
IMPROVING THE EFFICIENCY OF DC GLOBAL

OPTIMIZATION METHODS BY IMPROVING THE DC

REPRESENTATION OF THE OBJECTIVE FUNCTION

Albert Ferrer∗ and Juan Enrique Mart́ınez-Legaz†

Abstract There are infinitely many ways of representing a d.c. function as a difference of convex
functions. In this paper we analyze how the computational efficiency of a d.c. optimization algorithm
depends on the representation we choose for the objective function, and we address the problem of
characterizing and obtaining a computationally optimal representation. We introduce some theoret-
ical concepts which are necessary for this analysis and report some numerical experiments.

Key words dc representation, dc program, outer approximation, branch and bound, semi-infinite
program.

Mathematics Subject Classification (2000) 90C26, 90C30.

1 Introduction

There are infinitely many ways of representing a d.c. function as a difference of convex functions. In
the special case of polynomials, the problem of finding d.c. representations was addressed in [4].

In this paper we consider the following questions: When is a given representation better than
another one from a computational point of view? How does computational efficiency depend on
the d.c. representation of the objective function? Given a d.c. representation, is it possible to find
another one that improves computational efficiency? Which is the best d.c. representation of a d.c.
polynomial from a computational point of view, and how can it be obtained?

We introduce some necessary concepts to answer the above questions. Our analysis relies upon
the notion of minimal d.c. representation in the space of polynomials. In Section 2 we state the
minimum norm problem by using the concept of least deviation decomposition (LDD) of [7]. In
Section 3 we give a semi-infinite programming formulation of the minimum norm problem and show
that the solution to this problem provides a d.c. representation for an arbitrary polynomial. We find
that this dc representation improves the computational efficiency of a global optimization algorithm
by reducing the number of iterations needed to find a global optimal solution. In section 5 we report
some numerical experiments, which show the efficiency of our minimal dc representations from a
computational viewpoint. The conclusions of our analysis are summarized in section 6.

∗Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, email: alberto.ferrer@upc.edu.
The research of this author has been partially supported by the Ministerio de Ciencia y Tecnoloǵıa, Project MCYT,
DPI 2005-09117-C02-01

†Departament d’Economia i d’Història Econòmica, Universitat Autonoma de Barcelona, email: juanen-
rique.martinez@uab.es. The research of this author has been partially supported by the Ministerio de Ciencia y
Tecnoloǵıa, Project MTM2005-08572-C03-03, and by the Barcelona Economics Program of XREA.

1

2 The minimum norm problem

Let IRm [x1, ..., xn] and Hk [x1, ..., xn] , k = 0, 1, . . . ,m be the vector spaces of real polynomials of
degree less than or equal to m and of homogeneous polynomials of degree k, respectively, in the
variables x = (x1, ..., xn). Let Bm and BHk be the usual bases of monomials in IRm [x1, ..., xn]
and Hk [x1, ..., xn], respectively. Each polynomial z ∈ IRm [x1, ..., xn] can be written in the form
z =

∑
f∈Bm aff . We will endow these vector spaces with the Euclidean norm ‖z‖ := (

∑
f∈Bm a2

f)1/2.
Let C ⊂ IRn be a closed convex set and let Km(C) and KHk(C) be the nonempty closed convex

cones of polynomials in IRm [x1, ..., xn] and Hk [x1, ..., xn], respectively, that are convex on C. In the
next proposition we consider the case when C = IRn; we exclude the trivial case m = 1.

Proposition 2.1 Let m ≥ 2. The cone Km(IRn) is reproducing, that is,

IRm [x1, ..., xn] = Km(IRn)−Km(IRn),

if and only if m is even.

