤ x ≤ xU . At first we pick a random point x̃ in the search space, we
start one (or optionally, more) local searches and we store the local optimum x∗. Then, until k does not
exceed a pre-set kmax, we iteratively select new starting points x̃ in an increasingly larger neighbourhood
Nk(x∗) and start new local searches from x̃ leading to local optima x′. As soon as we find a local optimum
x′ better than x∗, we update x∗ = x′, re-set k = 1 and repeat. Otherwise the algorithm terminates.

For each k ≤ kmax we consider hyper-parallelepipeds Hk(x∗) proportional to xL ≤ x ≤ xU , centered
at x∗, whose sides have been scaled by k

kmax

. More formally, let Hk(x∗) be the hyper-parallelepiped

6

yL ≤ x ≤ yU where, for all i ≤ n,

yL
i = x∗

i −
k

kmax
(x∗

i − xL
i)

yU
i = x∗

i +
k

kmax
(xU

i − x∗
i).

This construction forms a set of hyper-parallelepiped-shaped shells centered at x∗ and proportional to
xL ≤ x ≤ xU . As has been mentioned above, we define each neighbourhood Nk(x∗) as Hk(x∗)\Hk−1(x

∗).

3.2 The implementation

The conceptual simplicity of the proposed algorithm does not reflect a corresponding simplicity in the
implementation. Our algorithm uses an VNS global optimization solver [9] for continuous nonconvex
programming problems as a black-box. In turn, the VNS solver calls a local NLP solver (SNOPT [6]) as
a black-box. Careful software architecture and code re-entrancy is required. Our implementation uses
the ooOPS optimization framework library [12], which allows to easily formulate nonlinear programming
problems and solve them with a variety of global and local optimization algorithms. The main adjustable
parameters of our algorithm are: the kmax terminating parameter for VNS and the number s of local
searches in each VNS neighbourhood.

4 Computational Results

In this section we report on the computational results, obtained on an Intel 2.66GHz Pentium IV CPU
with 1GB RAM running Linux. The algorithmic parameters have been set to the following default values:
kmax = 10, s = 1. The initial value λ0 for the smoothing parameter is chosen so that a reasonable number
of close atoms are clustered together:

λ0 =
1

|V |
∑

i∈V

1

|δ(i)|
∑

j∈δ(i)

dji, (12)

where δ(i) is the neighbourhood of vertices adjacent to vertex i in the graph G.

4.1 Instances

Our computational tests refer to two sets of instances: the “Moré-Wu” instances [13] and the “Lavor”
instances [7].

The “Moré-Wu” instances are simply a cubic lattice with s3 atoms (s = 1, 2, 3, ...) defined by

{(i1, i2, i3) ∈ R
3 : 0 ≤ ik ≤ s − 1, k = 1, 2, 3}. (13)

See Fig. 3 for an example with s = 3. An order is defined for the atoms of the lattice by letting atom i

be the atom at position (i1, i2, i3), where

i = 1 + i1 + si2 + s2i3, (14)

and the set E, is defined by
E = {{i, j} : |i − j| ≤ s2}. (15)

For example, for a molecule with 8 atoms (s = 2), the sequence of atoms is

x1 = (0, 0, 0), x2 = (1, 0, 0), x3 = (0, 1, 0), x4 = (1, 1, 0),

x5 = (0, 0, 1), x6 = (1, 0, 1), x7 = (0, 1, 1), x8 = (1, 1, 1),

7

���
�

���
�

���
�

���
�

��	
	

�
�

��

���
�

���
�

���
�

���
�

���
�

���
�

���
�

���
�

���
�

 !
!

""#
#

$$%
%

&&'
'

(()
)

**+
+

,,-
-

1

2

3

4

5

6

7

8

9

10

11

12

13

14

16

16

17

18

19

20

21

22

23

24

25

26

27

PSfrag replacements

x

y

z

Figure 3: The s = 3 Moré-Wu instance with 27 atoms.

and the set E is given by

E = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 1}, {2, 3}, {2, 4}, {2, 5}, {2, 6}, {3, 1}, {3, 2}, {3, 4}, {3, 5},
{3, 6}, {3, 7}, {4, 1}, {4, 2}, {4, 3}, {4, 5}, {4, 6}, {4, 7}, {4, 8}, {5, 1}, {5, 2}, {5, 3}, {5, 4}, {5, 6},
{5, 7}, {5, 8}, {6, 2}, {6, 3}, {6, 4}, {6, 5}, {6, 7}, {6, 8}, {7, 3}, {7, 4}, {7, 5}, {7, 6}, {7, 8}}.

