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Abstract

In this paper we consider the standard linear SDP problem, and its low rank

nonlinear programming reformulation, based on a Gramian representation of

a positive semidefinite matrix. For this nonconvex quadratic problem with

quadratic equality constraints, we give necessary and sufficient conditions of

global optimality expressed in terms of the Lagrangian function.
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1 Introduction

The standard linear SDP problem we consider is of the form:

min trace (QX)
trace (AiX) = bi, i = 1, . . . ,m
X � 0, X ∈ Sn,

(SDP)

where the data matrices Q and Ai for i = 1, . . . ,m are n × n real sym-
metric matrices, trace (QX) denotes the trace-inner product of matrices,
and the n×n matrix variable X is required to be symmetric and positive
semidefinite, as indicated with the notation X � 0, X ∈ Sn, where Sn

is the space of real n × n symmetric matrices.
This class of problems contains important problems as special cases,
such as linear or quadratic programming, and arises in a wide variety of
applications in system and control theory, combinatorial optimization,
approximation theory, robust optimization, and mechanical and electri-
cal engineering.
Among the main approaches for solving linear SDP problems are interior
point methods (see for example the survey [10] and references therein),
and first order non linear programming methods ([2]). Interior point
methods are in general able to solve SDP problems of small or medium
size with high accuracy, and are proved to converge in polynomial time to
an ǫ optimal solution. However, in practice, the dimension of the problem
that can be solved is still limited to a maximum of a few thousand
variables for the most efficient codes. First order nonlinear programming
methods work efficiently in practice and can solve much larger problems,
but convergence to a global solution is not guaranteed. We are interested
in this class of methods, and the aim of this paper is to give a theoretical
result that further justifies this approach.
Burer and Monteiro in [2, 3] recast a general linear SDP problem as a
low rank semidefinite programming problem (LRSDP) by applying the
change of variables X = RRT , where R is a n × r, r < n, rectangular
matrix. They get the following problem

min trace (QRRT )
trace (AiRRT ) = bi, i = 1, . . . ,m
R ∈ IRn×r, r ≤ n.

(1)

The value of r is chosen by exploiting the result proved in Barvinok [1]
and Pataki [12], that states that, under suitable assumptions, there exists
an optimal solution of a linearly constrained SDP problem with rank r
satisfying r(r + 1) ≤ m, where m is the number of linear constraints.
Problem (1) is a nonlinear programming problem; although it has been
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proved [1, 12, 2] that a value of r exists such that there is a one-to
one correspondence between global solutions of Problem (1) and global
solutions of Problem (SDP), Problem (1) is a non convex problem, so
that recognizing a global solution is a difficult task.
In this paper, under suitable assumptions on Problem (SDP), we state
necessary and sufficient global optimality conditions in terms of the La-
grangian function. Similar conditions have already been proved to be
sufficient in [3]. These conditions extend the necessary and sufficient
ones proved in [5] for the special case of the semidefinite relaxation of
the max cut problem and can be related to the necessary and sufficient
global optimality conditions established for some classes of nonconvex
quadratic problems (see e.g. [6, 11, 9]).

2 Low rank SDP formulations

It has been proved in [2, 5] that if Problem (SDP) admits a solution X∗

or rank r, this can be found by solving Problem (1). Actually Problem
(1) can be rewritten as a standard nonlinear programming problem, by
setting R = (v1 . . . vn)T , vk ∈ IRr for k = 1, . . . , n so that (RRT )ij =
vT

i vj and we get:

min qr(v) :=

n∑

i=1

n∑

j=1

qijv
T
i vj (2)

n∑

k=1

n∑

j=1

(Ai)kjv
T
k vj = bi, i = 1, . . . ,m, vk ∈ IRr, k = 1, . . . , n.

The following result proved in [1] and [12] provides a useful upper bound
on the value of r, that can be easily computed.

Proposition 1 Suppose that the feasible set of Problem (SDP) has an

extreme point. Then there exists an X ∈ Sn optimal solution of (SDP)
with rank r satisfying the inequality

r(r + 1)/2 ≤ m.