Proof 2.1 If m is odd, no polynomial of degree m is convex (as it does not admit any affine mino-
rant) and hence it is impossible to decompose it as a difference of two polynomials in IRm [x1, ..., xn] .
Assume now that m is even. Since the set of polynomials in IRm [x1, ..., xn] that are powers of linear
functions spans the whole of IRm [x1, ..., xn] (see [2]) and such powers are convex when the exponent
is even, we only need to prove the decomposability of a polynomial of the type lk, with l linear and
k odd, as a diference of two convex polynomials of degree k + 1. Given that compositions of convex
functions with linear mappings are convex, it will be enough to consider one variable monomials.
Since the second derivative of the one variable function tk+1 + tk is bounded from below, there is a
quadratic form αt2 such that tk+1 + tk + αt2 is convex, and therefore tk+1 + tk is a d.c. function.

Corollary 2.1 Let C ⊂ IRn be a closed convex set and m ≥ 2 be an even number. Then Km(C) is
reproducing.

Proof 2.2 This is an immediate consequence of Prop. 2.1, since Km(C) ⊇ Km(IRn).

We next consider the case when C is bounded.

Proposition 2.2 Let C ⊂ IRn be a compact convex set. Then, for every m ≥ 2, the convex cone
Km(C) is reproducing.

Proof 2.3 Using the same arguments as in the proof of Prop. 2.1 we see that it is enough to consider
compositions of one variable powers tk with linear functions and that such compositions are d.c. on
C (since the second derivative of tk is bounded below on the image of C under any linear function,
as this image is a closed interval).

Assuming that Km(C) is reproducing, there are infinitely many representations of a given poly-
nomial z ∈ IRm [x1, ..., xn] as a difference of two convex polynomials on C. Indeed, if z = y1 − y2,
with y1, y2 ∈ Km(C), then we can also write, for instance, z = (y1 + d) − (y2 + d) for an arbitrary
d ∈ Km(C) and of course we have y1 + d, y2 + d ∈ Km(C). Thus the question arises how to find,
among the infinitely many representations of z, one which is optimal from a computational point of
view (that is, for its use in a d.c. optimization algorithm). A theoretical approach to this optimal
representation problem was proposed in [7] in the abstract setting of normed spaces; we next recall
the basic ideas developed in that paper.

2

Let (IE, ‖·‖) be a normed space, K ⊂ IE a reproducing convex cone and (y1, y2), (w1, w2) ∈ K×K
be two representations of z as differences of elements in K, that is, y1−y2 = z = w1−w2. We define

(y1, y2) is better than (w1, w2) with respect to ‖.‖ ⇔ ‖y1 + y2‖ ≤ ‖w1 + w2‖.
A representation of z is minimal if it is better that any other representation of z. Thus finding
a minimal representation of z amounts to solving a minimum norm problem. Given z ∈ IE and a
representation (y1, y2) ∈ K ×K of z, consider the vector v := y1 + y2 ∈ K. We can write

y1 =
z + v

2
and y2 =

v − z

2
, (1)

so v = −z + 2y1 = z + 2y2 and we have v ∈ (−z + 2K) ∩ (z + 2K). Thus, the minimum norm
problem can be expressed as follows: given z ∈ IE, find v ∈ (−z + 2K) ∩ (z + 2K) with minimum
norm:

minimize {‖v‖ : v ∈ (−z + 2K) ∩ (z + 2K)}. (2)

Hence, using (1), the optimal solution v∗ of problem (2) yields an optimal representation z = y∗1−y∗2 ,
where

y∗1 =
z + v∗

2
and y∗2 =

v∗ − z

2
.

According to the terminology of [7], the pair (y∗1 , y∗2) is called a least deviation decomposition (LDD)
of z.

When a LDD of a polynomial z is difficult to obtain, the equality

IRm [x1, . . . , xn] =
m⊕

k=0

Hk [x1, . . . , xn] , (3)

allows us to obtain an alternative dc representation of the polynomial z by using LDDs of its
homogeneous summands. This new dc representation of z will not generally be optimal but will
often improve upon an initially given dc representation.

To solve the minimum norm problem in the case of the Euclidean norm, in the next section
we will transform it into an equivalent semi-infinite quadratic programming problem with linear
constraints.