The “Lavor” instances, described in [7], are based on the model proposed by [16], whereby a molecule
is represented as a linear chain of atoms. Bond lengths and angles are kept fixed, and a set of likely torsion
angles is generated randomly based on an energy function including some Lennard-Jones potential terms.
Depending on the initial choice of bond lengths and angles, the Lavor instances give rather more realistic
models of proteins than the Moré-Wu instances do. We generated 10 different Lavor instances for each
size N = 10, . . . , 70. These are called lavorN -m, where N is the number of atoms in the molecule and
m is an instance ID (since there is a random element of choice in the generation of the Lavor instances,
many different instances can be generated having the same atomic size). See Fig. 4 for an example.

Figure 4: The lavor11 7 instance.

8

4.2 Comparative results

In Table 1, we report on the comparative computational results (seconds of user CPU time and Largest
Distance Errors) obtained by running the GCA and DVS algorithms on a selection of Moré-Wu and Lavor
instances of molecular sizes in the range 8-70 atoms. For molecules with fewer than 50 atoms, the DVS
algorithm improved on the straight VNS in only around half of the instances. For molecules with more
than 40 atoms, the DVS improves on a straight VNS for the large majority of the instances.

Instance GCA DVS

Name N |E| CPU LDE CPU LDE

mmorewu-2 8 28 0.02 2.63E+5 1.09 2.51E-8
mmorewu-3 27 331 0.23 6.99 27.05 2.25E-9
mmorewu-4 64 1882 0.67 7.79E-6 642.97 2.75E-10

lavor10 0 10 33 0.02 1.57E-5 2.76 1.55E-9
lavor15 0 15 57 0.10 4.04E-5 10.01 3.77E-9
lavor20 0 20 105 0.14 2.77E-5 18.14 2.68E-9
lavor25 0 25 131 0.84 1.18E-4 60.41 2.24E-9∗

lavor30 0 30 169 0.40 1.75E-5 231.02 6.51E-9∗

lavor35 0 35 171 0.81 9.33E-5 624.72 4.54E-3∗

lavor40 0 40 295 2.84 0.096 770.78 2.46E-5
lavor45 0 45 239 3.33 0.170 538.25 3.13E-4
lavor50 0 50 271 3.45 0.696 971.79 8.66E-6
lavor55 0 55 551 5.80 0.257 870.50 1.13E-8∗

lavor60 0 60 377 5.15 0.049 1800.35 2.85E-4
lavor65 0 65 267 2.61 0.065 1119.82 3.94E-3
lavor70 0 70 431 8.73 0.107 2165.81 4.97E-4

Table 1: Computational results for a sample of Moré-Wu, and Lavor instances. LDE values marked
with ∗ have been found by the pre-processing VNS run on the unrestricted original problem (i.e. the
smoothing run did not improve the value).

In Table 2, we give arithmetic average values for user CPU time and Largest Distance Error for
each sample of 10 Lavor instances. The average LDE is calculated considering only those instances in
the sample for which DVS calculated a suitable solution (we consider a solution clearly unsuitable if its
associated LDE exceeds 0.01, as such a large LDE usually indicates the wrong 3D structure). We therefore
included two columns in Table 2, labelled “LDE-st” and “Unsuitable” that report: the arithmetic average
of the LDE for instances with LDE < 0.01, and the number of unsuitable instances in each 10-sample.

Instance GCA / avg. DVS / avg.

N CPU LDE CPU LDE-st Unsuitable

10 0.03 4.40E-01 2.81 3.04E-9 0
15 0.08 1.96E-02 10.07 3.34E-9 0
20 0.23 3.20E-03 22.01 3.59E-9 1
25 0.56 1.58E-02 46.19 3.64E-5 1
30 0.65 1.03E-02 276.40 2.94E-5 2
35 1.10 5.43E-02 465.72 2.37E-3 1
40 1.41 2.61E-02 486.64 4.03E-4 1
45 2.13 5.80E-02 752.93 1.69E-3 1
50 2.54 1.65E-01 863.14 1.06E-3 0
55 4.10 7.29E-02 762.78 4.03E-4 0
60 4.47 1.59E-01 2172.23 8.06E-4 0
65 4.64 1.16E-01 1404.57 1.97E-3 0
70 7.63 9.28E-02 1912.97 4.12E-4 0

Table 2: Average statistics for Lavor instances (taken over 10 instances for each molecular size).