This result implies that r ≤ r̂ where

r̂ = max{k ∈ N : k(k + 1)/2 ≤ m} =

⌊√
1 + 8m − 1

2

⌋
. (3)

Therefore, for sufficiently large values of r, a global solution of Problem
(2) gives a global solution of Problem (SDP). In particular, Problem (2)
gives a global solution of Problem (SDP) for all r ≥ r̂.
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We can recast Problem (2) in compact standard vector notation of non-
linear programming form by using Kronecker products ⊗ (see, for in-
stance, [8]). We recall that given two matrices A m×n and B p× q, the
Kronecker product A ⊗ B is the mp × nq matrix given by

A ⊗ B =




a11B a12B . . . a1nB

...
...

...
...

am1B an2B . . . amnB



 .

Given a matrix A ∈ Sn, with spectrum σ(A) = {λ1, . . . , λn} and a
matrix B ∈ Sm, with spectrum σ(B) = {µ1, . . . , µm}, it is known (see
[8]) that the spectrum of A ⊗ B is given by:

σ(A ⊗ B) = {λiµj : i = 1, . . . , n; j = 1, . . . ,m}.

Hence, letting ei ∈ IRn, we can write the vector v ∈ IRnr as

v =

n∑

i=1

(ei ⊗ vi) =




v1
...

vn





so that we have
vi = (ei ⊗ Ir)

T v.

Therefore we can write the objective function of Problem (2) as:

n∑

i=1

n∑

j=1

qijv
T
i vj =

n∑

i=1

n∑

j=1

qij

(
(ei ⊗ Ir)

T v
)T

(ej ⊗ Ir)
T v

=

n∑

i=1

n∑

j=1

vT (qijeie
T
j ⊗ Ir)v = vT (Q ⊗ Ir)v.

With similar reasoning the constraints can be written as

n∑

k=1

n∑

j=1

(Ai)kjv
T
k vj = vT (Ai ⊗ Ir) v.

Thus, we obtain the nonlinear programming problem

min vT (Q ⊗ Ir)v = qr(v)

vT (Ai ⊗ Ir) v = bi i = 1, . . . ,m,
(NLPr)

which is the problem we will focus on in the rest of the paper.
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3 Optimality conditions

We are interested in Problem (NLPr) as an instrument to solve Problem
(SDP), and hence we need to solve it to global optimality. However,
since Problem (NLPr) is a non convex problem, the best we can expect
from a nonlinear programming algorithm is to produce a point satisfying
some necessary optimality conditions. The question we want to answer
is when a stationary point v̂ of Problem (NLPr) is a global minimizer
that solves Problem (SDP). We remark that, from now on, for sake of
simplicity, we adopt the following terminology: whenever we say that a
point v∗ ∈ IRnr solves Problem (SDP) we mean that X∗ = V ∗V ∗T , where
V ∗ = (v∗

1 . . . v∗n)T , is an optimal solution of Problem (SDP), namely

qr(v
∗) = trace (QX∗) = z∗SDP.

We want to be able to recognize a global minimum point of Problem
(NLPr) for suitable values of r.
The Lagrangian function for Problem (NLPr) is, for an arbitrary fixed
value r ≥ 1,

L(v, λ) = vT (Q ⊗ Ir) v +

m∑

i=1

λi

(
vT (Ai ⊗ Ir) v − bi

)

= vT [(Q +

m∑

i=1

λiAi) ⊗ Ir]v − λT b

(4)

where λ = (λ1, . . . , λn)T .

Definition 1 (Stationary point of Problem (NLPr)) A point v̂ ∈
IRnr is a stationary point of Problem (NLPr), if there exists a Lagrange

multiplier λ̂ ∈ IRm such that (v̂, λ̂) ∈ IRnr × IRm satisfies:

[(Q +

m∑

i=1

λiAi )⊗Ir] v̂ = 0

v̂T (Ai ⊗ Ir) v̂ = bi, i = 1, . . . ,m.

(5)

Moreover, v̂ ∈ IRnr is a second order stationary point of Problem (NLPr),

if there exists a Lagrange multiplier λ̂ ∈ IRm such that (v̂, λ̂) ∈ IRnr×IRm

satisfies (5) and

zT

[(
Q +

m∑

i=1

λiAi

)
⊗ Ir

]
z ≥ 0

for every z ∈ IRnr such that v̂T (Ai ⊗ Ir) z = 0 for i = 1, . . . ,m.