3 A semi-infinite formulation of the minimum norm problem

A peculiarity of the minimum norm problem (2) in the case of the Euclidean norm is that it can be
transformed into an equivalent semi-infinite quadratic programming problem with linear constraints.
The feasible set of the problem (2), with z =

∑
f∈Bm aff, is the set of polynomials v =

∑
f∈Bm vff

such that v ± z ∈ K(C), i.e. such that v ± z are convex on C. Assuming that C has a nonempty
interior, this amounts to imposing the Hessian matrices ∇2(v ± z)(x) =

∑
f∈Bm(vf ± af)∇2f(x) to

be positive semidefinite, that is,

λt∇2(v ± z)(x)λ ≥ 0, ∀λ ∈ Sn, ∀x ∈ C, (4)

where Sn = {x ∈ IRn : ‖x‖ = 1}. Thus problem (2) can be equivalently formulated as the
semi-infinite quadratic programming problem

minimize ‖v‖2 =
∑

f∈Bm v2
f

subject to: λt
∑

f∈Bm(vf ± af)∇2f(x)λ ≥ 0, ∀λ ∈ Sn , ∀x ∈ C,
(5)

3

whose constraint set is indexed by the parameters x and λ.
In practical applications the set C will usually be of the form C =

∏n
i=1[ri, ti], with ri < ti.

Example 3.1 (Determination of the constraint set) Let z(x, y) = xy+3x2y and C = [5, 20]×[5, 20].
In order to determine the constraint set of the semi-infinite formulation of the minimal norm problem
we consider the usual bases in H2 [x, y] and H3 [x, y],

B2 := {f1, f2, f3}, withf1(x, y) := x2, f2(x, y) := xy, f3(x, y) := y2,

and

B3 := {f4, f5, f6, f7}, withf4(x, y) := x3, f5(x, y) := x2y, f6(x, y) := xy2, f7(x, y) := y3.

Since z has no linear part and the subspaces H1 [x, y] , H2 [x, y] and H3 [x, y] are mutually orthogonal,
if we use the Euclidean norm we do not need to consider polynomials of degree 1 in our formulation.
The set B2 ∪ B3 is a base for H2 [x, y] ⊕H3 [x, y]; the coordinates of the polynomial z(x, y) in this

basis are (0, 1, 0, 0, 3, 0, 0). For a polynomial v ∈ H2 [x, y]⊕H3 [x, y] we write v =
7∑

i=1

vifi. The

Hessian matrices of the functions v ± z are

∇2(v ± z)(x, y) =
(

6v4x + 2(v5 ± 3)y + 2v1 2(v5 ± 3)x + 2v6y + (v2 ± 1)
2(v5 ± 3)x + 2v6y + (v2 ± 1) 2v6x + 6v7y + 2v3

)
.

Imposing the positive-semidefinitiness condition to these matrices we get

2λ2
1v1 + 2λ1λ2v2 + 2λ2

2v3 + 6xλ2
1v4 + 2(yλ2

1 + 2xλ1λ2)v5+
+2(xλ2

2 + 2yλ1λ2)v6 + (6yλ2
2)v7 ± (6yλ2

1 + 12xλ1λ2 + 2λ1λ2) ≥ 0

for λ1 and λ2 such that λ2
1 + λ2

2 = 1 and λ2 ≥ 0; we can equivalently write

λ2
1a + λ1λ2b + λ2

2c + 3xλ2
1d + (yλ2

1 + 2xλ1λ2)e+
+(xλ2

2 + 2yλ1λ2)f + 3yλ2
2g− | 3yλ2

1 + 6xλ1λ2 + λ1λ2 |≥ 0.

The parameters λ1 and λ2 can be generated by considering the new parameter ω ∈ [0, π[, setting
λ1 = cos ω and λ2 = sin ω.