9

As can be easily seen from the results, DVS outperforms the GCA in accuracy, whilst the GCA is
superior to the DVS in terms of computation times. Since usually looking for the 3D structure of a
molecule is a task where accuracy is more important than short CPU times, we feel these computational
results validate the soundness of the proposed approach.

5 Conclusion

In this paper we presented an algorithm called Double VNS with Smoothing (DVS) used to solve the
Molecular Distance Geometry Problem. The DVS is based on VNS for global optimization problems
and a smoothed version of the problem. We tested this algorithm on two classes of problems from the
literature. It turns out that the DVS algorithm finds solutions with high accuracy, compared to the
Global Continuation Algorithm. This is important insofar as a small error in the objective function may
lead to a completely different molecular structure.

Acknowledgements

Some of the authors (CL, NM, LL) would like to thank FAPESP and CNPq for their financial support.

References

[1] G.M. Crippen and T.F. Havel. Distance Geometry and Molecular Conformation. Wiley, New York,
1988.

[2] I.F. Cruz and J.P. Twarog. 3d graph drawing with simulated annealing. In F.-J. Brandenburg,
editor, 3D Graph Drawing – GD95 Proceedings, LNCS, volume 1027, pages 162–165, Berlin, 1996.
Springer.

[3] Q. Dong and Z. Wu. A linear-time algorithm for solving the molecular distance geometry problem
with exact inter-atomic distances. Journal of Global Optimization, 22:365–375, 2002.

[4] M. Dražić, C. Lavor, N. Maculan, and N. Mladenović. A continuous variable neighbourhood search
heuristic for finding the tridimensional structure of a molecule. European Journal of Operations

Research, to appear.

[5] T. Eren, D.K. Goldenberg, W. Whiteley, Y.R. Yang, A.S. Morse, B.D.O. Anderson, and P.N. Bel-
humeur. Rigidity, computation, and randomization in network localization. IEEE Infocom Proceed-

ings, pages 2673–2684, 2004.

[6] P.E. Gill. User’s Guide for SNOPT 5.3. Systems Optimization Laboratory, Department of EESOR,
Stanford University, California, February 1999.

[7] C. Lavor. On generating instances for the molecular distance geometry problem. In Liberti and
Maculan [11], pages 405–414.

[8] C. Lavor, L. Liberti, and N. Maculan. Computational experience with the molecular distance ge-
ometry problem. In J. Pintér, editor, Global Optimization: Scientific and Engineering Case Studies,
pages 213–225. Springer, Berlin, 2006.

[9] L. Liberti and M. Dražic. Variable neighbourhood search for the global optimization of constrained
NLPs. In Proceedings of GO Workshop, Almeria, Spain, 2005.

10

[10] L. Liberti, C. Lavor, and N. Maculan. A branch-and-prune algorithm for the molecular distance
geometry problem. RAIRO-RO, (submitted).

[11] L. Liberti and N. Maculan, editors. Global Optimization: from Theory to Implementation. Springer,
Berlin, 2006.

[12] L. Liberti, P. Tsiakis, B. Keeping, and C.C. Pantelides. ooOPS. Centre for Process Systems
Engineering, Chemical Engineering Department, Imperial College, London, UK, 2001.

[13] J.J. Moré and Z. Wu. Global continuation for distance geometry problems. Siam Journal of Opti-

mization, 7(3):814–846, 1997.

[14] J.J. Moré and Z. Wu. Distance geometry optimization for protein structures. Journal of Global

Optimization, 15:219–234, 1999.

[15] A. Neumaier. Molecular modeling of proteins and mathematical prediction of protein structure.
SIAM Reviews, 39:407–460, 1997.

[16] A.T. Phillips, J.B. Rosen, and V.H. Walke. Molecular structure determination by convex under-
estimation of local energy minima. In P.M. Pardalos, D. Shalloway, and G. Xue, editors, Global

Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding, vol-
ume 23, pages 181–198, Providence, 1996. American Mathematical Society.

[17] J.B. Saxe. Embeddability of weighted graphs in k-space is strongly np-hard. Proceedings of 17th

Allerton Conference in Communications, Control and Computing, pages 480–489, 1979.

[18] J.-M. Yoon, Y. Gad, and Z. Wu. Mathematical modeling of protein structure using distance geometry.
Technical Report TR00-24, Dept. Comput. Applied Maths, Rice University, Houston, 2000.

11