6 L. Grippo, L. Palagi, V. Piccialli

First we state some useful properties of the Lagrange multipliers at a
stationary point deriving from the structure of Problem (NLPr).

Proposition 2 Let v̂ ∈ IRnr be a stationary point of Problem (NLPr),

and let λ̂ ∈ IRm be the corresponding Lagrange multiplier. Then we have:

λ̂T b = −qr(v̂). (6)

Proof. Let v̂ be a stationary pair of Problem (NLPr) so that

1

2
∇vL(v̂, λ̂) ≡ (Q ⊗ Ir) v̂ +

m∑

i=1

λ̂i (Ai ⊗ Ir) v̂ = 0. (7)

Premultiplying both sides of (7) by v̂T we can write:

v̂T (Q ⊗ Ir) v̂ +

m∑

i=1

λ̂iv̂
T (Ai ⊗ Ir) v̂ = 0.

Therefore, as v̂T (Ai ⊗ Ir) v̂ = bi, for all i = . . . ,m, we obtain

m∑

i=1

λ̂ibi = −v̂T (Q ⊗ Ir) v̂,

which yields (6).

In order to exploit the information coming from the relationship between
Problem (NLPr) and Problem (SDP), we apply duality theory to the
convex Problem (SDP) to get global optimality conditions for it.
Let u ∈ IRm, we can write the standard Lagrangian dual of Problem
(SDP):

max bT u

Q −
m∑

i=1

uiAi � 0. (8)

Denote by u∗ ∈ IRm an optimal solution of Problem (8), and let

bT u∗ = z∗DUAL.

We suppose that the following assumption is satisfied:

Assumption A1 Problem (SDP) and its dual have nonempty optimal
solution sets with zero duality gap.
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Therefore, X∗ and u∗ are optimal solutions of the primal problem (SDP)
and of its dual (8) respectively if and only if:

z∗SDP = trace (QX∗) = bT u∗ = z∗DUAL

trace (AiX
∗) = bi i = 1, . . . ,m

X∗ � 0

Q −
m∑

i=1

u∗

i Ai � 0.

(9)

By posing ui = −yi for i = 1, . . . , n we can write problem (8) as

min bT y

Q +

m∑

i=1

yiAi � 0,

so that the primal dual optimality conditions can be rewritten as

trace (QX∗) = −bT y∗

trace (AiX
∗) = bi i = 1, . . . ,m

X∗ � 0

Q +

m∑

i=1

y∗

i Ai � 0.

(10)

These necessary and sufficient optimality conditions require the solu-
tion of the dual problem, while we are interested in conditions on the
Lagrangian of Problem (NLPr). Indeed, the following necessary and
sufficient global optimality condition can be proven.

Proposition 3 Suppose that Assumption A1 holds and that there exists

an optimal solution X∗ of Problem (SDP) of rank r. Then a point v∗ ∈
IRnr is a global minimizer of Problem (NLPr) if and only if there exists

a λ∗ ∈ IRm such that

[(
Q +

m∑

i=1

λ∗

i Ai

)
⊗ Ir

]
v∗ = 0

Q +

m∑

i=1

λ∗

i Ai � 0

v∗T (Ai ⊗ Ir) v∗ = bi, i = 1, . . . ,m.

(11)

Proof First assume that (11) are satisfied. By (6), we have qr(v
∗) =

−bT λ∗. The vector u∗ = −λ∗ is feasible for the dual problem (8), and
hence u∗ is optimal for the dual. Therefore, the primal dual optimality
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conditions (9) and the assumption that there exists an optimal solution
X∗ of Problem (SDP) of rank r together give

q∗r = z∗SDP = z∗DUAL = −bT λ∗ = qr(v
∗).

