
Low Order-Value Optimization and applications ∗

R. Andreani † J. M. Mart́ınez ‡ L. Mart́ınez § F. Yano ¶

October 24, 2005/ January 4, 2007

Abstract

Given r real functions F1(x), . . . , Fr(x) and an integer p between 1 and r, the Low Order-
Value Optimization problem (LOVO) consists of minimizing the sum of the functions that
take the p smaller values. If (y1, . . . , yr) is a vector of data and T (x, ti) is the predicted
value of the observation i with the parameters x ∈ IRn, it is natural to define Fi(x) =
(T (x, ti) − yi)2 (the quadratic error at observation i under the parameters x). When p = r
this LOVO problem coincides with the classical nonlinear least-squares problem. However,
the interesting situation is when p is smaller than r. In that case, the solution of LOVO allows
one to discard the influence of an estimated number of outliers. Thus, the LOVO problem is
an interesting tool for robust estimation of parameters of nonlinear models. When p� r the
LOVO problem may be used to find hidden structures in data sets. One of the best succeeded
applications include the Protein Alignment problem. Fully documented algorithms for this
application are available at www.ime.unicamp.br/∼martinez/lovoalign.

In this paper optimality conditions are discussed, algorithms for solving the LOVO prob-
lem are introduced and convergence theorems are proved. Finally, numerical experiments
are presented.

Key words: Order-Value Optimization, algorithms, convergence, robust estimation of pa-
rameters, hidden patterns.

∗Technical Report MCDO 051013, Department of Applied Mathematics, State University of Campinas, Brazil,
October 2005. This work was supported by PRONEX-Optimization 76.79.1008-00, FAPESP (Grants 06/53768-0,
05/56773-1 and 02-14203-6) and PRONEX CNPq/ FAPERJ 26/171.164/2003-APQ1.

†Department of Applied Mathematics, IMECC-UNICAMP, State University of Campinas, CP 6065, 13081-970
Campinas SP, Brazil. E-mail: andreani@ime.unicamp.br

‡Department of Applied Mathematics, IMECC-UNICAMP, State University of Campinas, CP 6065, 13081-970
Campinas SP, Brazil. E-mail: martinez@ime.unicamp.br

§Institute of Chemistry, State University of Campinas, Brazil, and Institute Pasteur, Paris, France. E-mail:
lmartinez@iqm.unicamp.br and leandro@pasteur.fr.

¶Department of Applied Mathematics, IMECC-UNICAMP, State University of Campinas and Itaú Bank, São
Paulo, Brazil. E-mail: flavio.yano@itau.com.br

1

1 Introduction

Given r functions F1, . . . , Fr defined in a domain Ω ⊂ IRn and an integer p ∈ {1, . . . , r}, we
define the Low Order-Value function Sp : Ω→ IR by

Sp(x) =
p∑

j=1

Fij(x)(x)

for all x ∈ Ω, where {i1(x), . . . , ir(x)} = {1, . . . , r} and

Fi1(x)(x) ≤ Fi2(x)(x) ≤ . . . ≤ Fip(x)(x) ≤ . . . ≤ Fir(x)(x).

If the functions Fi are continuous, the function Sp is continuous as well, because it is a sum of
continuous functions [3, 4]. However, even if all the functions Fi are differentiable, the function
Sp is, generally, nonsmooth. We define the Low Order-Value Optimization (LOVO) problem in
the following way:

Minimize Sp(x) subject to x ∈ Ω. (1)

In [3] the Order-Value Optimization problem (OVO) was introduced as the minimization
of the Order-Value function Fip(x)(x) subject to x ∈ Ω. In [4] a nonlinear programming re-
formulation was given for OVO and it was proved that, without the necessity of constraint
qualifications, local solutions of the reformulation are KKT points. The main applications of
OVO are in risk evaluation and robust estimation [26]. When Fi(x) represents the predicted
loss under the scenario i and the decision x, the OVO function Fip(x) corresponds, essentially,
to the classical Value-at-Risk (VaR) [27] measurement with a confidence level (p/r) [6]. The
Conditional Value-at-Risk (CVaR) measurement with confidence level (r − p)/r corresponds to
the High Order-Value function Sp(x) =

∑r
j=r−p+1 Fij(x)(x). In this case p is generally small.

Let us define m = r!/[p!(r − p)!]. Clearly, the set {1, . . . , r} contains exactly m different
subsets C1, . . . , Cm with cardinality p. For all i = 1, . . . ,m, x ∈ Ω, we define:

fi(x) =
∑
j∈Ci

Fj(x)

and
fmin(x) = min{f1(x), . . . , fm(x)}.

It is easy to see that fmin(x) = Sp(x) for all x ∈ Ω and, thus, the LOVO problem is:

Minimize fmin(x) subject to x ∈ Ω. (2)

Of course, the problem (2) is, at the same time, a particular case of (1), which corresponds
to take p = 1 and Fi(x) = fi(x), i = 1, . . . , r.

The characterization (2) of the LOVO problem will be used throughout this paper for theo-
retical purposes and for some relevant applications.

The High Order-Value function (that corresponds to CVaR) is Sp(x) = fmax(x), where
fmax(x) = max{f1(x), . . . , fm(x)}. So, if the functions fi are convex the problem (HOVO) of

2

minimizing CVaR is a convex (minimax) problem and, if the fi’s are affine functions this problem
reduces to Linear Programming [42].

The OVO problem (minimizing Fip(x)(x)) may be applied to robust estimation of parameters
because it generalizes the classical Minimax regression which, as it is well known, is very sensitive
to the presence of outliers. However, LOVO is more adequate for robust estimation purposes,
with the proper definitions of Fi(x). If y1, . . . , yr ∈ IR are observations of a given phenomenon
which, theoretically, corresponds to the physical law y = T (x, t), we may define Fi(x) as the
quadratic error at the i−th observation (Fi(x) = (T (x, ti)− yi)2). The least-squares estimation
of the parameters x comes from solving

Minimize
r∑

i=1

Fi(x) subject to x ∈ Ω.

If we estimate that approximately r− p observations come from (probably systematic) observa-
tion errors, it is natural to estimate the parameters by means of solving the LOVO problem

Minimize Sp(x) subject to x ∈ Ω.

Therefore, this LOVO problem is a generalization of the nonlinear least-squares problem which
is able to eliminate the influence of outliers.

Unlike OVO and HOVO, the LOVO problem is not applicable to risk evaluation. The reason
is that, if we define Fi(x) as the predicted loss under the decision x, the LOVO function discards
the larger losses (as OVO and VaR) but does not discard the smaller ones. So, the decisions
under LOVO would be always unreasonably optimistic and risky.

On the other hand, in the case that p� r, the LOVO problem is a tool for finding Hidden
Patterns in situations where a lot of wrong observations are mixed with a small number of
correct data [7].

LOVO is a nonsmooth optimization problem. In this paper, it will be shown that, in spite
of nonsmoothness, essentially smooth methods may be applied to its resolution preserving con-
vergence to reasonable stationary points. An additional difficulty for solving LOVO is the fact
that the problem possesses many local minimizers. Therefore, in most applications, global op-
timization tools are necessary for obtaining suitable initial points. In [7] a space-filling curve
method was suggested for obtaining initial approximations when the original OVO is applied to
Hidden Pattern problems. Specific problems need particular heuristics for finding initial points.
A particular heuristic for Protein Alignment is described in [33].

This paper is organized as follows. In Section 2 we define two types of optimality conditions
for the LOVO problem. In Section 3 we define an algorithm for unconstrained LOVO problems,
that converges to weakly critical points. In Section 4 we introduce a method that converges to
strongly critical points. In both cases we prove local and global convergence. In Section 5 we
introduce an algorithm for constrained LOVO problems and we prove its convergence. Hidden
Pattern problems are reported in Section 6 and Protein Alignment are discussed in Section 7.
Numerical examples are given in Section 8 and conclusions in Section 9.

Notation.

3

• The symbol ‖ · ‖ will denote the Euclidean norm of vectors and matrices, although many
times it may be replaced by an arbitrary norm.

• B(x∗, ε) = {x ∈ IRn | ‖x− x∗‖ ≤ ε}.

• We denote IN = {0, 1, 2, . . .}.

• We denote IR+ = {t ∈ IR | t ≥ 0} and IR++ = {t ∈ IR | t > 0}.

• Given K = {k0, k1, k2, . . .} such that kj < kj+1 and kj ∈ IN for all j ∈ IN , we denote

lim
k∈K

zk = lim
j→∞

zkj
.

• If B ∈ IRn×n, B > 0 means that B is positive definite.

• [v]i denotes the i−th component of the vector i. If there is no place to confusion, we also
denote vi = [v]i.

• If v ∈ IRn, we denote v+ = (max{0, v1}, . . . ,max{0, vn})T .

2 Optimality conditions

In this section we use formulation (2).

For all x ∈ Ω we define

Imin(x) = {i ∈ {1, . . . ,m} | fi(x) = fmin(x)}.

In Lemma 2.1, we prove that a global minimizer x∗ of (2) is, necessarily, a global minimizer
of fi(x) for all i ∈ Imin(x∗). As a consequence, in Theorem 2.1 we show that the same property
holds for local minimizers.

Lemma 2.1. Let A ⊂ Ω, x∗ ∈ A. If the point x∗ is a global minimizer of fmin(x) subject to
x ∈ A, then x∗ is a global minimizer of fi(x) subject to x ∈ A for all i ∈ Imin(x∗). In particular
(taking A = Ω), if x∗ is a global minimizer of (2) then x∗ is a global minimizer of fi(x) for all
i ∈ Imin(x∗)

Proof. Assume that, for some i ∈ Imin(x∗), x∗ is not a global minimizer of fi(x) subject to
x ∈ A. Then, there exists y ∈ A such that fi(y) < fi(x∗). So, by the definitions of fmin and
Imin(x∗),

fmin(y) ≤ fi(y) < fi(x∗) = fmin(x∗).

Therefore, x∗ is not a global minimizer of fmin(x) subject to x ∈ A. �

Theorem 2.1. If x∗ ∈ Ω is a local minimizer of (2) then, for all i ∈ Imin(x∗), x∗ is a local
minimizer of fi(x) subject to x ∈ Ω.

4

Proof. Let ε > 0 such that x∗ is a global minimizer of fmin(x) subject to x ∈ A, where

A = {x ∈ Ω | ‖x− x∗‖ ≤ ε}.

By Lemma 1 we obtain that x∗ is a global minimizer of fi(x) subject to x ∈ A for all i ∈ Imin(x∗).
Therefore, x∗ is local minimizer of fi(x) subject to x ∈ Ω for all i ∈ Imin(x∗). �

Remark. The reciprocal of Lemma 2.1 is not true, even if the functions are continuous. Take
A = Ω = IR, f1(x) = (x− 1)2, f2(x) = x. Although x∗ = 1 is a global minimizer of fi(x) for all
i ∈ Imin(x∗) = {1}, this point is not a global minimizer of fmin. However, as we will see below,
the reciprocal of Theorem 2.1 is true if the functions fi are continuous.

Proposition 2.1. Assume that x∗ is a local minimizer of fi for all i ∈ Imin(x∗) and that fi is
continuous at x∗ for all i /∈ Imin(x∗). Then x∗ is a local minimizer of (2).

Proof. Let ε > 0 be such that

fi(x∗) > fmin(x∗) + ε for all i /∈ Imin(x∗).

Since fi is continuous for all i /∈ Imin(x∗), there exists δ1 > 0 such that

fi(x) > fmin(x∗) for all i /∈ Imin(x∗) (3)

whenever ‖x− x∗‖ ≤ δ1.
By the hypothesis, there exists δ2 > 0 such that for all i ∈ Imin(x∗),

fi(x) ≥ fi(x∗) = fmin(x∗) (4)

whenever ‖x− x∗‖ ≤ δ2.
Define δ = min{δ1, δ2}. By (3) and (4), we have that, for all x ∈ Ω such that ‖x− x∗‖ ≤ δ,

and for all i = 1, . . . ,m,
fi(x) ≥ fmin(x∗).

Therefore,
fmin(x) ≥ fmin(x∗)

for all x ∈ Ω such that ‖x− x∗‖ ≤ δ. �

Let Φ be differentiable on an open set that contains Ω and consider the nonlinear program-
ming problem

Minimize Φ(x) subject to x ∈ Ω. (5)

Necessary Optimality Conditions (NOC) are conditions that must be satisfied by local min-
imizers of (5). For example, if Ω = IRn, the requirement “∇Φ(x) = 0” is a NOC. In constrained
Optimization, Necessary Optimality Conditions usually take the form: If a constraint quali-
fication is satisfied at x∗, then the KKT conditions hold. See, for example [12]. Constraint
qualifications only involve properties of Ω whereas the KKT conditions involve the gradient of

5

f and the gradients of the constraints.

Theorem 2.1 allows us to prove the following Corollary.