Remark 3.1 In the general n variables case, the parameters λ1, λ2, . . . , λn satisfying λ2
1 +λ2

2 + . . .+
λ2

n = 1, λ1 ≥ 0 can be generated by using spherical coordinates:

λ1 = sin ω1 sin ω2 . . . sin ωn−2 sin ωn−1,
λ2 = cos ω1 sin ω2 . . . sin ωn−2 sin ωn−1,
. ,
λn−2 = cos ωn−3 sin ωn−2 sin ωn−1,
λn−1 = cos ωn−2 sin ωn−1,
λn = cos ωn−1,

(6)

with ωi ∈ [0, π[, i = 1, ..., n− 1.

The algorithm we will use to solve the semi-infinite quadratic programming problem (5) is an
adaptation of the semi-infinite linear programming methods described in [6] and [8], which use
interior point techniques. The algorithm needs an initial feasible point at which all the constraints
are satisfied as strict inequalities; in the next section we explain how such a point can be obtained.

4

4 Obtention of an initial feasible point

In this section we describe a method for obtaining an initial feasible point at which all the inequality
constraints are satisfied strictly. In the following, we will assume that the set C in (5) is convex and
compact. Without loss of generality (by applying a translation if necessary), we will further assume
that C ⊂ IRp

++.
Consider a nonhomogeneous polynomial z =

∑k
i=1 zi, with zi ∈ Hni

[x1, . . . , xp], 2 ≤ n1 < . . . <
nk. To obtain an initial strictly interior feasible point, we first express each zi in the basis U of
Hn[x1, . . . , xp] consisting of the polynomials

pα(x) = (α1x1 + . . . + αpxp)n, α = (α1, . . . , αp) ∈ C(n, p),

C(n, p) being the set of p-compositions of n, that is, the set of p-tuples α = (α1, . . . , αp) of non-
negative integers αi such that α1 + . . . + αp = n. This family of polynomials is indeed a basis of
Hn[x1, . . . , xp] (see Cor. 1.2 in [1]).

We thus write
zi =

∑

α∈Pi

λi
αpα −

∑

α∈Ni

(−λi
α)pα,

with Pi and Ni being the sets of α such that λi
α > 0 and λi

α < 0, respectively. This is a d.c.
representation of zi, which can be computed by using the algorithm proposed in the Appendix of
[3], In the same reference this algorithm was implemented using the MAPLE Symbolic Calculator.
From the above representation we define the convex polynomial

wi :=
∑

α∈Pi

λi
αpα +

∑

α∈Ni

(−λi
α)pα.

It is easy to see that the polynomial w =
∑k

i=1 wi is a feasible point for (5). Finally, by taking
v = w + q, with q(x) = x2

1 + . . .+x2
p, we get a feasible point at which all the constraints are satisfied

strictly.

5 Results of numerical experiments

In this section we report the numerical experiments we have made on some test problems by using our
optimal d.c. representation together with the deterministic global optimization algorithm for solving
reverse convex programming problems described in [4]. This algorithm combines a prismatical
subdivision process with polyhedral outer approximation, in such a way that only linear programs
have to be solved. We present the results obtained on some test problems, which illustrate the efect
of using optimal d.c. representations on solving d.c. polynomial programming problems; some of the
test problems, taken from [3], correspond to a hydroelectric generation model.

5.1 Some test problems

We first consider three simple two variables optimization problems: HPBr1, HOM3r2 and POL3r2.
The results are shown in Table 2, which displays the results of minimizing the functions using different
d.c. representations and precision ε = 0.001; the running CPU time is reported. Iter found is the
number of iterations of the program needed to confirm the global minimum. DC represents the
kind of d.c. representation of the objective function: the optimal d.c. representation is indicated by

5

opt and the non optimal representations are noted (1) and (2). Norm indicates the norm of the
corresponding d.c. representation.