As for the necessity part, we know that v∗ is a global minimum point
of Problem (NLPr) and that the corresponding X∗ = V ∗V ∗T , where
V ∗ = (v∗

1 . . . v∗n)T is optimal for Problem (SDP). Therefore, we get by
(10) that there exist y∗ ∈ IRn such that

−bT y∗ = qr(v
∗)

Q +
m∑

i=1

y∗

i Ai � 0,

and hence:
−bT y∗ = v∗T (Q ⊗ Ir) v∗. (12)

Since v∗T (Ai ⊗ Ir)v
∗ = bi, i = 1, . . . ,m, we can write

bT y∗ =

m∑

i=1

y∗

i v∗T (Ai ⊗ Ir)v
∗ = v∗T (

m∑

i=1

y∗

i Ai ⊗ Ir)v
∗

that summed up with (12) gives

v∗T

[
(Q +

m∑

i=1

y∗

i Ai) ⊗ Ir

]
v∗ = 0. (13)

Since Q +
∑m

i=1 y∗

i Ai is positive semidefinite, by the properties of the
Kronecker products, also the matrix (Q +

∑m

i=1 y∗

i Ai) ⊗ Ir is positive
semidefinite, and hence we can represent it as the square of its square
root so that (13) implies

[
(Q +

m∑

i=1

y∗

i Ai) ⊗ Ir

]
v∗ = 0.

Therefore, v∗ is a stationary point of Problem (NLPr) with correspond-
ing Lagrange multiplier y∗, and setting λ = y∗ we have that (11) holds.

This proposition shows that the solution u∗ of the dual problem is ac-
tually obtained from the Lagrange multiplier λ∗ associated with the
solution v∗ of Problem (NLPr). We point out once more that problem
(NLPr) is a non convex optimization problem so that necessary and suf-
ficient global optimality conditions are usually not available. In general,
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for non convex quadratic-quadratic minimization problems (quadratic
objective function and quadratic constraints) global optimality condi-
tions can be found in some particular situations (see [6, 11, 9]). A well
known case is when there is one single quadratic constraint (equality or
inequality), that is the case of the generalized trust region problem [11].
Most of these conditions consist essentially in requiring that the Hessian
of the Lagrangian function is positive semidefinite at a stationary point,
as in the above proposition. However, as far as we know, the result
stated in Proposition 3 can not be derived from these previous results.
Note also that we do not require constraint qualifications on the quadratic
problem (NLPr), but we need Assumption A1 to be satisfied. It results
that assuming that strong duality holds for Problem (SDP) is sufficient
to ensure that the global minimum of Problem (NLPr) is a stationary
point, and this may explain why we do not need to impose constraint
qualifications.
The condition stated in Proposition 3 can be computationally checked
without solving the dual problem (8), since it requires only the knowl-
edge of the Lagrange multiplier associated to the point v∗, which is pro-
vided by many algorithms that compute stationary points of nonlinear
programming problems.
A different sufficient global optimality condition has been proved in [2]
by Burer and Monteiro. In particular, for r < n they prove the following
result that gives a sufficient condition of global optimality.

Proposition 4 (Proposition 4 in [2]) Let v∗ ∈ IRnr, with r < n, be

a local minimum point of Problem (NLPr). Let v̂ ∈ IRn(r+1) be a point

with components v̂i ∈ IRr+1 such that

v̂i =

(
v∗

i

0

)
.

If v̂ is a local minimum of Problem (NLPr+1), then v∗ is a global mini-

mum point of Problem (NLPr) that solves Problem (SDP).

Actually, by looking at the details of the proof of the above result in
[2], it emerges that the only assumption needed is that v∗ and v̂ are
stationary points with the same Lagrange multiplier. This has been
already observed in [5] for the special LRSDP deriving from the max-
cut problem. Following the same reasoning we show that the condition of
Proposition 4 is also necessary. By exploiting this result we can establish
a new necessary and sufficient condition that can be computationally
checked. Indeed, the following result holds.
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Proposition 5 Suppose that Assumption A1 holds and that there exists

an optimal solution X∗ of Problem (SDP) of rank r. A point v∗ ∈ IRnr,

with r < n, is a global minimum point of Problem (NLPr) if and only if

the following conditions hold:

(i) v∗ is a stationary point for Problem (NLPr) with Lagrange multiplier

λ∗ ∈ IRm,

(ii) the point v̂ ∈ IRn(r+1) with components v̂i ∈ IRr+1 defined as

v̂i =

(
v∗

i

0

)
(14)

is a second order stationary point for Problem (NLPr+1) with La-

grange multiplier λ∗ ∈ IRm.

