Skip to main content
Log in

DESA: a new hybrid global optimization method and its application to analog integrated circuit sizing

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper presents a new hybrid global optimization method referred to as DESA. The algorithm exploits random sampling and the metropolis criterion from simulated annealing to perform global search. The population of points and efficient search strategy of differential evolution are used to speed up the convergence. The algorithm is easy to implement and has only a few parameters. The theoretical global convergence is established for the hybrid method. Numerical experiments on 23 mathematical test functions have shown promising results. The method was also integrated into SPICE OPUS circuit simulator to evaluate its practical applicability in the area of analog integrated circuit sizing. Comparison was made with basic simulated annealing, differential evolution, and a multistart version of the constrained simplex method. The latter was already a part of SPICE OPUS and produced good results in past research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Box, M.J.: A new method of constrained optimization and a comparison with other methods. Comput. J. 8, 42–52 (1965)

    Google Scholar 

  2. Powell, M.J.: Direct search algorithms for optimization calculations. Acta Numer. 7, 287–336 (1998)

    Article  Google Scholar 

  3. Torczon, V.: On the convergence of pattern search algorithms. SIAM J. Optim. 7(1), 1–25 (1997)

    Article  Google Scholar 

  4. Preux, P., Talbi, E.G.: Towards hybrid evolutionary algorithms. Int. Trans. Oper. Res. 6, 557–570 (1999)

    Article  Google Scholar 

  5. Garcia-Palomares, U.M., Gonzales-Castaño, F.J., Burguillo-Rial, J.C.: A combined global & local search (CGLS) approach to global optimization. J. Glob. Optim. 34, 409–426 (2006)

    Article  Google Scholar 

  6. Schmidt, H., Thierauf, G.: A combined heuristic optimization technique. Adv. Eng. Software 36, 11–19 (2005)

    Article  Google Scholar 

  7. Ho, S.L., Yang, S., Ni, G., Mochado, J.M.: A modified ant colony optimization algorithm medeled on tabu-search methods. IEEE Trans. Magn. 42(4), 1195–1198 (2006)

    Article  Google Scholar 

  8. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 1277–1292 (1983)

    Article  Google Scholar 

  9. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)

    Article  Google Scholar 

  10. Ochotta, E., Mukherjee, T., Rutenbar, R., Carley, L.: Practical Synthesis of High-Performance Analog Circuits. Kluwer Academic, Norwell, MA (1998)

    Google Scholar 

  11. Harlani, R., Rutenbar, R., Carley, L.: OASYS: a framework for analog circuit synthesis. IEEE Trans. Comp. Aided Des. 8(12), 1247–1266 (1989)

    Article  Google Scholar 

  12. Gielen, G. et al.: Analog circuit design optimization based on symbolic simulation and simulated annealing. IEEE J. Solid-State Circuits 25, 707–713 (1990)

    Article  Google Scholar 

  13. Fernández, F.V., Guerra, O., Rodríguez-García, J.D., Rodríguez-Vázquez, A.: Symbolic analysis of large analog integrated circuits: the numerical reference generation problem. IEEE Trans. Circuits Systems II: Analog Digital Signal Process. 45(10), 1351–1361 (1998)

    Article  Google Scholar 

  14. Gielen, G., Wambacq, P., Sansen, W.: Symbolic analysis methods and applications for analog circuits: A tutorial overview. Proc. IEEE 82, 287–304 (1990)

    Article  Google Scholar 

  15. Shi, C.J., Tan, X.: Symbolic analysis of large analog circuits with determinant decision diagrams. In: Proceedings, ACM/IEEE ICCAD, pp. 366–373 (1997)

  16. Yu, Q., Sechen, C.: A unified approach to the approximate symbolic analysis of large analog integrated circuits. IEEE Trans. Circuits Syst. 43, 656–669 (1996)

    Article  Google Scholar 

  17. Daems, W., Gielen, G., Sansen, W.: Circuit complexity reduction for symbolic analysis of analog integrated circuits. In: Proceedings, ACM/IEEE, Design Automation Conf., 958–963, Jun. 1999

  18. Wambacq, P., Vanthienen, J., Gielen, G., Sansen, W.: A design tool for weakly nonlinear analog integrated circuits with multiple inputs (mixers, multipliers). In: Proceedings, IEEE CICC, San Diego, CA, pp. 5.1.1–5.1.4, May 1991