The instance HPBr1 is

minimize xy = 1
4 (x + y)2 − 1

4 (x− y)2

subject to: x− y ≤ 5.7,
−2 ≤ x ≤ 3,
−3 ≤ y ≤ 4,

(7)

and the indicated d.c. representation of xy in (7) is the optimal one. Alternative d.c. representations
of xy, which are not optimal, are

(1) xy = 1
2 (x + y)2 − 1

2 (x2 + y2)

and

(2) xy = 1
2 (x2 + y2)− 1

2 (x− y)2.

The objective function f(x, y) of instances HOM3r2 and POL3r2 are 3x2y and xy + 3x2y,
respectively, and both problems have the same constraints:

minimize f(x, y)
subject to: x− y ≤ 1,

−x− y ≤ 2.5,
0.5 ≤ x ≤ 2,
2 ≤ y ≤ 4.

A d.c. representation of the objective function of program HOM3r2 is

3x2y = 0.5(2x + y)3 + 0.5y3 − (3x3 + (x + y)3),

and the optimal d.c. representation, obtained as mentioned above, is

3x2y = y∗1(x, y)− y∗2(x, y),

with
y∗1(x, y) = 1.31235x3 + 2.0188x2y + .33725xy2 + .87755y3,
y∗2(x, y) = 1.31235x3 − .9811x2y + .33725xy2 + .87755y3.

From the d.c. representations of the functions xy and 3x2y we obtain a d.c. representation of xy +
3x2y:

xy + 3x2y = y∗1(x, y)− y∗2(x, y),

with

y∗1(x, y) = .0466x2 + .4945xy + .03055y2 + 1.31455x3 + 2.0143x2y + .3430xy2 + .8775y3,
y∗2(x, y) = .0466x2 − .5055xy + .03055y2 + 1.31455x3 − .9857x2y + .3430xy2 + .8775y3.

6

R1

R2

R1 R1 R1

R2 R2 R2

Sh

d d d d

d
d

d d

1 1 11

2

2 2

2

1 2 3 4

1

2 3

4

v v v

v v v

v

v

v

v

1 1 1 1

2 2 2 2

1

2

0

1 2 3 4

1 2 3 4

0

w w w w

w w w w

1 1 1 1

2 2 2 2

1 2 3 4

21 3 4

Figure 1: Four intervals and two reservoirs replicated hydronetwork

5.2 The hydroelectric generation problem

Given a short-term time period, one wishes to find values for each time interval in the period so
that the demand of electricity consumption for each time interval can be satisfied and the generation
cost of thermal units is minimized subject to these and some other suitable constraints. The model
we consider contains the replicated hydronetwork through which the temporary evolution of the
reservoir system is represented. Figure 1 shows a network with only two reservoirs and a time period
subdivided into four intervals. We consider Ne reservoirs, j = 1, . . . , Ne, and Nt time intervals,
i = 1 . . . Nt. Our model consists of the following ingredients:

• The variables are the water discharges di
j from reservoir j over the ith interval and the volume

stored vi
j in reservoir j at the end of the ith time interval.

• In each time interval i, the water discharge from reservoir R1 to reservoir R2 establishes a link
between the reservoirs.

• The volume stored at the end of the time interval i and the volume stored at the beginning of
the time interval i + 1 are the same on each reservoir Rj ; this establishes a link between the
time intervals i and i + 1 for each reservoir.

• The volumes stored at the beginning and at the end of the time period are known (they are not
variables). Acceptable forecasts for electricity consumption li and for natural water inflow wi

j

into the reservoirs of the hydrogeneration system at each interval are available. An important
assumption in our formulation is that the power hydrogeneration function hi

j at the reservoir j

over the ith interval can be approximated by a polynomial function of degree 4 in the variables
vi−1

j , vi
j and di

j (see [3]):

hi
j(v

i−1
j , vi

j , d
i
j) = ki

jd
i
j [svd + svl

2 (vi−1
j + vi

j) + svq

3 (vi
j − vi−1

j)2+
+svqv

i−1
j vi

j + svc

4 ((vi−1
j)2 + (vi

j)
2)(vi−1

j + vi
j)−

−sdld
i
j − sdq(di

j)
2],

(8)

where ki
j (efficiency and unit conversion coefficient), svd, svl, svq, svc, sdl and sdq are techno-

logical coefficients, which depend on each reservoir. The objective function, to be minimized,