Proof First of all, we prove sufficiency by rephrasing in our notation
the proof given in [2]. For any w = (w1, . . . , wn)T ∈ IRn, let us define
the vector z ∈ IRnr

zT = ( 0T
r w1 0T

r w2 · · · 0T
r wn )

which satisfies

v̂T [Ai ⊗ Ir+1] z = 0, for all i = 1, . . . ,m. (15)

By the second order necessary conditions for Problem (NLPr+1), we
must have zT [(Q +

∑m

i=1 λ∗

i Ai) ⊗ Ir+1] z ≥ 0 and therefore, by the ex-
pression of z, and setting q∗ij = (Q +

∑m

i=1 λ∗

i Ai)ij we get

0 ≤ zT

[
(Q +

m∑

i=1

λ∗

i Ai) ⊗ Ir+1

]
z =

( 0T
r w1 . . . 0T

r wn )





0r
n∑

j=1

q∗1jwj

...

0r
n∑

j=1

q∗njwj





(16)

=
n∑

i=1

n∑

j=1

q∗ijwiwj = wT (Q +
m∑

i=1

λ∗

i Ai)w,
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where w is any vector in IRn, which implies (Q+
∑m

i=1 λ∗

i Ai) � 0. Then
the global optimality of v∗ follows from relation (6), that says qr(v

∗) =
−bT λ∗, and from the primal dual optimality conditions (10).

Now we prove the necessity part. Let X∗ be the global minimum solution
of rank r of Problem (SDP), and let v∗ ∈ IRnr be the corresponding

global solution of Problem (NLPr). Define the vector v̂ ∈ IRn(r+1) with
vector components given by (14), which is obviously feasible for Problem
(NLPr+1). We have that

qr+1(v̂) = qr(v
∗) = z∗SDP,

and hence v̂ is a global minimum point of Problem (NLPr+1). By Propo-
sition 3, it follows that there exists a λ∗ ∈ IRm such that (11) hold.
Therefore, by (11) and by the expression of v̂, it follows
[

(Q +

m∑

i=1

λ∗

i Ai) ⊗ Ir+1

]
v̂ =





q∗
11

Ir 0r

0T
r q∗

11

. . .
q∗
1nIr 0r

0T
r q∗

1n

.

..
. . .

.

..

q∗n1
Ir 0r

0T
r q∗

n1

. . .
q∗nnIr 0r

0T
r q∗nn









v∗

1

0
..
.

v∗

n

0



 =





n∑

j=1

q∗1jv∗

j

0
.
.
.

n∑

j=1

q∗njv∗

j

0





= 0.

(17)

Moreover, since by (11) we have that Q+
∑m

i=1 λ∗

i Ai � 0, it follows from
the properties of Kronecker products that (Q+

∑m

i=1 λ∗

i Ai � 0)⊗Ir+1 �
0, and hence we have proved that v∗ is a stationary point for Problem
(NLPr) with Lagrange multiplier λ∗, and v̂ is a second order stationary
point of Problem (NLPr+1) with the same multiplier λ∗.

Remark The requirement that v∗ is a stationary point for Problem
(NLPr) with Lagrange multiplier λ∗, and v̂ is a stationary point of Prob-
lem (NLPr+1) with the same multiplier λ∗ is always verified if the Linear
Independence Constraint Qualification (LICQ) is satisfied at v̂ for prob-

lem (NLPr+1). Indeed, in this case the Lagrange multiplier λ̂ associated
to v̂ is unique. It follows from (17),

[
(Q +

m∑

i=1

λ∗

i Ai) ⊗ Ir+1

]
v̂ = 0, (18)

where λ∗ is the Lagrange multiplier associated to v∗. As the Lagrange
multiplier associated to v̂ is unique, then λ̂ = λ∗. Hence v̂ is a stationary
point of Problem (NLPr) with Lagrange multiplier λ∗.
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4 Concluding Remarks

In this paper, we have described a new class of quadratic problems arising
as nonlinear programming reformulations of linear SDP problems for
which it is possible to state necessary and sufficient global optimality
conditions. An algorithmic use of these conditions can be the subject of
further investigation.
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