Corollary 2.1. Let x∗ ∈ Ω be a local minimizer of the problem (2), where all the functions fi

are differentiable in an open set that contains Ω. Then, for all i ∈ Imin(x∗), x∗ satisfies the
necessary optimality conditions associated with the problem

Minimize fi(x) subject to x ∈ Ω. (6)

Proof. By Theorem 2.1, x∗ is a local minimizer of fi for all i ∈ Imin(x∗). Therefore, x∗ satisfies
the necessary optimality conditions associated with this problem. �

Corollary 2.1 motivates the following definitions. Given a Necessary Optimality Condition
(NOC) for nonlinear programming, we say that x∗ ∈ Ω is strongly critical if, for all i ∈ Imin(x∗),
x∗ satisfies NOC, associated with the problem (6).

We say that x∗ ∈ Ω is weakly critical if there exists i ∈ Imin(x∗) such that x∗ satisfies NOC,
associated with (6).

3 Unconstrained LOVO algorithm with convergence to weakly
critical points

Optimization algorithms for solving nonlinear programming problems (5) are iterative. At each
iteration, the functional values, the gradients and, perhaps, the second derivatives of the objec-
tive function and the constraints are generally required. Users of computer codes that implement
nonlinear programming algorithms must provide subroutines that evaluate these quantities.

In the presence of the problems (1) or (2) one is tempted to use any well established op-
timization method for smooth problems. Each time the (perhaps non-existent) ∇fmin(x) is
required by the algorithm, one may choose i ∈ Imin(x) and “define”

∇fmin(x)← ∇fi(x). (7)

(We may proceed in a similar way if the algorithm also requires Hessians.)
The question that we address in this section is: what happens if we proceed in that way?

As it is well-known, to use such a strategy in many nonsmooth problems may be catastrophic.
However, we will show here that, in the case of (1)-(2), the consequences are less severe. Essen-
tially, we will show that convergence to weakly critical points necessarily occurs. It is easy to
see that weakly critical points are Clarke-stationary points [9, 15] of the problem of minimizing
fmin (see [16], Section 2.5.1). The reciprocal is not true. For example, 0 is a Clarke-stationary
point of the problem

Minimize min{x,−x/2},

but it is not a weakly critical point.

6

Algorithm U1, defined below, applies to the unconstrained minimization (Ω = IRn) of
fmin(x). We assume that the functions fi are continuously differentiable for all x ∈ IRn. This
algorithm may be interpreted as a straightforward application of a smooth unconstrained mini-
mization method to the unconstrained LOVO problem with the “wrong evaluation” (7).

Algorithm U1. Let θ ∈ (0, 1), α ∈ (0, 1),M > 1, β > 0, tone > 0 be algorithmic parameters.
Let x0 ∈ IRn be the initial approximation. Given xk ∈ IRn, the steps for computing xk+1 are:

Step 1. Choose ν(k) ∈ Imin(xk). If ‖∇fν(k)(xk)‖ = 0, terminate.
Step 2. Compute dk ∈ IRn such that

∇fν(k)(xk)T dk ≤ −θ‖dk‖‖∇fν(k)(xk)‖ and ‖dk‖ ≥ β‖∇fν(k)(xk)‖. (8)

Step 3. Compute tk > 0, xk+1 ∈ IRn, such that

fmin(xk+1) ≤ fmin(xk) + αtk∇fν(k)(xk)T dk (9)

and[
tk ≥ tone

]
or

[
fmin(xk + t̄kdk) > fmin(xk) + αt̄k∇fν(k)(xk)T dk for some t̄k ≤Mtk

]
. (10)

The line-search strategy (9)-(10) admits different implementations. The most straightforward
one is backtracking. In this case, tk is chosen as the first number of the sequence {1, 2−1, 2−2, . . .}
that satisfies (9) and xk+1 = xk + tkdk. In this case tone = 1 and M = 2. However, the choice
based on (9)-(10) admits more sophisticated and efficient line-search procedures. See, for exam-
ple, [14].

Recall that, in the unconstrained LOVO problem, a weakly critical point is a point where
∇fi(x) = 0 for some i ∈ Imin(x). In the following theorems we prove that the algorithm stops
at xk only if xk is weakly critical and that limit points of sequences generated by Algorithm U1
are weakly critical.

Theorem 3.1. Algorithm U1 is well-defined and terminates at xk only if xk is weakly critical.

Proof. Assume that xk is not weakly critical and define i = ν(k). So, ∇fi(xk) 6= 0. By (8) and
the differentiability of fi,

lim
t→0

fi(xk + tdk)− fi(xk)
t

= ∇fi(xk)T dk < 0.

Then,

lim
t→0

fi(xk + tdk)− fi(xk)
t∇fi(xk)T dk

= 1.

Since α < 1, for t small enough we have:

fi(xk + tdk)− fi(xk)
t∇fi(xk)T dk

≥ α.

7

Since ∇fi(xk)T dk < 0, we deduce:

fi(xk + tdk) ≤ fi(xk) + αt∇fi(xk)T dk.

But fmin(xk + tdk) ≤ fi(xk + tdk) and fmin(xk) = fi(xk), so:

fmin(xk + tdk) ≤ fmin(xk) + αt∇fi(xk)T dk (11)

for t small enough.
Therefore, choosing tk as the first number in the sequence {tone, tone/M, tone/M

2, . . .} that
satisfies (11), the conditions (9) and (10) are satisfied.

This proves that, whenever xk is not weakly critical, a point xk+1 satisfying (9)-(10) may be
found, so the algorithm is well defined. �

Let us remark that Theorem 3.1 says that, if Algorithm U1 terminates at xk, then xk

is weakly critical, but the reciprocal is not true. For example, define, with n = 1,m = 2,
f1(x) = x, f2(x) = x2. Clearly, 0 is weakly critical because ∇f2(0) = 0. However, if xk = 0 and
one chooses ν(k) = 1 the algorithm will not stop and, in fact, it will find a better point such
that fmin(x) < fmin(0).

Theorem 3.2 If x∗ is a limit point of a sequence generated by Algorithm U1 then x∗ is weakly
critical. Moreover, if limk∈K xk = x∗ and the same i = ν(k) ∈ Imin(xk) is chosen at Step 1 of
the algorithm for infinitely many indices k ∈ K, then i ∈ Imin(x∗) and ∇fi(x∗) = 0. Finally,

lim
k∈K
‖∇fν(k)(xk)‖ = 0. (12)

Proof. Let x∗ ∈ IRn be a limit point of the sequence generated by Algorithm U1. Let K =
{k0, k1, k2, k3, . . .} be an infinite sequence of integers such that:

1. There exists i ∈ {1, . . . ,m} such that i = ν(k) for all k ∈ K.

2. limk∈K xk = x∗.

The sequence K and the index i necessarily exist since {1, . . . ,m} is finite.
By the continuity of fi,

lim
k∈K

fi(xk) = fi(x∗). (13)

Clearly, since i = ν(k), we have that

fi(xk) ≤ f`(xk) for all ` ∈ {1, . . . ,m}.

for all k ∈ K.
Taking limits on both sides of this inequality, we see that fi(x∗) ≤ f`(x∗) for all ` ∈

{1, . . . ,m}. Thus,
i ∈ Imin(x∗). (14)

8

By the definition of Algorithm U1, since kj+1 ≥ kj + 1, we have:

fi(xkj+1
)

= fmin(xkj+1
) ≤ fmin(xkj+1) ≤ fmin(xkj

) + αtkj
∇fi(xkj

)T dkj
< fmin(xkj

) = fi(xkj
) (15)

for all j ∈ IN .
By (9), (13) and (15), we obtain:

lim
j→∞

tkj
∇fi(xkj

)T dkj
= 0.

Therefore, by (8),
lim

j→∞
tkj
‖∇fi(xkj

)‖‖dkj
‖ = 0. (16)

If, for some subsequence K1 ⊂ K, limk∈K1 ∇fi(xk) = 0, we deduce that ∇fi(x∗) = 0 and the
thesis is proved. Therefore, we only need to analyze the possibility that ‖∇fi(xk)‖ is bounded
away from zero for k ∈ K. In this case, by (16),

lim
k∈K

tk‖dk‖ = 0. (17)

If, for some subsequence, ‖dk‖ → 0, the condition (8) also implies that ∇fi(xk) → 0 and
∇fi(x∗) = 0. Thus, we only need to consider the case in which limk∈K tk = 0. Without loss of
generality, we may assume that tk < tone for all k ∈ K. So, by (10), for all k ∈ K there exists
t̄k > 0 such that

fi(xk + t̄kdk) ≥ fmin(xk + t̄kdk) > fmin(xk) + αt̄k∇fi(xk)T dk = fi(xk) + αt̄k∇fi(xk)T dk. (18)

Moreover, by (10) and (17),
lim
k∈K

t̄k‖dk‖ = 0. (19)

Define sk = t̄kdk for all k ∈ K. Then, by (19),

lim
k∈K
‖sk‖ = 0. (20)

By (18) and the Mean Value Theorem, for all k ∈ K there exists ξk ∈ [0, 1] such that

∇fi(xk + ξksk)T sk = fi(xk + sk)− fi(xk) > α∇fi(xk)T sk. (21)

Moreover, by (8),
∇fi(xk)T sk

‖sk‖
≤ −θ‖∇fi(xk)‖ (22)

for all k ∈ K.
Let K1 ⊂ K, s ∈ IRn be such that limk∈K1 sk/‖sk‖ = s.
By (20), dividing both sides of the inequality (21) by ‖sk‖, and taking limits for k ∈ K1, we

obtain:
∇fi(x∗)T s ≥ α∇fi(x∗)T s.

9

Since α < 1 and ∇fi(xk)T dk < 0 for all k, this implies that ∇fi(x∗)T s = 0. Thus, taking limits
in (22), we obtain that ∇fi(x∗) = 0. Therefore, by (14), x∗ is weakly critical.

Finally, let us prove (12). If (12) is not true, there exists j and an infinite set of indices k ∈ K
such that j = ν(k) and ‖∇fj(xk)‖ is bounded away from zero. This implies that j ∈ Imin(x∗)
and ‖∇fj(x∗)‖ 6= 0, contradicting the first part of the proof. �

In the rest of this section we address the local convergence of Algorithm U1. The choice of
xk+1 in this algorithm imposes that fmin(xk+1) ≤ fmin(xk) + αtk∇fν(k)(xk)T dk. This property
is obviously satisfied if xk+1 = xk + tkdk but, for enhancing the probability of convergence to
global minimizers, other accelerated definitions for xk+1 are possible and, possibly, desirable.
For local convergence, however, the distance between xk+1 and xk must be small if xk is close
to being critical. This requirement is stated in the following Assumption B1.

Assumption B1
We assume that Algorithm U1 is implemented in such a way that there exists b > 0 such

that
‖xk+1 − xk‖ ≤ b‖∇fν(k)(xk)‖ (23)

for all k ∈ IN .

Assumption B1 is compatible with line searches based on (10). For gradient, Newton or
quasi-Newton choices of dk one generally has that ‖dk‖ = O(‖∇fν(k)(xk)‖). Obviously, back-
tracking preserves this property with tkdk replacing dk. So, a point xk+1 of the form xk + tkdk

and satisfying (23) may be obtained.

Our strategy for proving local superlinear convergence has three parts. In Theorem 3.3 we
show that, under an isolation assumption, if x∗ is a limit point of the algorithm, the whole
sequence converges to it. In Theorem 3.4 we prove that, if the algorithm is started near a
strict local minimizer, the generated sequence converges. Neither Theorem 3.4 can be reduced
to Theorem 3.3, nor Theorem 3.3 is a consequence of Theorem 3.4 (the assumption on x∗ of
Theorem 3.3 is weaker). However, both theorems show that convergence of the whole sequence
to a point x∗ may be expected in many cases. Under this assumption and assuming that the
search directions are obtained as the inexact solutions of quasi-Newton linear systems with a
Dennis-Moré compatibility condition we will show that superlinear convergence takes place.

We say that x∗ is very strongly isolated if there exists ε > 0 such that for all x ∈ B(x∗, ε)−{x∗}
and for all i ∈ Imin(x), we have that ∇fi(x) 6= 0. In other words, a reduced neighborhood of x∗
does not contain weakly critical points.

Theorem 3.3. Assume that x∗ is very strongly isolated, the sequence {xk} is generated by
Algorithm U1 with Assumption B1 and limk∈K xk = x∗ for some infinite sequence K ⊂ IN .
Then, x∗ is weakly critical and

lim
k→∞

xk = x∗.

Proof. The fact that x∗ is weakly critical is a consequence of Theorem 3.2.

10

By (12) and (23), we have:
lim
k∈K
‖xk+1 − xk‖ = 0. (24)

Since x∗ is very strongly isolated, there exists ε > 0 such that ∇fi(x) 6= 0 for all i ∈ Imin(x)
if x ∈ B(x∗, ε)− {x∗}.

By (24) and the hypothesis of the theorem, there exists k1 ∈ K such that

‖xk+1 − xk‖ < ε/2 and ‖xk − x∗‖ < ε/2

for all k ∈ K, k ≥ k1.
Define

C = {x ∈ IRn | ε/2 ≤ ‖x− x∗‖ ≤ ε}.

Clearly, C is compact and does not contain weakly critical points. Then, by Theorem 3.2,
C cannot contain infinitely many iterates. Therefore, we have two possibilities:

1. There exists k2 ∈ IN such that ‖xk − x∗‖ ≤ ε/2 for all k ≥ k2.

2. There exist infinitely many iterates k ≥ k1, such that ‖xk − x∗‖ ≤ ε/2 and ‖xk+1 − xk‖ >
ε/2.

In the first case, since x∗ is the only possible limit point in the ball with radius ε/2 we have
that the sequence {xk} converges to x∗.

