Skip to main content
Log in

On Nash–Cournot oligopolistic market equilibrium models with concave cost functions

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We consider Nash–Cournot oligopolistic market equilibrium models with concave cost functions. Concavity implies, in general, that a local equilibrium point is not necessarily a global one. We give conditions for existence of global equilibrium points. We then propose an algorithm for finding a global equilibrium point or for detecting that the problem is unsolvable. Numerical experiments on some randomly generated data show efficiency of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anh, P.N., Muu, L.D., Nguyen, V.H., Strodiot, J.J.: On the contraction and nonexpensiveness properties of the marginal mapping in generalized variational inequalities involving cocoercive operators. In: Eberhard, A., Hadjisavvas, N., Luc, D.T.(eds). Generalized Convexity, and Generalized Monotonicity and Applications, pp. 89–111, Chapter 5, Springer (2005)

  2. Anh P.N., Muu L.D., Nguyen V.H. and Strodiot J.J. (2005). Using the Banach contraction principle to implement the proximal point method for solving multivalued monotone variational inequalities. J. Optim. Theory Appl. 124: 285–306

    Article  Google Scholar 

  3. Aubin J.P. and Ekeland I. (1984). Applied Nonlinear Analysis. Wiley, New York

    Google Scholar 

  4. Berge C. (1968). Topological Spaces. MacMillan, New York

    Google Scholar 

  5. Blum E. and Oettli W. (1994). From optimization and variational inequality to equilibrium problems. Mathe. Stud. 63: 127–149

    Google Scholar 

  6. Dafermos S. (1990). Exchange price equilibria and variational inequalities. Math. Program. 46: 391–402

    Article  Google Scholar 

  7. Dafermosm S. and Nagurney A. (1997). Oligopolistic and competitive behavior of spatially separated markets. Reg. Sci. Urban Econ. 17: 225–254

    Google Scholar 

  8. Cohen G. (1998). Auxiliary problem principle extended to variational inequalities. J. Optim. Theory Appl. 59: 325–333

    Google Scholar 

  9. Facchinei F. and Pang J.S. (2002). Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, Berlin

    Google Scholar 

  10. Fukushima M. (1992). Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math. Program. 53: 99–110

    Article  Google Scholar 

  11. Harker P.T. and Pang J.S. (1990). Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Mathe. Program. 48: 161–220

    Article  Google Scholar 

  12. Hue T.T., Strodiot J.J. and Nguyen V.H. (2004). Convergence of the Approximate Auxiliary Problem Method for Solving Generalized Variational Inequalities. J. Optim. Theory Appl. 121: 119–145

    Article  Google Scholar 

  13. Horst R. and Tuy H. (1990). Global Optimization (Deterministic Approach). Springer, Berlin

    Google Scholar 

  14. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press (1980)

  15. Konnov I. (2001). Combined Relaxation Methods for Variational Inequalities. Springer, Berlin

    Google Scholar 

  16. Konnov I. and Kum S. (2001). Descent methods for mixed variational inequalities in a Hilbert space. Nonlinear Anal. Theory Meth. Appl. 47: 561–572

    Article  Google Scholar 

  17. Marcotte P. (1995). A new algorithm for solving variational inequalities. Mathematical Programming 33: 339–351

    Article  Google Scholar 

  18. Muu L.D. (1986). An augmented penalty function method for solving a class of variational inequalities. Soviet. Comput. Math. Phys. 12: 1788–1796

    Google Scholar 

  19. Muu W. and Oettli L.D. (1992). Convergence of an adaptive scheme for finding constraint equilibria. Nonlinear Anal Theory Meth Appl. 18: 1159–1166

    Article  Google Scholar 

  20. Muu L.D. and Quy N.V. (2003). A global optimization method for solving convex quadratic bilevel programming problems. J. Global Optim. 26: 199–219

    Article  Google Scholar 

  21. Nagurney A. (1993). Network Economics: A Variational Inequality Approach. Kluwer, Academic Publishers

    Google Scholar 

  22. Noor M.A. (2001). Iterative schemes for quasimonotone mixed variational inequalities. Optimization 50: 29–44

    Article  Google Scholar 

  23. Patriksson M. (1999). Nonlinear Programming and Variational Inequality Problems: A Unified Approach. Kluwer, Dordrecht

    Google Scholar 

  24. Patriksson M. (1997). Merit function and descent algorithms for a class of variational inequality problems.. Optimization 41: 37–55

    Article  Google Scholar 

  25. Salmon G., Nguyen V.H. and Strodiot J.J. (2000). Coupling the auxiliary problem principle and epiconvergence theory to solve general variational inequalities. J. Optim Theory Appl. 104: 629–657

    Article  Google Scholar 

  26. Taji T. and Fukushima M. (1996). A new merit function and a successive quadratic programming algorithm for variational inequality problem. SIAM J. Optim. 6: 704–713

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le D. Muu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muu, L.D., Nguyen, V.H. & Quy, N.V. On Nash–Cournot oligopolistic market equilibrium models with concave cost functions. J Glob Optim 41, 351–364 (2008). https://doi.org/10.1007/s10898-007-9243-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-007-9243-0

Keywords

Navigation