  19. Ochotta, E., Rutenbar, R., Carley, L.: Synthesis of high-performance analog circuits and ASTRX/OBLX. IEEE Trans. Comput. Aided Des. 15, 237–294 (1996)

    Article  Google Scholar 

  20. Alpaydın, G., Balkır, S., Dündar, G.: An evolutionary approach to automatic synthesis of high-performance analog integrated circuits. IEEE Trans. Evol. Comput. 7(3), 240–252 (2003)

    Article  Google Scholar 

  21. Gielen, G.G.E., Rutenbar, R.A.: Computer-aided design of analog and mixed-signal integrated circuits. Proc. IEEE 88(12), 1825–1849 (2000)

    Article  Google Scholar 

  22. Gielen, G.G.E.: CAD tools for embedded analogue circuits in mixedsignal integrated systems on chip. Proc. IEEE Comput. Digit. Tech. 152(3), 317–332 (2005)

    Article  Google Scholar 

  23. Rutenbar, R.A., Gielen, G.G.E., Roychowdhury, J.: Hierarchical modeling, optimization, and synthesis for system-level analog and RF designs. Proc. IEEE 95(3), 640–669 (2007)

    Article  Google Scholar 

  24. Phelps, R., Krasnicki, M., Rutenbar, R., Carley, R., Hellums, J.: Simulation-based synthesis of analog circuits via stochastic pattern search. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 19(6), 703–717 (2000)

    Article  Google Scholar 

  25. SPICE OPUS circuit simulator homepage: http://www.fe.uni-lj.si/spice/. Accessed 1 Dec. 2005 (2005)

  26. Bűrmen, Á., Strle, D., Bratkovič, F., Puhan, J., Fajfar, I., Tuma, T.: Automated robust design and optimization of integrated circuits by means of penalty functions. AEU-Int. J. Electron. C. 57(1), 47–56 (2003)

    Article  Google Scholar 

  27. Antreich, K.J., Graeb, H.E., Wieser, C.U.: Circuit analysis and optimization driven by worst-case distances. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 13(1), 703–717 (1994)

    Google Scholar 

  28. Schwencker, R., Schenkel, F., Pronath, M., Graeb, H.: Analog circuit sizing using adaptive worst-case parameter sets. In: Proceedings, Design, Automation and Test (2002)

  29. Yang, R.L.: Convergence of the simulated annealing algorithm for continuous global optimization. J. Optim. Theor. Appl. 104(3), 691–716 (2000)

    Article  Google Scholar 

  30. Bilbro, G.L.: Fast stochastic global optimization. IEEE Trans. Syst. Man. Cybern. 24(4), 684–689 (1994)

    Article  Google Scholar 

  31. Thompson, D.R., Bilbro, G.L.: Sample-sort simulated annealing. IEEE Trans. Syst. Man. Cybern. B Cybern. 35(3), 625–632 (2005)

    Article  Google Scholar 

  32. Puhan, J., Bűrmen, Á., Tuma, T.: Analogue integrated circuit sizing with several optimization runs using heuristics for setting initial points. Can. J. Electr. Comput. Eng. 28(3–4), 105–111 (2003)

    Article  Google Scholar 

  33. Puhan, J., Tuma, T., Fajfar, I.: Optimisation methods in SPICE, a comparison. In: Proceedings, European Conference on Circuit Theory and Design. Stresa, Italy, Vol. 2, pp. 1279–1282 (1999)

  34. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3(2), 82–102 (1999)

    Article  Google Scholar 

  35. Birbil, Şİ., Fang, S.C., Sheu, C.L.: On the convergence of a population-based global optimization algorithm. J. Glob. Optim. 30, 301–318 (2004)

    Article  Google Scholar 

  36. He, J., Yu, X.: Conditions for the convergence of evolutionary algorithms. J. Syst. Architect. 47, 601–612 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jernej Olenšek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olenšek, J., Bűrmen, Á., Puhan, J. et al. DESA: a new hybrid global optimization method and its application to analog integrated circuit sizing. J Glob Optim 44, 53–77 (2009). https://doi.org/10.1007/s10898-008-9307-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-008-9307-9

Keywords

Navigation