Let us analyze the second case. Let K1 ⊂ IN be such that ‖xk−x∗‖ ≤ ε/2 and ‖xk+1−xk‖ >
ε/2 for all k ∈ K1.

Since all the iterates belong to the ball with center ε/2 and x∗ is the only possible limit point
in this ball, it turns out that

lim
k∈K1

xk = x∗.

Therefore, by (12),
lim

k∈K1

‖∇fν(k)(xk)‖ = 0.

By (23), this implies that
lim

k∈K1

‖xk+1 − xk‖ = 0,

contradicting the assumption ‖xk+1 − xk‖ ≥ ε/2 ∀ k ∈ K1. This means that the second case
mentioned above is impossible. So, the proof is complete. �

Theorem 3.4. Assume that x∗ is a very strongly isolated strict local minimizer of fmin. Let
{xk} be a sequence generated by Algorithm U1 with Assumption B1. Then, there exists δ1 > 0
such that ‖x0 − x∗‖ ≤ δ1 implies that

lim
k→∞

xk = x∗.

Proof. Let ε > 0 be such that x∗ is a strict global minimizer of fmin in the ball B(x∗, ε) and that
this ball does not contain weakly critical points other than x∗. Let us prove that there exists
δ ∈ (0, ε/2) such that

‖xk − x∗‖ ≤ δ ⇒ ‖xk+1 − xk‖ ≤ ε/2. (25)

11

Assume, by contradiction, that δ satisfying (25) does not exist. Given x ∈ IRn denote x+ the
possible follower of x by an iteration of Algorithm U1. Under the assumption that (25) is false,
there exists a sequence {z`} such that lim`→∞ z` = x∗ and

‖z` − (z`)+‖ > ε/2 for all ` = 0, 1, 2, . . .

By (23) this implies that for all ` ∈ IN , there exists j` such that

fj`
(z`) = fmin(z`)

and ‖∇fj`
(z`)‖ is bounded away from zero. Take j such that j = j` infinitely many times. Then,

j ∈ Imin(z`) for all ` and ‖∇fj(z`)‖ is bounded away from zero. This implies that j ∈ Imin(x∗)
and ‖∇fj(x∗)‖ 6= 0. This cannot be true, since x∗ is a local minimizer and, hence, it is strongly
critical. Therefore, (25) is true.

Let c be the minimum of fmin(x) on the set defined by δ ≤ ‖x− x∗‖ ≤ ε. Let δ1 ∈ (0, δ) be
such that

‖x− x∗‖ ≤ δ1 ⇒ fmin(x) < c.

Let us prove by induction that, taking ‖x0 − x∗‖ ≤ δ1, one has that ‖xk − x∗‖ ≤ ε/2 and
f(xk) < c for all k. By the definition of δ1 this is true for k = 0. For the inductive step, observe
that, by (25), we have that ‖xk+1 − x∗‖ ≤ ε. But, by the definition of c and the fact that
f(xk+1) < f(xk), we have that ‖xk+1 − x∗‖ ≤ ε/2.

Therefore, the whole sequence is contained in B(x∗, ε/2). Since the only weakly critical point
in this ball is x∗, Theorem 3.2 implies that the whole sequence converges to x∗ as we wanted to
prove. �

Assumption B2. In the implementation of Algorithm U1 we have:

• α ∈
(

0, 1
2

)
.

• The direction dk is a solution of

Bkd = −∇fν(k)(xk) + rk, (26)

where Bk ∈ IRn×n is symmetric and positive definite and

‖rk‖ ≤ ηk‖∇fν(k)(xk)‖. (27)

• If
fmin(xk + dk) ≤ fmin(xk) + α∇fν(k)(xk)T dk,

we choose tk = 1 and xk+1 = xk + dk.

• The set {‖B−1
k ‖, k ∈ IN} is bounded.

Let us comment here some features of Algorithm U1 under Assumption B2.

12

1. The coefficient α is restricted to (0, 1/2) because this favors the acceptance of the steplength
tk = 1, as will be shown in the proofs.

2. The direction dk comes from the inexact solution of a quasi-Newton equation. The matrices
Bk will be positive-definite Hessian approximations.

3. When xk + dk satisfies the sufficient descent condition we accept the steplength tk = 1
and the point xk+1 is taken as xk + dk. Again, this enhances the probability of taking
Newton-like steps.

4. If ‖Bk‖ < 1
β , the condition ‖dk‖ ≥ β‖∇fν(k)(xk)‖ is satisfied. Moreover, if the condition

number ‖Bk‖‖B−1
k ‖ is less than or equal to 1

θ , the angle condition (8) is satisfied. Clearly,
it is always possible to choose Bk satisfying both requirements.

Theorem 3.5 completes the convergence theory of Algorithm U1. We will show that, under
Assumptions B1 and B2, if the sequence {xk} converges to a local minimizer such that all the
relevant Hessians are positive definite and the matrices Bk satisfy a Dennis-Moré condition, the
convergence is superlinear and, eventually, tk = 1.

Theorem 3.5. Assume that:

1. The sequence {xk} is generated by Algorithm U1 with Assumptions B1 and B2;

2. x∗ is a local minimizer;

3. fi admits continuous second derivatives in a neighborhood of x∗ for all i ∈ Imin(x∗);

4. ∇2fi(x∗) > 0 for all i ∈ Imin(x∗);

5. limk→∞ xk = x∗;

6. The Dennis-Moré condition

lim
k→∞

‖[Bk −∇2fν(k)(xk)]dk‖
‖dk‖

= 0 (28)

and the Inexact-Newton condition
lim

k→∞
ηk = 0 (29)

are verified.

Then,

• There exists k0 ∈ IN such that tk = 1 for all k ≥ k0.

• The sequence {xk} converges superlinearly to x∗.

13

Proof. By the continuity of the functions fi, there exists k1 ∈ IN such that, for all k ≥ k1,

Imin(xk) ⊂ Imin(x∗).

By Taylor’s formula, for all k ≥ k1, we have that

fν(k)(xk +dk)−fν(k)(xk)−αdT
k∇fν(k)(xk) = (1−α)dT

k∇fν(k)(xk)+
1
2
dT

k∇2fν(k)(xk)dk +o(‖dk‖2)

= (1− α)dT
k [∇fν(k)(xk) +∇2fν(k)(xk)dk] +

(
α− 1

2

)
dT

k∇2fν(k)(xk)dk + o(‖dk‖2).

But Bkdk + ∇fν(k)(xk) = rk and, by (8), (27) and (29), ‖rk‖ = o(‖∇fν(k)(xk)‖) = o(‖dk‖).
Therefore,

fν(k)(xk + dk)− fν(k)(xk)− αdT
k∇fν(k)(xk)

= (1− α)(dk)T rk + (1− α)dT
k [∇2fν(k)(xk)−Bk]dk +

(
α− 1

2

)
dT

k∇2fν(k)(xk)dk + o(‖dk‖2)

= (1− α)dT
k [∇2fν(k)(xk)−Bk]dk +

(
α− 1

2

)
dT

k∇2fν(k)(xk)dk + o(‖dk‖2).

But, by (28),
(1− α)dT

k [∇2fν(k)(xk)−Bk]dk = o(‖dk‖2),

therefore,

fν(k)(xk + dk)− fν(k)(xk)− αdT
k∇fν(k)(xk) =

(
α− 1

2

)
dT

k∇2fν(k)(xk)dk + o(‖dk‖2). (30)

Let µ > 0 denote a lower bound for the eigenvalues of ∇2fi(x∗), i ∈ Imin(x∗). Then, there
exists k2 > k1 such that µ/2 is lower bound for the eigenvalues of ∇2fν(k)(xk) for all k ≥ k2.
So, for all k ≥ k2, we have:

dT
k∇2fν(k)(xk)dk

‖dk‖2
≥ µ/2.

Since α < 1/2, by (30), we have:

fν(k)(xk + dk)− fν(k)(xk)− αdT
k∇fν(k)(xk)

‖dk‖2
≤

(
α− 1

2

)
µ

2
+

o(‖dk‖2)
‖dk‖2

(31)

for k ≥ k2. But, since {‖B−1
k ‖, k ∈ IN} is bounded and ∇fν(k)(xk) → 0, by (26) and (27) we

have that ‖dk‖ → 0. So, taking limits in (31) for k →∞, we get:

fν(k)(xk + dk)− fν(k)(xk)− αdT
k∇fν(k)(xk) ≤ 0 (32)

for k large enough. So, by the definition of the algorithm, there exists k0 ∈ IN such that tk = 1
for all k ≥ k0. Therefore, the first part of the thesis is proved.

By the first part of the thesis and Assumption B2 we have that

xk+1 − xk = dk for all k ≥ k0.

14

Then, by Taylor’s formula:

∇fν(k)(xk+1) = ∇fν(k)(xk) +∇2fν(k)(xk)dk + o(‖dk‖)

= Bkdk +∇fν(k)(xk) + [∇2fν(k)(xk)−Bk]dk + o(‖dk‖)

= rk + [∇2fν(k)(xk)−Bk]dk + o(‖dk‖).

As in the first part of the proof, we have that ‖rk‖ = o(‖dk‖), therefore:

∇fν(k)(xk+1) = [∇2fν(k)(xk)−Bk]dk + o(‖dk‖).

So, by (28),

lim
k→∞

‖∇fν(k)(xk+1)‖
‖xk+1 − xk‖

= 0.

By the continuity and nonsingularity of the Hessians at x∗, we deduce that

lim
k→∞

‖xk+1 − x∗‖
‖xk+1 − xk‖

= 0.

Clearly, this implies that

lim
k→∞

‖xk+1 − x∗‖
‖xk+1 − x∗‖+ ‖xk − x∗‖

= 0.

Therefore, after some manipulation, we obtain the superlinear convergence of {xk}. �

4 Unconstrained LOVO algorithm with convergence to strongly
critical points

In Section 3 we introduced Algorithm U1 which, briefly speaking, converges to weakly critical
points. Algorithm U1 may converge to points that are not strongly critical and, of course, that
are far from being minimizers of the unconstrained LOVO problem. For example, consider the
problem defined by f1(x) = x, f2(x) = x2, m = 2. For all x ∈ (0, 1) we have that fmin(x) = x2.
Therefore, it is easy to define a sequence xk ∈ (0, 1) generated by Algorithm U1 and converging
to 0. Of course, 0 is a weakly critical point, but it is not strongly critical. The objective of
this section is to introduce and analyze an unconstrained algorithm that converges to strongly
critical points.

Algorithm U2. Let θ ∈ (0, 1), α ∈ (0, 1),M > 1, β > 0, tone > 0, ε > 0, δ > 0 be algorithmic
parameters. Let x0 ∈ IRn be the initial approximation. Given xk ∈ IRn, the steps for computing
xk+1 are:

Step 1. If ‖∇fi(xk)‖ = 0 for all i ∈ Imin(xk), terminate the execution of the algorithm.
If ‖∇fi(xk)‖ > δ for all i ∈ Imin(xk), choose i ∈ Imin(xk) and define Jk = {i}. Otherwise,

define
Jk = {j ∈ {1, . . . ,m} | fj(xk) ≤ fmin(xk) + ε and ∇fj(xk) 6= 0}.

15

Step 2. For all i ∈ Jk, compute di
k ∈ IRn such that

∇fi(xk)T di
k ≤ −θ‖di

k‖‖∇fi(xk)‖ and ‖di
k‖ ≥ β‖∇fi(xk)‖. (33)

Step 3. For all i ∈ Jk, compute tik > 0 such that

fi(xk + tikd
i
k) ≤ fi(xk) + αtik∇fi(xk)T di

k (34)

and [
tik ≥ tone

]
or

[
fi(xk + t̄kd

i
k) > fi(xk) + αt̄ik∇fi(xk)T di

k for some t̄ik ≤Mtik

]
. (35)

Step 4. Compute xk+1 ∈ IRn such that

fmin(xk+1) ≤ min
i∈Jk

{fi(xk + tikd
i
k)}. (36)

In Algorithm U2, if ‖∇fi(xk)‖ > δ for all i ∈ Imin(xk) the iteration is identical to the one
of Algorithm U1. If, for some i ∈ Imin(xk) the gradient norm is smaller than δ we compute
descent directions for all the functions fi such that fi(xk) ≈ fmin(xk) (with precision ε). Then,
we perform line searches along all these directions and we finish taking xk+1 such that this point
is at least as good as all the points obtained in the line searches. The most obvious way to
choose xk+1 is to set xk+1 = xk + tjkd

j
k, where j ∈ Jk and

fj(xk + tjkd
j
k) ≤ fi(xk + tikd

i
k) ∀ i ∈ Jk.

However, the choice (36) allows one to use extrapolation steps to enhance the chance of conver-
gence to global minimizers.

In the worst case situation, Jk may contain an unacceptably large number of indices (for
example, if fi(xk) = fmin(xk) for all i. In practice, it is recommendable to limit the number of
search directions to (say) 10, and switch to Algorithm U1 if this number is exceeded. We tried
this modification in our numerical examples without obtaining meaningful differences with the
non-modified algorithm.

Below we show that the algorithm is well defined and can stop only at strongly critical points.

Theorem 4.1. Algorithm U2 is well-defined and terminates at xk if, and only if, xk is strongly
critical. Moreover, if the algorithm does not terminate at xk,

fmin(xk+1) < fmin(xk) (37)

for all k = 0, 1, 2,

Proof. If xk is strongly critical, Step 1 guarantees that the algorithm terminates at xk.
Let us show now that, if xk is not strongly critical, the iteration that defines Algorithm U2

can be completed in finite time and that xk+1 satisfies (37).

16

If xk is not strongly critical, there exists i ∈ Imin(xk) such that ‖∇fi(xk)‖ 6= 0. Therefore,
the set Jk is nonempty and, by construction, for all i ∈ Jk, ∇fi(xk) 6= 0. Therefore, as in the
proof of Theorem 3.1, for all i ∈ Jk and t small enough, the sufficient descent condition

fi(xk + tdi
k) ≤ fi(xk) + αt∇fi(xk)T di

k

is verified. Therefore, choosing tik as the first number in the sequence {tone, tone/M, tone/M
2, . . .}

that satisfies (34), the conditions (34) and (35) are satisfied. So, the algorithm is well defined.
Now, let i ∈ Imin(xk) be such that ∇fi(xk) 6= 0. Since i ∈ Jk we have that:

fi(xk + tikd
i
k) ≤ fi(xk) + αtik∇fi(xk)T di

k = fmin(xk) + αtik∇fi(xk)T di
k < fmin(xk).

Therefore, (37) follows from (36). �

In Lemma 4.1 we prove that, in a convergent subsequence generated by Algorithm U2, at
most finitely many iterations are of type U1.

Lemma 4.1. Assume that {xk} is an infinite sequence generated by Algorithm U2 and K is an
infinite sequence of indices such that limk∈K xk = x∗. Then, for all k ∈ K large enough,

min
i∈Imin(xk)

{‖∇fi(xk)‖} ≤ δ.

Proof. Assume that the thesis is not true. Then, there exists K1, an infinite subsequence of K,
such that

‖∇fi(xk)‖ > δ for all i ∈ Imin(xk), k ∈ K1. (38)

Define K1 = {k0, k1, k2, k3, . . .}, kj < kj+1 for all j and

yj = xkj
for all j = 0, 1, 2,

By (38) and the choice of Jk in this case, the sequence {yj} is generated as in Algorithm
U1. Therefore, there exists i ∈ {1, . . . ,m} such that Jkj

= {i} ⊂ Imin(xkj
) infinitely many

times. By Theorem 3.2, i ∈ Imin(x∗) and ∇fi(x∗) = 0. Therefore, by the continuity of ∇fi,
limj→∞ ‖∇fi(xkj

)‖ = 0. This implies that (38) is false. �

In Theorem 4.2 we prove that Algorithm U2 necessarily produces strongly critical points.

Theorem 4.2. If x∗ is a limit point of a sequence generated by Algorithm U2, then x∗ is
strongly critical. Moreover, given ε > 0, there exists k ∈ IN such that

‖∇fi(xk)‖ ≤ ε for all i ∈ Imin(xk).

Proof. Let K = {k0, k1, k2, . . .} be such that

lim
k∈K

xk = x∗.

17

By Lemma 4.1 and the definition of Algorithm U2, we may assume, without loss of generality,
that

Jk = {j ∈ {1, . . . ,m} | fj(xk) ≤ fmin(xk) + ε and ∇fj(xk) 6= 0}

for all k ∈ K.
Assume that i ∈ Imin(x∗). Our aim is to prove that ∇fi(x∗) = 0.
Clearly, fi(x∗) = fmin(x∗). So, by the continuity of fi and fmin,

fi(xk) ≤ fmin(xk) + ε. (39)

for k ∈ K large enough. By continuity, if ∇fi(xk) vanishes infinitely many times for k ∈ K, we
are done. Otherwise, we may assume, without loss of generality, that ∇fi(xk) 6= 0 for all k ∈ K.
Therefore, by (39), i ∈ Jk for all k ∈ K. Moreover,

lim
k∈K

fi(xk)− fmin(xk) = fi(x∗)− fmin(x∗) = 0. (40)

By the definition of the algorithm, for j large enough we have:

fmin(xkj+1
) < fmin(xkj+1) ≤ fi(xkj

+ tikj
di

kj
) ≤ fi(xkj

) + αtikj
∇fi(xkj

)T di
kj

= fmin(xkj
) + [fi(xkj

)− fmin(xkj
)] + αtikj

∇fi(xkj
)T di

kj
. (41)

By (33), αtikj
∇fi(xkj

)T di
kj

< 0. Assume, for a moment, that there exists c > 0, j0 ∈ IN , such
that

αtikj
∇fi(xkj

)T di
kj

< −c (42)

for all j ≥ j0. But, by (40), there exists j1 ≥ j0 such that

fi(xkj
)− fmin(xkj

) < c/2 (43)

for all j ≥ j1. So, by (41), (42) and (43), we have that

fmin(xkj+1
) ≤ fmin(xkj

)− c/2

for all j ≥ j1. This implies that limj→∞ fmin(xkj
) = −∞ and contradicts the fact that, by

continuity, fmin(xkj
)→ fmin(x∗). Therefore, the existence of c and j0 with the property (42) is

impossible. This implies that there exists K1, an infinite subsequence of K, such that

lim
k∈K1

αtik∇fi(xk)T di
k = 0.

Therefore, by (33),
lim

k∈K1

tik‖∇fi(xk)‖‖di
k‖ = 0.

The rest of the proof is similar to the proof of Theorem 3.2. If, for some subsequence K2 ⊂ K1,
limk∈K2 ∇fi(xk) = 0, we are done. So, let us assume that ‖∇fi(xk)‖ is bounded away from zero
for k ∈ K1. In this case,

lim
k∈K

tik‖di
k‖ = 0. (44)

18

If, for some subsequence K3 ⊂ K1, limk∈K3 ‖di
k‖ = 0, then, by (33), limk∈K3 ‖∇fi(xk)‖ = 0

and, thus, ∇fi(x∗) = 0. So, we only need to consider the case in which ‖di
k‖ is bounded away

from zero for k ∈ K1. In this case, by (44),

lim
k∈K1

tik = 0.

Therefore, without loss of generality, we may assume that tik < tone for all k ∈ K1. Then, by
(35), there exist t̄ik ≤Mtik, sk = t̄ikd

i
k such that

fi(xk + sk) > fi(xk) + α∇fi(xk)T sk for all k ∈ K1 (45)

and, by (44),
lim

k∈K1

‖sk‖ = 0. (46)

So, by (45) and the Mean Value Theorem, there exists ξk ∈ [0, 1] such that

∇fi(xk + ξksk)T sk = fi(xk + sk)− fi(xk) > α∇fi(xk)T sk (47)

for all k ∈ K1. Moreover, by (33),

∇fi(xk)T sk

‖sk‖
≤ −θ‖∇fi(xk)‖ (48)

for all k ∈ K1. Let K4 be a subsequence of K1 such that

lim
k∈K4

sk

‖sk‖
= s.

By (46), dividing both sides of (47) by ‖sk‖ and taking limits for k ∈ K4, we obtain:

∇fi(x∗)T s ≥ α∇fi(x∗)T s.

Since α < 1 and ∇fi(xk)T dk < 0 for all k, this implies that ∇fi(x∗)T s = 0. Taking limits on
both sides of (48) we obtain that ‖∇fi(x∗)‖ = 0.

Let us prove the second part of the thesis. If it is not true, then there exists K5, an infinite
subset of K and ε > 0 such that for all k ∈ K5 there exists i ∈ Imin(xk) such that ‖∇fi(xk)‖ > ε.
Clearly, the same index i must be repeated infinitely many times, and, taking limits, we get that
i ∈ Imin(x∗) and ‖∇fi(x∗)‖ ≥ ε. This contradicts the first part of the thesis. �

For proving local convergence convergence we follow similar steps to those of Algorithm U1.
Assumption B3 establishes that the distance between two consecutive iterates is less than or
equal to the maximum gradient norm in Jk. This is always possible if the directions di

k are taken
according to gradient-like, Newton or quasi-Newton paradigms.

Assumption B3
We assume that Algorithm U2 is implemented in such a way that there exists b > 0 such

that
‖xk+1 − xk‖ ≤ b max{‖∇fi(xk)‖, i ∈ Jk} (49)

19

for all k ∈ IN .

We say that x∗ is strongly isolated if there exists ε > 0 such that for all x ∈ B(x∗, ε)− {x∗}
there exists i ∈ Imin(x) such that ∇fi(x) 6= 0. In other words, a reduced neighborhood of x∗
does not contain strongly critical points.

Let a > 0. We say that x∗ is a-vertically isolated if fi(x∗) > fmin(x∗)+a for all i /∈ Imin(x∗).

Theorem 4.3 is similar to Theorem 3.3 of Section 3. We prove that, under strongly isolation
and vertical isolation assumptions, a limit point of the sequence generated by Algorithm U2 is
necessarily the limit of the whole sequence. Moreover, in Theorem 4.4 we show that convergence
to a strict local minimizer occurs if the initial point is close enough to such a solution.

Theorem 4.3. Assume that x∗ is strongly isolated and a-vertically isolated with a > ε. Suppose
that the sequence {xk} is generated by Algorithm U2 with Assumption B3 and limk∈K xk = x∗
for some infinite sequence K ⊂ IN . Then, x∗ is strongly critical and

lim
k→∞

xk = x∗.

Proof. The fact that x∗ is strongly critical is a consequence of Theorem 4.2.
By the assumption of vertical isolation, for k ∈ K large enough we have that Jk ⊂ Imin(x∗).

Since ∇fi(x∗) = 0 for all i ∈ Imin(x∗), by (49) we have that

lim
k∈K
‖xk+1 − xk‖ = 0. (50)

By (50) and the hypothesis of the theorem, there exists k1 ∈ K such that

‖xk+1 − xk‖ < ε/2 and ‖xk − x∗‖ < ε/2

for all k ∈ K, k ≥ k1.
As in Theorem 3.3, define:

C = {x ∈ IRn | ε/2 ≤ ‖x− x∗‖ ≤ ε}.

Clearly, C is compact and does not contain strongly critical points. Then, by Theorem 4.2,
C cannot contain infinitely many iterates. Therefore, we have two possibilities:

1. There exists k2 ∈ IN such that ‖xk − x∗‖ ≤ ε/2 for all k ≥ k2.

2. There exist infinitely many iterates k ≥ k1, such that ‖xk − x∗‖ ≤ ε/2 and ‖xk+1 − xk‖ >
ε/2.

In the first case, since x∗ is the only possible limit point in the ball with radius ε/2 we have
that the sequence {xk} converges to x∗.

Let us analyze the second case. Let K1 ⊂ IN be such that ‖xk−x∗‖ ≤ ε/2 and ‖xk+1−xk‖ >
ε/2 for all k ∈ K1.

20

Since all the iterates belong to the ball with center ε/2 and x∗ is the only possible limit point
in this ball, it turns out that

lim
k∈K1

xk = x∗.

By the hypothesis of vertical isolation, we have that Jk ⊂ Imin(x∗) for k ∈ K1 large enough.
Moreover, ∇fi(x∗) = 0 for all i ∈ Imin(x∗). Then, by (49),

lim
k∈K1

‖xk+1 − xk‖ = 0,

contradicting the assumption ‖xk+1 − xk‖ ≥ ε/2 ∀ k ∈ K1. This means that the second case
mentioned above is impossible. So, the proof is complete. �

Remarks.
The result of the theorem does not hold if one uses ε = 0 in Algorithm U2. In fact, consider

the problem (2) with m = 2, n = 1, f1(x) = x, f2(x) = x2. For all x ∈ (0, 1) we have that
fmin(x) = f2(x) < f1(x). Therefore, if xk ∈ (0, 1) and one uses Algorithm U2 with ε = 0, the
algorithm reduces to Algorithm U1 and, with many admissible choices of the search directions,
convergence to the weak (but not strong) critical point x∗ = 0 occurs.

The assumption of vertical isolation cannot be eliminated. Consider the problem with
m = 2, n = 1, f1(x) = (x + 1)2, f2(x) = (x − 1)2. The sequence produced by the algorithm
may have two critical points y∗ = −1 and z∗ = 1. Take ε > 4. Assume that we start with x0

close (but different) to y∗. The direction d2
0 may be such that x0 + d2

0 is close (but different) to
z∗ and the direction d1

0 may be that x0 + d1
0 is close (but different) to y∗. However, it may be

possible that f2(x0 +d2
0) < f1(x0 +d1

0) and that both directions satisfy the descent requirements
of the algorithm. Therefore, x1 will be close (but different) to z∗. This process may be repeated
indefinitely so that the sequence will have two different accumulation points.

Theorem 4.4. Assume that x∗ is a strongly isolated strict local minimizer which, in addition,
is a-vertically isolated with a > ε. Let {xk} be a sequence generated by Algorithm U2 with
Assumption B3. Then, there exists ε > 0 such that ‖x0 − x∗‖ ≤ ε implies that

lim
k→∞

xk = x∗.

Proof. Let ε > 0 be such that x∗ is a strict global minimizer of fmin in the ball B(x∗, ε) and
that this ball does not contain strongly critical points other than x∗. Let us prove that there
exists δ ∈ (0, ε/2) such that

‖xk − x∗‖ ≤ δ ⇒ ‖xk+1 − xk‖ ≤ ε/2. (51)

In fact, since x∗ is strongly critical, ∇fi(x∗) = 0 for all i ∈ Imin(x∗). But the assumption of
of vertical isolation with a > ε implies that, in a neighborhood of x∗, Jk ⊂ Imin(x∗). Then, by
the continuity of the gradients and the assumption (49), we obtain (51).

The rest of the proof is as in Theorem 3.4. Let c be the minimum of fmin(x) on the set
defined by δ ≤ ‖x− x∗‖ ≤ ε. Let δ1 ∈ (0, δ) be such that

‖x− x∗‖ ≤ δ1 ⇒ fmin(x) < c.

21

Let us prove by induction that, taking ‖x0 − x∗‖ ≤ δ1, one has that ‖xk − x∗‖ ≤ ε/2 and
f(xk) < c for all k. By the definition of δ1 this is true for k = 0. For the inductive step, observe
that, by (51), we have that ‖xk+1 − x∗‖ ≤ ε. But, by the definition of c and the fact that
f(xk+1) < f(xk), we have that ‖xk+1 − x∗‖ ≤ ε/2.

Therefore, the whole sequence is contained in B(x∗, ε/2). Since the only strongly critical
point in this ball is x∗, Theorem 4.2 implies that the whole sequence converges to x∗ as we
wanted to prove. �

The assumption of vertical isolation is essential for proving Theorems 4.3 and 4.4. In fact,
consider the problem defined by f1(x) = x2, f2(x) = x + ε/2, where vertical isolation does not
hold. The point x∗ = 0 is the unique strong local minimizer of this problem. However, for x0

close to x∗, J0 = {1, 2}. Taking d2
0 = −1 we will have that fmin(x1) < 0 so that convergence to

0 will be impossible. So, the thesis of Theorem 4.4 does not hold in this case.

Assumption B4 establishes the specific implementation of Algorithm U2 that produces local
superlinear convergence. As in Algorithm U1 we assume that the directions di

k are computed
using the inexact solution of a linear Newton-like equation. To enhance the probability of taking
pure Newton-like iterates we make the choice (55) below. This will be sufficient for proving, in
Theorem 4.5 that superlinear convergence holds under similar conditions to those of Theorem 3.5.

Assumption B4. In the implementation of Algorithm U2 we have:

• α ∈
(

0, 1
2

)
.

• For all i ∈ Jk, the direction di
k is a solution of

Bi
kd = −∇fi(xk) + rk, (52)

where Bi
k ∈ IRn×n is symmetric and positive definite and

‖rk‖ ≤ ηk‖∇fi(xk)‖. (53)

• If
fi(xk + di

k) ≤ fi(xk) + α∇fi(xk)T di
k,

then we choose tik = 1.

• If there exists j ∈ Jk such that tjk = 1, we choose

xk+1 = xk + tikd
i
k, (54)

where
fi(xk + tikd

i
k) = min{fj(xk + tjkd

j
k), j ∈ Jk}. (55)

• There exists C > 0 such that, for all k ∈ IN , i ∈ Jk, ‖(Bi
k)
−1‖ ≤ C and Assumption B3

holds.

22

If ηk is small enough and ‖Bi
k‖ < 1

β , the condition di
k ≥ β‖∇fi(xk)‖ is satisfied. Moreover,

if the condition number ‖Bi
k‖‖(Bi

k)
−1‖ is less than or equal to 1

θ , the angle condition (33) is
satisfied. Clearly, it is always possible to choose Bi

k satisfying both requirements.

Theorem 4.5. Assume that:

1. The sequence {xk} is generated by Algorithm U2 with Assumption B4;

2. x∗ is a local minimizer;

3. For all i ∈ Imin(x∗), the function fi admits continuous second derivatives in a neighborhood
of x∗;

4. ∇2fi(x∗) > 0 for all i ∈ Imin(x∗);

5. limk→∞ xk = x∗;

6. For all i ∈ Imin(x∗), the Dennis-Moré condition

lim
k→∞

‖[Bi
k −∇2fi(xk)]di

k‖
‖di

k‖
= 0 (56)

and the inexact-Newton condition
lim

k→∞
ηk = 0 (57)

hold.

Then,

• There exists k0 ∈ IN such that, for all k ≥ k0 and i ∈ Imin(x∗), we have that i ∈ Jk and
tik = 1.

• If i ∈ Jk is such that

fi(xk + tikd
i
k) = min{fj(xk + tjkd

j
k), j ∈ Jk} (58)

for infinitely many indices k, then i ∈ Imin(x∗).

• There exists k1 ∈ IN such that for all k ≥ k1 there exists ι(k) ∈ Jk ∩ Imin(x∗) such that
t
ι(k)
k = 1 and

xk+1 = xk + d
ι(k)
k . (59)

• The sequence {xk} converges superlinearly to x∗.

Proof. Let i ∈ Imin(x∗). Since x∗ must be strongly critical, we have that ∇fi(x∗) = 0. However,
since ∇2fi(x∗) is positive definite, ∇fi(xk) 6= 0 for k large enough. Since fi(x∗) = fmin(x∗), by
the continuity of fi and fmin we have that fi(xk) ≤ fmin(xk) + ε for k large enough. So, there
exists k′0 ∈ IN such that i ∈ Jk for all k ≥ k′0.

23

The proof of (62) below mimics the proof of (32) in Theorem 3.5.
By Taylor’s formula, for all k ≥ k′0, we have that

fi(xk + di
k)− fi(xk)− α(di

k)
T∇fi(xk) = (1− α)(di

k)
T∇fi(xk) +

1
2
(di

k)
T∇2fi(xk)(di

k) + o(‖di
k‖2)

= (1− α)(di
k)

T [∇fi(xk) +∇2fi(xk)di
k] + (α− 1

2
)(di

k)
T∇2fi(xk)di

k + o(‖di
k‖2).

By (33), (53) and (57) we have that ‖rk‖ = o(‖di
k‖). Therefore,

fi(xk + di
k)− fi(xk)− α(di

k)
T∇fi(xk)

= (1− α)(di
k)

T [∇2fi(xk)−Bi
k]d

i
k + (α− 1

2
)(di

k)
T∇2fi(xk)di

k + o(‖di
k‖2).

But, by (56),
(1− α)(di

k)
T [∇2fi(xk)−Bi

k]d
i
k = o(‖di

k‖2),

therefore,

fi(xk + di
k)− fi(xk)− α(di

k)
T∇fi(xk) =

(
α− 1

2

)
(di

k)
T∇2fi(xk)di

k + o(‖di
k‖2). (60)

Let µ > 0 a lower bound for the eigenvalues of ∇2fi(x∗). Then, there exists k2 > k′0 such
that µ/2 is lower bound for the eigenvalues of ∇2fi(xk) for all k ≥ k2. So, for all k ≥ k2, we
have:

(di
k)

T∇2fi(xk)di
k

‖di
k‖2

≥ µ/2.

Since α < 1/2, by (60), we have:

fi(xk + di
k)− fi(xk)− α(di

k)
T∇fi(xk)

‖di
k‖2

≤
(

α− 1
2

)
µ

2
+

o(‖di
k‖2)

‖di
k‖2

. (61)

for k ≥ k2. But, since ‖(Bi
k)
−1‖ ≤ C for all k and ∇fi(x∗) = 0, we have that ‖di

k‖ → 0. So,
taking limits in (61) for k →∞, we get:

fi(xk + di
k)− fi(xk)− α(di

k)
T∇fi(xk) ≤ 0 (62)

for k large enough. So, by Assumption B4, there exists k0 ≥ k2 such that tik = 1 for all k ≥ k0.
Therefore, the first part of the thesis is proved.

Let us now prove the second part of the thesis. By the first part of the thesis, for k large
enough we choose xk+1 using (54) and (55). Assume that (58) holds for infinitely many indices
k ∈ K. Then, for all k ∈ K,

fi(xk+1) = fi(xk + tikd
i
k) ≤ fmin(xk).

Taking limits for k ∈ K, we obtain that fi(x∗) = fmin(x∗). So, i ∈ Imin(x∗).

24

The third part of the thesis follows as a consequence of the first two. For k large enough
Jk ∩ Imin(x∗) 6= ∅. Therefore, by the first part of the thesis, for k large enough there exists i

such that tik = 1. Then, by (54) and the second part of the thesis, xk+1 = xk + t
ι(k)
k d

ι(k)
k and

ι(k) ∈ Imin(x∗) for all k large enough. Then, by the first part of the thesis again, we obtain
(59).

Now, we are able to prove the last part of the thesis.
As in the first part of the proof, by (33), (53) and (57) we have that ‖rk‖ = o(‖∇fι(k)(xk)‖) =

o(‖dι(k)
k ‖). Then, by Taylor’s formula:

∇fι(k)(xk+1) = ∇fι(k)(xk) +∇2fι(k)(xk)d
ι(k)
k + o(‖dι(k)

k ‖)

= B
ι(k)
k d

ι(k)
k +∇fι(k)(xk) + [∇2fι(k)(xk)−B

ι(k)
k]dι(k)

k + o(‖dι(k)
k ‖).

Then, by (52), (53) and (57),

∇fι(k)(xk+1) = [∇2fι(k)(xk)−B
ι(k)
k]dι(k)

k + o(‖dι(k)
k ‖).

So, by (56),

lim
k→∞

‖∇fι(k)(xk+1)‖
‖xk+1 − xk‖

= 0.

But the continuity and nonsingularity of ∇2fi(x) at x∗, this implies that

lim
k→∞

‖xk+1 − x∗‖
‖xk+1 − xk‖

= 0.

It follows that
lim

k→∞

‖xk+1 − x∗‖
‖xk+1 − x∗‖+ ‖xk − x∗‖

= 0.

Therefore, superlinear convergence follows. �

5 Constrained LOVO problems

In this section we address the LOVO problem when the feasible set Ω is not whole space IRn. We
will assume that Ω is described by a set of equations and inequations and we will define a globally
convergent Augmented Lagrangian algorithm for solving the constrained LOVO problem. For
that purpose we need, first, to recall a suitable Augmented Lagrangian method for solving
smooth constrained optimization problems.

5.1 Smooth Augmented Lagrangian method

We consider the problem

Minimize f(x) subject to h(x) = 0, g(x) ≤ 0, (63)

25

where f : IRn → IR, h : IRn → IRnh , g : IRn → IRng . We assume that f, h, g are continuously
differentiable.

For all x ∈ IRn, ρ ∈ IR++, λ ∈ IRnh , µ ∈ IR
ng

+ we define the Augmented Lagrangian [24, 37,
39, 40]:

L(x, λ, µ, ρ) = f(x) +
ρ

2

[∥∥∥∥h(x) +
λ

ρ

∥∥∥∥2

+
∥∥∥∥(

g(x) +
µ

ρ

)
+

∥∥∥∥2]
. (64)

Algorithm C is an Augmented Lagrangian method for solving the smooth problem (63).
Essentially, it is a particular case of the Augmented Lagrangian algorithm with arbitrary lower-
level constraints described in [2] and implemented in the Tango web-page.

Algorithm C.
Let x0 ∈ IRn be an arbitrary initial point.
The parameters for the execution of the algorithm are:

τ ∈ [0, 1), γ > 1,

−∞ < λ̄min < λ̄max <∞,

0 ≤ µ̄max <∞,

ρ1 ∈ IR++,

[λ̄1]j ∈ [λ̄min, λ̄max] for all j = 1, . . . , nh,

[µ̄1]j ∈ [0, µ̄max] for all j = 1, . . . , ng.

ε1 > 0.

Step 1. Initialization
Set k ← 1. For j = 1, . . . , ng, compute

[σ0]j = max{gj(x0), 0}.

Step 2. Solving the subproblem
Compute xk ∈ Ω such that

‖∇L(xk, λk, µk, ρk)‖∞ ≤ εk.

Step 3. Estimate multipliers
For all j = 1, . . . , nh, compute

[λk+1]j = [λ̄k]j + ρkhj(xk)

and
[λ̄k+1]j ∈ [λ̄min, λ̄max].

For all j = 1, . . . , ng, compute

[µk+1]j = max{0, [µ̄k]j + ρkgj(xk)},

26

[σk]j = max
{

gj(xk),−
[µ̄k]j
ρk

}
,

and
[µ̄k+1]j ∈ [0, µ̄max].

Step 4. Update the penalty parameters
If

max{‖h(xk)‖∞, ‖σk‖∞} ≤ τ max{‖h(xk−1)‖∞, ‖σk−1‖∞}, (65)

define
ρk+1 ≥ ρk. (66)

Else, define
ρk+1 ≥ γρk. (67)

Step 5. Begin a new outer iteration
Compute εk+1 > 0. Set k ← k + 1. Go to Step 2.

The only differences between Algorithm C and the algorithm introduced in [2] (in the case
that no lower-level constraints are present) is in the updating rules (66) and (67). In [2] the
authors set ρk+1 = ρk when (65) holds and ρk+1 = γρk otherwise. This difference does not affect
at all the proofs of the following convergence theorems.

Theorem 5.1. Assume that {xk} is an infinite sequence generated by Algorithm C with εk → 0
and that x∗ is a limit point. Then, x∗ is a stationary point of

Minimize
nh∑
j=1

hj(x)2 +
ng∑
j=1

max{0, gj(x)}2.

Proof. See Theorem 4.1 of [2]. �

Theorem 5.2. Assume that {xk} is an infinite sequence generated by Algorithm C with εk → 0,
x∗ is a limit point and the constant positive linear dependence (CPLD) constraint qualification
[8, 38] is fulfilled at x∗. Then, x∗ is a KKT point of (63).

Proof. See Theorem 4.2 of [2]. �

The final boundedness result for the penalty parameters associated to Algorithm C is given
in Theorem 5.3. A crucial assumption will be that the precision used to solve subproblems must
tend to zero faster than the feasibility measure. This type of requirement is usual in many
Augmented Lagrangian and Multiplier methods [11, 12, 17, 18, 19, 20, 21, 23].

Assumption C1. We assume that

27

1. The sequence {xk} is generated by the application of Algorithm C to the problem (63) and

lim
k→∞

xk = x∗.

2. In (66) the rule ρk+1 = ρk is employed.

3. The point x∗ is feasible (h(x∗) = 0, g(x∗) ≤ 0).

4. The gradients
{∇hj(x∗)}nh

j=1, {∇gj(x∗)}{j | gj(x∗)=0},

are linearly independent.

5. Strict complementarity takes place at x∗. This means that, if µ∗ ∈ IR
ng

+ is the vector of
Lagrange multipliers corresponding to the constraints g(x) ≤ 0, then:

gj(x∗) = 0⇒ [µ∗]j > 0.

6. The functions f, h, g admit continuous second derivatives in a neighborhood of x∗.

7. Define the tangent subspace T as the set of all z ∈ IRn such that

∇h(x∗)T z = 0,

∇gj(x∗)T z = 0

for all j such that gj(x∗) = 0.

Then, for all z ∈ T, z 6= 0,

zT

(
∇2f(x∗) +

nh∑
i=1

[λ∗]j∇2hj(x∗) +
ng∑
j=1

[µ∗]j∇2gj(x∗)
)

z > 0.

Theorem 5.3. Suppose that Assumption C1 holds. In addition, assume that:

1. There exists a sequence ηk → 0 such that

εk ≤ ηk max{‖h(xk)‖∞, ‖σk‖∞} ∀ k ∈ IN.

2. [λ∗]j ∈ (λ̄min, λ̄max) ∀ j = 1, . . . , nh and [µ∗]j ∈ (µ̄min, µ̄max) ∀ j = 1, . . . , ng.

3. [λ̄k+1]j is the projection of [λk+1]j on [λ̄min, λ̄max] and [µ̄k+1]j is the projection of [µk+1]j
on [0, [µ̄max] for all j = 1, . . . , nh, j = 1, . . . , ng, k ∈ IN .

Then, the sequence of penalty parameters {ρk} is bounded.

Proof. See Theorem 5.5 of [2]. �

28

5.2 Augmented Lagrangian method for LOVO

Now we are in conditions to define natural extensions of Algorithm C to the LOVO problem.
When the solution of unconstrained minimization subproblems is needed, one may use Algo-
rithms U1 or U2.

We consider the problem

Minimize fmin(x) subject to h(x) = 0, g(x) ≤ 0, (68)

where fi : IRn → IR for all i = 1, . . . ,m, h : IRn → IRnh , g : IRn → IRng and all these functions
are smooth.

As in (64), for all x ∈ IRn, ρ ∈ IR++, λ ∈ IRnh , µ ∈ IR
ng

+ we define the Augmented Lagrangian
associated with fi by:

Li(x, λ, µ, ρ) = fi(x) +
ρ

2

[∥∥∥∥h(x) +
λ

ρ

∥∥∥∥2

+
∥∥∥∥(

g(x) +
µ

ρ

)
+

∥∥∥∥2]
.

The Augmented Lagrangian associated with fmin is defined by

Lmin(x, λ, µ, ρ) = fmin(x) +
ρ

2

[∥∥∥∥h(x) +
λ

ρ

∥∥∥∥2

+
∥∥∥∥(

g(x) +
µ

ρ

)
+

∥∥∥∥2]
.

Let us define, for all x ∈ IRn,

Imin(x) = {i ∈ {1, . . . ,m} | fi(x) = fmin(x)}.

Observe that
Imin(x) = {i ∈ {1, . . . ,m} | Li(x, λ, µ, ρ) = Lmin(x, λ, µ, ρ)}

for all λ ∈ IRm, µ ∈ IRp
+, ρ > 0.

Algorithm C-LOVO.
Let x0 ∈ IRn be an arbitrary initial point.
The parameters for the execution of the algorithm are:

τ ∈ [0, 1), γ > 1,

−∞ < λ̄min < λ̄max <∞,

0 ≤ µ̄max <∞,

ρ1 ∈ IR++,

[λ̄1]j ∈ [λ̄min, λ̄max] ∀j = 1, . . . , nh,

[µ̄1]j ∈ [0, µ̄max] ∀j = 1, . . . , ng.

ε1 > 0.

Step 1. Initialization

29

Set k ← 1. For j = 1, . . . , ng, compute

[σ0]j = max{gj(x0), 0}.

Step 2. Solving the subproblem
Compute xk ∈ IRn such that

‖∇Li(xk, λ̄k, µ̄k, ρk)‖∞ ≤ εk (69)

for some i ∈ Imin(xk).
Step 3. Estimate multipliers

For all j = 1, . . . , nh, compute

[λk+1]j = [λ̄k]j + ρkhj(xk)

and
[λ̄k+1]j ∈ [λ̄min, λ̄max].

For all j = 1, . . . , ng, compute

[µk+1]j = max{0, [µ̄k]j + ρkgj(xk)},

[σk]j = max
{

gj(xk),−
[µ̄k]j
ρk

}
,

and
[µ̄k+1]j ∈ [0, µ̄max].

Step 4. Update the penalty parameters
If

max{‖h(xk)‖∞, ‖σk‖∞} ≤ τ max{‖h(xk−1)‖∞, ‖σk−1‖∞},

define
ρk+1 = ρk.

Else, define
ρk+1 = γρk.

Step 5. Begin a new outer iteration
Compute εk+1 > 0. Set k ← k + 1. Go to Step 2.

The obvious way to solve (69) is to apply Algoritm U1 or Algorithm U2 to

Minimize Lmin(x, λ̄k, µ̄k, ρk).

Both algorithms guarantee that a point satisfying (69) can be found, provided that the gen-
erated sequence is bounded. On the other hand, boundedness of the sequences generated by
Algorithms U1 or U2 may be guaranteed under suitable relations between objective function

30

and constraints.

In Theorem 5.4 we prove that Algorithm C-LOVO finds stationary points of the constraint
infeasibility.

Theorem 5.4. Assume that {xk} is an infinite sequence generated by Algorithm C-LOVO
with εk → 0 and that x∗ is a limit point. Then, x∗ is a stationary point of

Minimize
nh∑
j=1

hj(x)2 +
ng∑
j=1

max{0, gj(x)}2.

Proof. Since {xk} is infinite, there exists i ∈ {1, . . . ,m} such that (69) holds for fi infinitely
many times. Taking the corresponding subsequence of {xk}, it turns out that this subsequence
may be thought as generated by Algorithm C. Therefore, the thesis follows by Theorem 5.1. �

Theorem 5.5. Assume that {xk} is an infinite sequence generated by Algorithm C-LOVO
with εk → 0, x∗ is a limit point and the CPLD constraint qualification is fulfilled at x∗. Then,
there exists i ∈ Imin(x∗) such that x∗ is a KKT point of

Minimize fi(x) subject to h(x) = 0, g(x) ≤ 0.

Proof. As in Theorem 5.4, consider an infinite subsequence of {xk} such that (69) holds with the
same index i for all the terms of this subsequence. Again, this subsequence may be thought as
having been generated by Algorithm C. By Theorem 5.2 there exists x∗ satisfying the the-
sis of this theorem. The fact that i ∈ Imin(x∗) follows trivially from Li(xk, λ̄k, µ̄k, ρk) ≤
Lj(xk, λ̄k, µ̄k, ρk) for all j. �

Remark.
In (69) we assume that, at each outer iteration of Algorithm C-LOVO we obtain an approx-

imate weak critical point of the unconstrained Augmented Lagrangian. With this assumption,
we obtain, in Theorem 5.5, a weak critical point of the constrained LOVO problem. Let us show
that the strong-criticality of xk would not guarantee strong criticality at the solution of the
constrained problem. Take n = 1, p = 2, nh = 0, ng = 1, f1(x) = (x−1)2/2, f2(x) = (x+1)2/2,
g1(x) = x. Define m̄uk = 0 for all k. Then:

L1(x) = f1(x) + ρ(x+)2/2, L2(x) = f2(x) + ρ(x+)2/2

For all k we have that xk ≡ 1/(1 + ρk) is a strong critical point of Lmin. (xk is a minimizer of
L1 and L2(xk) > L1(xk) for all k.) Clearly, x∗ = 0 is a minimizer of f1(x) subject to g1(x) ≤ 0
but is not a KKT point of f2 subject to the same constraint. However, f1(x∗) = f2(x∗), so x∗
is not a strong critical point of the constrained problem. This example shows the assumption
of strong criticality at xk would be unuseful in terms of the solutions that can be obtained by
C-LOVO.

The final boundedness result for the penalty parameters associated to Algorithm C-LOVO
is given in Theorem 5.6. As in the previous theorems, the technique consists of reducing the

31

LOVO problem to a smooth nonlinear programming problem. However, in this case, we will
need an additional assumption: given a convergent sequence generated by Algorithm C-LOVO,
we will assume that there exists a unique index imin such that fmin(xk) = fimin(xk) if k is large
enough. In this way, we are able to ensure that the algorithm, ultimately, behaves as Algorithm
C for the minimization of fimin .

Assumption C2. We assume that

1. The sequence {xk} is generated by the application of Algorithm C-LOVO to the prob-
lem (63) and

lim
k→∞

xk = x∗.

2. The point x∗ is feasible (h(x∗) = 0, g(x∗) ≤ 0).

3. There exists imin ∈ {1, . . . ,m} such that

fimin(xk) = fmin(xk) < fi(xk)

for all k large enough and i 6= imin.

4. The gradients
{∇hj(x∗)}nh

j=1, {∇gj(x∗)}{j | gj(x∗)=0}

are linearly independent.

5. Strict complementarity takes place at x∗. This means that, if µ∗ ∈ IR
ng

+ is the vector of
Lagrange multipliers corresponding to the constraints g(x) ≤ 0, then:

gj(x∗) = 0⇒ [µ∗]j > 0.

6. The functions fimin , h, g admit continuous second derivatives in a neighborhood of x∗.

7. Define the tangent subspace T as the set of all z ∈ IRn such that

∇h(x∗)T z = 0,

∇[g(x∗)]Tj z = 0

for all j such that gj(x∗) = 0.

Then, for all z ∈ T, z 6= 0,

zT

(
∇2fimin(x∗) +

nh∑
j=1

[λ∗]j∇2hj(x∗) +
ng∑
j=1

[µ∗]j∇2gj(x∗)
)

z > 0.

Theorem 5.6. Suppose that Assumption C2 holds. In addition, assume that:

1. There exists a sequence ηk → 0 such that

εk ≤ ηk max{‖h(xk)‖∞, ‖σk‖∞} ∀ k ∈ IN.

32

2. [λ∗]j ∈ (λ̄min, λ̄max) ∀ j = 1, . . . , nh and [µ∗]j ∈ (µ̄min, µ̄max) ∀ j = 1, . . . , ng.

3. [λ̄k+1]j is the projection of [λk+1]j on [λ̄min, λ̄max] for all j = 1, . . . , nh, and [µ̄k+1]j is the
projection of [µk+1]j on [0, µ̄max] for all j = 1, . . . , ng, k ∈ IN .

Then, the sequence of penalty parameters {ρk} is bounded.

Proof. For k large enough the sequence may be thought as being generated by Algorithm C
with Assumption C1. So, the thesis follows from Theorem 5.3. �

If one is able to find global minimizers of the unconstrained subproblems addressed in the
Augmented Lagrangian Algorithm, then limit points are global minimizers of the constrained
problem, since this property depends only on the continuity of the objective function and con-
straints [2]. We state this important property in the following theorem. A generalization of this
theorem may be found in [13].

Theorem 5.4. Assume that the feasible region of the original constrained problem is nonempty
and that, in Algorithm C-LOVO, xk is a global minimizer of the subproblem for all k. Then,
every limit point of {xk} is a global minimizer of the constrained LOVO problem.

6 Hidden patterns

Let Q = {Q1, . . . , QN} ⊂ IRnq , P = {P1, . . . , PM} ⊂ IRnp . The goal is to find the structure
defined byQ in the set P. Strictly speaking, we aim to find a transformation operator D : IRnq →
IRnp such that some subset of {D(Q1), . . . , D(QN)} fits some subset of P. In Section 7, D could
represent only rigid-body displacements but here we allow more general transformations. For
example, assume that nq = 3, np = 2 and that the P is the set of possible “shadows” of the
points in Q. Therefore, we wish to find the rigid-body displacement of Q such that (say) the
two-dimensional points represented by the x− y coordinates of the displaced Q fit P in the best
possible way. So, D will be de composition of a rigid-body movement with a projection. A lot of
applications of this general problem can be given, from medicine tissue recognition to security
systems. Let us show here how the problem can be modelled in terms of LOVO.

Define N the set of N−uples ν = (ν(1), . . . , ν(N)), where ν(i) ∈ {1, . . . ,M} for all i =
1, . . . , N . (In other words, N = {1, . . . ,M}N .)

Let D be an admissible transformation. For all ν ∈ N we define

fν(D) =
N∑

i=1

‖D(Qi)− Pν(i)‖2.

Finally,
fmin(D) = min

ν∈N
fν(D).

If there exists a set of N points of P that fits exactly a displacement D of Q we have that
fmin(D) = 0. The problem of minimizing fmin follows under the theory introduced in previous
sections.

33

Fortunately, the evaluation of fmin does not need the computation of all the functions fν .
In fact, given a transformation D, we compute, for all i = 1, . . . , N , Pc(i)(D) ∈ P such that

‖D(Qi)− Pc(i)(D)‖ ≤ ‖D(Qi)− P‖ ∀ P ∈ P. (70)

Then,

fmin(D) =
N∑

i=1

‖D(Qi)− Pc(i)(D)‖2.

The two most common situations in applications correspond to dim = 2 and dim = 3. In
the first case the displacement may be represented by three parameters: the translation of the
center of gravity of Q and the angle of rotation. In the three-dimensional case, displacements
may be represented by the translation vector and three rotations, although other alternatives
are possible.

A generalization of this problem is to find a common structure to the sets P and Q. Sup-
pose that we want to find a displacement D such that there exists R ≤ N points of Q (say,
Qj1 , . . . , QjR) such that D(Qj1), . . . , D(QjR) fit R points of P. In this case, we define M as
the Cartesian product between the subsets of R elements of {1, . . . , N} and the R-uples of
{1, . . . ,M}. For all ν = ({j1, . . . , jR}, (i1, . . . , iR)) ∈M, we define

fν(D) =
R∑

`=1

‖D(Qj`
)− Pi`‖

2

and the goal is to minimize fmin(D) ≡ minν∈M fν(D). Again, the computation of fmin is simple:
for all i = 1, . . . , N compute Pc(i)(D) ∈ P as in (70). Then, fmin(D) is the sum of the R smaller
values of ‖D(Qi)− Pc(i)(D)‖2.

Although the most obvious definition of a displacement operator involves only translation,
rotations and projections, more general definitions are possible. For example, the introduction
of an additional parameter allows one to consider scale variations so that a given form may be
recognized in a structure independently of its size. Moreover, if we replace the Euclidean norm
of the difference by a different distance function, we may obtain many alternative case-oriented
similarity measures.

7 Protein alignment

Protein Alignment is a particularly important problem related to hidden-pattern identification.
The goal is to find similarities between two proteins P and Q, represented by the coordinates
of their Cα atoms. The similarity is measured by a score. Several scores have been proposed
in the protein literature. One of the most popular ones is the Structal Score, the definition
of which is given now. Assume that the 3D-coordinates of the Cα atoms of protein P (in
angstroms) are P1, . . . , PM and the coordinates of the Cα atoms or protein Q are Q1, . . . , QN .
Under the rigid-body displacement D, the coordinates of the displaced protein Q are, therefore,
D(Q1), . . . , D(QN). Assume that Φ is a monotone bijection between a subset of {1, . . . ,M} and

34

a subset of {1, . . . , N}. (We mean that i < j ⇒ Φ(i) < Φ(j).) The Structal Score associated to
the displacement D and the bijection Φ is:

StS(D,Φ) =
∑ 20

1 + ‖Pk −D(QΦ(k))‖2/5
,−10× gaps, (71)

where the
∑

symbol involves the pairs (k, Φ(k)) defined by the bijection and gaps is the number
of cases in which at least one of the following situations occur:

• Φ(k) is defined, there exists ` > k such that Φ(`) is defined, but Φ(` + 1) is not defined;

• Φ−1(k) is defined, there exists ` > k such that Φ−1(`) is defined, but Φ−1(` + 1) is not
defined.

The Structal Alignment Problem consists of finding Φ and D such that StS(D,Φ) is maximal.
A global optimization procedure for achieving this objective was given in [30]. However, this
method is not computationally affordable (see [30]) and, in practice, an heuristic procedure
called Structal Method [43] is generally used. In [31], the Structal Method was reported as the
best available practical algorithm for protein alignment. Each iteration of the Structal Method
consists of two steps:

1. Update Φ: Given the positions P1, . . . , PM and D(Q1), . . . , D(QN), the monotone bijection
Φ that maximizes StS (fixing D) is computed using Dynamic Programming.

2. Update D: Assume that the graph of Φ is {(k1,Φ(k1)), . . . , (ks,Φ(ks))}. Then, the rigid-
body displacements that minimizes

∑s
`=1 ‖Pk`

−D(QΦ(k`)‖
2 is computed.

The computation of D at the second step of the Structal Method involves the solution of
the well known Procrustes problem [28, 29]. The main drawback of the Structal Method is that
the Update-Φ step aims the optimization of a function (the Structal Score) with respect to Φ
and the Update-D step involves the optimization of a different function (the sum of squared
distances) with respect to D. This may lead to oscillation [33]. With the aim of overcoming this
problem we suggest a different algorithm (DP-LS), where the Update-Φ phase at each iteration
of the Structal Method is maintained but the Update-D iteration is modified according to LOVO
principles.

The idea is the following. Assume that {Φ1, . . . ,Φm} is the set of all the monotone bijections
between a subset of {1, . . . ,M} and a subset of {1, . . . , N}. For each i = 1, . . . ,m and for each
rigid-body displacement D, we define:

fi(D) = −StS(D,Φi).

Observe that fi is a smooth function of the displacement vector D. The Update-Φ phase of the
Structal Method, in the LOVO terminology, consists of finding i1(D). Dynamic Programming is
a quite efficient algorithm for this purpose. The second (Update-D) phase of the DP-LS method
consists of the computation of a search direction in the D-space for fi1 (we used a safeguarded
Newton procedure) and the application of the ordinary line-search of Algorithm U1. Therefore,

35

DP-LS is Algorithm U1 applied to the maximization of the Structal Score, both with respect
to Φ and D.

The application of DP-LS to the alignment of proteins of the Protein Data Bank (PDB) [10]
is fully described in [33]. Using 79800 individual protein comparisons it may be concluded that:

• DP-LS is systematically able to obtain the best scores in the highest percentage of cases
for all alignment qualities. For alignments with (scaled) best-scores greater than 6, for
example, DP-LS obtains the best scores in at least 90% of the cases. For alignments with
best scores greater than 12, DP-LS obtains the best scores in 98% of the problems. The
Structal Method is competitive with DP-LS for bad alignments (scores lower than 3) and
for very good alignments (scores grater than 18), but for most cases the best scores are
obtained in only 10 to 40% of the problems.

• The computer time used by DP-LS is, on average, 2/3 the computer time employed by the
Structal Method on the tests reported in [33].

These facts are quite encouraging and makes the comparison of a single protein to all the
proteins of the PDB quite efficient and the all-to-all comparison affordable.

An additional LOVO algorithm for Protein Alignment (NB-Newton) was presented in [33].
With the aim of improving computer time, instead of a monotone bijection, an arbitrary cor-
respondence is used. For good alignments, this algorithm obtained comparable scores to DP-
LS and it was 6 times faster than the Structal Method in terms of computer time. Other
LOVO methods for different types of chemical structures comparisons were suggested in [5].
Algorithms for Protein Alignment based on LOVO ideas are publicly available in our site
www.ime.unicamp.br/∼martinez/lovoalign. On-line alignments can be performed using the
facilities of this site.

Initial approximations for the application of U1 were obtained using a specific heuristic
described in [33]. An algorithm that converges to global solutions of the Protein Alignment
problem was introduced in [30]. However, this algorithm is based on evaluation of the objective
function (which involves Dynamic Programming) on a grid in the parameter space and, so, it is
not practical.

8 Numerical examples

One of the main practical consequences of the theory introduced in Sections 2–5 of this paper
is that, in spite of the nonsmoothness of the LOVO problem, if one ignores the multiplicity of
gradients at a given point xk and we use straightforward smooth minimization solvers, the bad
consequences are rather mild. In fact, a far more serious inconvenient is the fact that convergence
to global minimizers is not guaranteed, but this inconvenient is shared by most practical smooth
nonlinear-programming methods.

Many smooth optimization algorithms, when applied to LOVO, may be considered partic-
ular cases of Algorithms U1 and C-LOVO. With this property in mind, we used, in our ex-
periments, the unconstrained and constrained versions of Algencan, the nonlinear-programming
code available in the Tango project web-page (www.ime.usp.br/∼egbirgin/tango) with its
default algorithmic parameters [1, 2, 14]. Considering a rather large number of unconstrained

36

and constrained tests, we did not detect practical differences between the performance of algo-
rithms U1 and U2. In constrained problems this is as predicted by theory, because C-LOVO
cannot guarantee convergence to strongly critical points.

All the experiments were run on an computer with Pentium IV processor, 512 Mb of RAM
memory and Linux operating system. Codes are in Fortran77 and the compiler option “-O” was
adopted.

8.1 A Hidden-Pattern Example

We consider the application LOVO described in Section 6. The points of P, represented in
Figure 1.(a) in light grey, are the 253 Cα atoms of the thyroid hormone receptor protein bound
to a IH5, a synthetic ligand (Protein Data Bank identifier 1NAV). The points of Q, in black in
Figure 8.1(a), are 78 Cα atoms of the C-terminal region of a similar protein, however bound
to a different ligand (PDB id. 1Q4X), which provides some structural differences. Therefore,
there is no set of points in P which exactly match the set Q. However, there is a subset of
P that is similar to Q. The goal here is to identify which set of points in the target protein
best matches the points of the fragment. In other words, we aim to know whether there is a
structural pattern of the type defined by Q in the structure defined by P. This is the general
definition of the problem of Protein Fold Recognition, which has fundamental importance for
the analysis of protein function and evolution [25].

We used a multistart approach, since this type of problems has many local minimizers.
The variables of the problem are the ones that define the displacement D: three variables for
defining the translation and three variables for defining rotations around the coordinate axes.
Let B ⊂ IR3 be the smaller box that contains the protein P. The initial approximation for the
translation vector was taken as ξ − O where O is the center of gravity of Q and ξ is a random
point in B. The initial angles were taken uniformly randomly between 0 and 2π.

The best solution was obtained in the third trial. The last execution of the unconstrained
algorithm used 21 iterations. So, Algorithm U1 ran three times, finding critical points in the
first two cases. On average, the distance between the displaced points of Q and the points of P
was 1.07 angstrons (the best solution found is correct from the point of view of protein function
and is, very likely, the global solution). In Figure 1.(b) we show the superposition of the points
in the best solution found. We note that even when the alignment is good, its recognition is not
obvious. Figure 1.(c) shows the same solution, but now represented as a Cα trace (consecutive
points in the structure are connected), and provides a clearer view of the alignment obtained
(the fragment is in black and the target protein is in light grey).

8.2 Fitting Models with Outliers

8.2.1 Unconstrained fitting

Assume that {(t1, y1), . . . , (tm, ym)} ⊂ IR2 is a set of data and we know that “some of them are
wrong”. Assume that T (x, ti) is the predicted value of the observation i with the parameters
x ∈ Ω. Least-squares fitting of the form yi ≈ T (x, ti) leads to unsatisfactory results due to the
overwhelming influence of outliers.

37

Figure 1: Finding patterns of protein folding with LOVO.

The LOVO approach for robust estimation of parameters consists in defining, for each i =
1, . . . , r, the error function

Fi(x) = (T (x, ti)− yi)2.

Given p ∈ {1, . . . , r}, this set of functions defines a LOVO problem (1) for which algorithms U1,
U2 (unconstrained cases) and C-LOVO (constrained cases) may be employed. When p = r
this LOVO problem coincides with the classical nonlinear least-squares problem. However, the
interesting situation is when p is smaller than r. In that case, the solution of LOVO allows one
to discard the influence of an estimated number of outliers. The idea is to solve this problem
for different values of p. If p = r we expect a large value of the LOVO function at the solution,
showing that there are wrong data among the points that correspond to Fi1 , . . . , Fir . When p is
decreased, the LOVO function at the solution tends to decrease as well. Obviously, this decrease
is due to the fact that the quantity of terms in the sum is smaller but, we expect that, when we
take “the correct p”, the magnitude of this decrease would be greater.

To illustrate the behavior of the LOVO approach we consider a simple unconstrained problem
where T (x, ti) is defined as

T (x, ti) = x1exp[−tix5] + x2exp[−(ti − x9)2x6] +
x3exp[−(ti − x10)2x7] + x4exp[−(ti − x11)2x8].

This is the Osborne-2 function (coming from Problem 19 of [34], where r = 65). Here we
introduced 13 additional data representing systematic errors. The results are shown in Figure 2.
The points in the graphics represent the given data (ti, yi). The rounded points are the detected
outliers. The full line is the fitted curve. For p = 78 the full line gives the ordinary least-squares
fitting. For p = 65 all the outliers are detected and the fitted curve is the “correct” one. In
both cases we used the initial point given in [34]. The sum of squares was observed to decrease
abruptly from p = 66 to p = 65, as expected.

38

Figure 2: Unconstrained model fitting

8.2.2 Constrained fitting

Assume that x1, . . . , xr satisfy the difference equations

xi+1 − 2xi + xi−1

h2
= Φ(ti, xi, z) (72)

for i = 2, . . . , r − 1, where z ∈ IRnpar is a vector of unknown parameters, h = 2/(r − 1),
ti = (i − 1)h. We want to find the correct values of x and the parameters z. The data of
the problem are y1, . . . , yr. We know that approximately r − p data are wrong. So, defining
Fi(x, z) = (xi − yi)2, the goal is to minimize Sp(x, z) subject to the constraints (72).

In the experiments reported here we took r = 21, npar = 3 and

Φ(xi, z) = z1e
xi − z2(x2

i + 1)ti − z3 sin(tixi).

The data were generated as follows. First, we found the exact solution of (72) that satisfies
x̄1 = 4, x̄r = 6 with z1 = 0.1, z2 = 1, z3 = 2. Then, we chose yi = x̄i + ξi, where ξi is random
between −0.05 and 0.05, for i = 4, . . . , r − 2. The data y1, y2, y3, yr−1 and yr were generated
as outliers, much larger than the “correct” yi (Figure 3). The results for p = 21 and p = 16
are shown in Figure 3. As initial approximation we used xi random between 0 and 2|yi| and
zi random between −10 and 10. For p = 21 the solution is distorted by the necessity of fitting
the outliers and the value of the LOVO function at the solution was 5.27. For p = 16 the fitted
solution coincided with the correct data and the LOVO function value was less than 0.001.

39

Figure 3: Model fitting with constraints

9 Final remarks

The LOVO problem defined in this paper is, in general, nonsmooth and nonconvex. Here we gave
(weak and strong) optimality conditions and introduce unconstrained and constrained algorithms
for its resolution. An important consequence of the theory, confirmed by experiments, is that,
unlike most nonsmooth (even convex) problems, the consequences of ignoring nonsmoothness
are not severe. Briefly speaking, smooth optimization algorithms when applied to this problem
converge to weakly critical points and specific algorithms converge to strong critical points. This
allows us to take advantage of the availability of efficient smooth optimization software.

The unconstrained algorithms introduced in this paper converge to different classes of station-
ary points. Algorithm U1 converges to “weak” stationary points and Algorithm U2 converges
to “strong” stationary points. Both algorithms produce monotonically descent sequences, in the
sense that the objective function decreases at every iteration. In practice, we did not observe dif-
ferences in the behavior of both algorithms. Moreover, as subproblem solvers of the Augmented
Lagrangian method, both produce the same theoretical results for constrained problems. This
corroborates our point of view that the main difficulty of LOVO problems relies on the presence
of many local minimizers. The development of powerful heuristics for overcoming this problem,
finding initial points or escaping from local minimizers, will probably be subject of interesting
research in forthcoming years.

Applications to Hidden Pattern recognition and to Robust Model fitting seem to be promis-
ing. Both problems are very important in many areas of Science and Engineering. Undoubtedly,
in the presence of specific technological applications it will be necessary to develop case-oriented
algorithms but the possibility of using general software with reasonable results (an unusual
feature in Engineering Optimization) is very encouraging.

Future research on this subject should include:

40

• Using DC-Programming [35, 36] in the case that all the functions Fi involved in the LOVO
problem are convex. In this case, the LOVO function has a natural decomposition as a
difference of two convex functions:

Sp(x) =
r∑

i=1

Fi(x)−
r∑

j=p+1

Fij(x)(x)

and practical improvements may be expected from DC-Algorithms.

• Exploiting smooth reformulations like the one proposed in [4] for the OVO problem.

• Adaptation and development of global-optimization strategies for finding suitable initial
points to avoid the attractiveness of local-nonglobal minimizers.

• Development of constrained LOVO algorithms with convergence to strongly critical points.

• Extensions of the LOVO approach to the case in which p is not fixed in advance. This
should enhance the applicability to similarity problems.

• Nonlinear programming problems with LOVO– and OVO–constraints.

• Sequential Quadratic Programming, Interior-Point and Restoration algorithms for nonlin-
early constrained LOVO problems.

• Noisy Order-Value Optimization.

Acknowledgement. We are indebted to Mario Gneri, for insightful conversations on robust
estimation problems.

References

[1] R. Andreani, E. G. Birgin, J. M. Mart́ınez and M. L. Schuverdt. Augmented Lagrangian
methods under the Constant Positive Linear Dependence constraint qualification, Mathe-
matical Programming 112, pp. 5-32 (2008).

[2] R. Andreani, E. G. Birgin, J. M. Mart́ınez and M. L. Schuverdt. On Augmented Lagrangian
methods with general lower-level constraints, SIAM Journal on Optimization 18, pp. 1286-
1309 (2007).

[3] R. Andreani, C. Dunder and J. M. Mart́ınez. Order-Value Optimization: formulation
and solution by means of a primal Cauchy method, Mathematical Methods of Operations
Research 58, pp. 387-399 (2003) .

[4] R. Andreani, C. Dunder and J. M. Mart́ınez. Nonlinear-Programming Reformulation of
the Order-Value Optimization Problem, Mathematical Methods of Operations Research 61,
pp. 365-384 (2005).

41

[5] R. Andreani, J. M. Mart́ınez, L. Mart́ınez and F. Yano. Continuous Optimization Methods
for Structural Alignment, Mathematical Programming 112, pp. 93-124 (2008).

[6] R. Andreani, J. M. Mart́ınez, M. Salvatierra and F. Yano. Quasi-Newton methods for
order-value optimization and value-at-risk calculations. Pacific Journal of Optimization 2,
pp. 11-33 (2006).

[7] R. Andreani, J. M. Mart́ınez, M. Salvatierra and F. Yano. Global Order-Value Optimiza-
tion by means of a multistart harmonic oscillator tunneling strategy. In Global Optimiza-
tion: Theory and Practice, pp. 379–404. Edited by L. Liberti and N. Maculan, Kluwer
(2006).

[8] R. Andreani, J. M. Mart́ınez and M. L. Schuverdt. On the relation between the Constant
Positive Linear Dependence condition and quasinormality constraint qualification, Journal
of Optimization Theory and Applications 125, pp. 473–485 (2005).

[9] Ch. Audet and J. E. Dennis. Mesh adaptive direct search algorithms for constrained op-
timization. SIAM Journal on Optimization 17, pp. 188-217 (2006).

[10] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov
and P.E. Bourne, The Protein Data Bank, Nucleic Acids Res. 28, pp. 235-242 (2000).

[11] D. P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods, Academic
Press, 1982; republished by Athena Scientific, 1996.

[12] D. P. Bertsekas. Nonlinear Programming, 2nd edition, Athena Scientific, Belmont, Mas-
sachusetts, 1999.

[13] E. G. Birgin, C. A. Floudas and J. M. Mart́ınez, Global minimization us-
ing an Augmented Lagrangian method with variable lower-level constraints, avail-
able in Optimization On-line, E-Print ID: 2006-12-1544, http://www.optimization-
online.org/DB HTML/2006/12/1544.html.

[14] E. G. Birgin and J. M. Mart́ınez. Large-scale active-set box-constrained optimization
method with spectral projected gradients, Computational Optimization and Applications
23, pp. 101-125 (2002).

[15] J. V. Burke, A. S. Lewis and M. L. Overton. A robust gradient sampling algorithm for non-
smooth nonconvex optimization. SIAM Journal on Optimization 15, pp. 751-779 (2005).

[16] F.H. Clarke. Optimization and nonsmooth Analysis Classic in Applied mathematics,
SIAM, Philadelphia, 1990.

[17] A. R. Conn, N. I. M. Gould, A. Sartenaer and Ph. L. Toint. Convergence properties of an
Augmented Lagrangian algorithm for optimization with a combination of general equality
and linear constraints, SIAM Journal on Optimization 6, pp. 674–703 (1996).

42

[18] A. R. Conn, N. I. M. Gould and Ph. L. Toint. A globally convergent Augmented La-
grangian algorithm for optimization with general constraints and simple bounds, SIAM
Journal on Numerical Analysis 28, pp. 545–572 (1991).

[19] Z. Dostál. Inexact semi-monotonic Augmented Lagrangians with optimal feasibility con-
vergence for convex bound and equality constrained quadratic programming. To appear
in SIAM Journal on Numerical Analysis.

[20] Z. Dostál, A. Friedlander and S. A. Santos. Augmented Lagrangian with adaptive precision
control for quadratic programming with simple bounds and equality constraints, SIAM
Journal on Optimization 13, pp. 1120–1140 (2003).

[21] Z. Dostál, F. A. M. Gomes and S. A. Santos. Duality based domain decomposition with
natural coarse space for variational inequalities, Journal of Computational and Applied
Mathematics 126, pp. 397–415 (2000).

[22] R. Fletcher. Practical Methods of Optimization, Academic Press, London, 1987.

[23] W. W. Hager. Analysis and implementation of a dual algorithm for constrained optimiza-
tion, Journal of Optimization Theory and Applications 79, pp. 37–71 (1993).

[24] M. R. Hestenes. Multiplier and gradient methods, Journal of Optimization Theory and
Applications 4, pp. 303–320 (1969).

[25] L. Holm and C. Sander. Mapping the Protein Universe, Science 273, pp. 595–602 (1996).

[26] P. J. Huber. Robust statistics. Wiley, New York, 1981.

[27] P. Jorion. Value at risk: the new benchmark for managing financial risk, 2nd edition. Mc
Graw-Hill, New York, 2001.

[28] W. Kabsch. A discussion of the solution for the best rotation to relate two sets of vectors.
Acta Crystallog. A 34, pp. 827-828 (1978).

[29] S. K. Kearsley. On the orthogonal transformation used for structural comparisons. Acta
Crystallog. A 45, pp. 208-210 (1996).

[30] R. Kolodny and N. Linial. . Approximate protein structural alignment in polynomial time,
P. Natl. Acad. Sci. USA 101, pp. 12201–12206 (2004).

[31] R. Kolodny, P. Koehl and M. Levitt. Comprehensive evaluation of protein structure align-
ment methods: scoring by geometric measures. J. Mol. Biol. 346, pp. 1173-1188 (2005).

[32] O. L. Mangasarian and S. Fromovitz. The Fritz-John necessary optimality conditions
in presence of equality and inequality constraints, Journal of Mathematical Analysis and
Applications 17, pp. 37–47 (1967).

[33] L. Mart́ınez, R. Andreani and J. M. Mart́ınez. Convergent Algorithms for Pro-
tein Structural Alignment. BMC Bioinformatics 8: 306 (2007). Available in
www.ime.unicamp.br/∼martinez/lovoalign.

43

[34] J. J. Moré, B. S. Garbow and K. E. Hillstrom. Testing unconstrained optimization software,
ACM Transactions on Mathematical Software 7, pp. 17-41 (1981).

[35] Pham Dinh Tao and Le Thi Hoai An. Convex Analysis Approach to DC Programming:
Theory, Algorithm and Applications, Acta Mathematica Vietnamica 22, pp. 289-355 (1997)

[36] Pham Dinh Tao and Le Thi Hoai An. DC Optimization Algorithms for solving the trust-
region problem, SIAM Journal on Optimization 8, pp. 476-505 (1998).

[37] M. J. D. Powell. A method for nonlinear constraints in minimization problems, in Opti-
mization, R. Fletcher (ed.), Academic Press, New York, NY, pp. 283–298 (1969).

[38] L. Qi and Z. Wei. On the constant positive linear dependence condition and its application
to SQP methods, SIAM Journal on Optimization 10, pp. 963–981 (2000).

[39] R. T. Rockafellar. The multiplier method of Hestenes and Powell applied to convex pro-
gramming, Journal of Optimization Theory and Applications 12, pp. 555–562 (1973).

[40] R. T. Rockafellar. Augmented Lagrange multiplier functions and duality in nonconvex
programming, SIAM Journal on Control 12, pp. 268-285 (1974).

[41] R. T. Rockafellar. Lagrange multipliers and optimality, SIAM Review 35, pp. 183–
238 (1993).

[42] R. T. Rockafellar and S. Uryasev. Conditional value-at-risk for general loss distributions,
Journal of Banking and Finance 26, pp. 1443-1471 (2002).

[43] S. Subbiah, D. V. Laurents and M. Levitt. Structural similarity of DNA-binding domains
of bacteriophage repressors and the globin core. Curr. Biol. 3, pp. 141-148 (1993).

44