7

is the generation cost of thermal units:

f(. . . , vi−1
j , vi

j , d
i
j , . . .) =

Nt∑

i=1

ci

li −

Ne∑

j=1

hi
j(v

i−1
j , vi

j , d
i
j)

 . (9)

The linear constraints are the flow balance equations at all nodes of the network:

vi
j − vi−1

j − di
j−1 + di

j = wi
j j = 1, ..., Ne, i = 1, ..., Nt.

The nonlinear constraints are the thermal production with generation bounds:

g ≤ li −
Ne∑

j=1

hi
j(v

i−1
j , vi

j , d
i
j) ≤ g i = 1, ..., Nt. (10)

There are positive bounds on all variables:

dj ≤ di
j ≤ dj j = 1, ..., Ne, i = 1, ..., Nt

vj ≤ vi
j ≤ vj j = 1, ..., Ne, i = 1, ..., Nt − 1.

Thus our problem is

minimize
∑Nt

i=1 ci

(
li −∑Ne

j=1 hi
j(v

i−1
j , vi

j , d
i
j)

)

subject to g ≤ li −∑Ne

j=1 hi
j(v

i−1
j , vi

j , d
i
j) ≤ g, i = 1, ..., Nt,

vi
j − vi−1

j − di
j−1 + di

j = wi
j , j = 1, ..., Ne,

i = 1, ..., Nt,

dj ≤ di
j ≤ dj , j = 1, ..., Ne,

i = 1, ..., Nt,
vj ≤ vi

j ≤ vj j = 1, ..., Ne,

i = 1, ..., Nt − 1.

(11)

This model has the following useful properties:

1. It is easy to generate problems of different sizes (Table 1) and with different degrees of non-
convexity, depending on the efficiency and unit conversion coefficient, on whether the thermal
units can satisfy all the demand of electricity during every time interval and on the water
inflows.

2. The objective function and the nonlinear constraints are polynomial functions.

3. The linear constraints are the flow balance equations at the nodes of a network.

8

5.2.1 A d.c. formulation of the hydroelectric generation program

Let
hi

j(v
i−1
j , vi

j , d
i
j) = f i

j(v
i−1
j , vi

j , d
i
j)− gi

j(v
i1
j , vi

j , d
i
j),

be a d.c. representation of the power hydrogeneration function, where f i
j(v

i−1
j , vi

j , d
i
j) and gi

j(v
i1
j , vi

j , d
i
j)

are convex functions defined on a convex set which contains the feasible domain of program (11).
Then, by defining for every i = 1, ..., Nt the convex functions

F i(. . . , vi−1
j , vi

j , d
i
j , . . .) = ci

li +

Ne∑

j=1

gi
j(v

i−1
j , vi

j , d
i
j)

 (12)

and

Gi(. . . , vi−1
j , vi

j , d
i
j , . . .) = ci

Ne∑

j=1

f i
j(v

i−1
j , vi

j , d
i
j), (13)

and using these expressions to define

F (. . . , vi−1
j , vi

j , d
i
j , . . .) =

Nt∑

i=1

F i(. . . , vi−1
j , vi

j , d
i
j , . . .) (14)

and

G(. . . , vi−1
j , vi

j , d
i
j , . . .) =

Nt∑

i=1

Gi(. . . , vi−1
j , vi

j , d
i
j , . . .), (15)

d.c. representations of all functions in (11) are obtained. We further define n = Ne(2Nt − 1),
m = NeNt and x = (. . . , vi−1

j , vi
j , d

i
j , . . .) ∈ IRn; thus, by expressing the linear constraints in the

form Ax = b, with A ∈ IRm∗n and b ∈ IRm, program (11) has the structure

minimize F (x)−G(x)
subject to (Gi(x) + cig)− F i(x) ≤ 0 i = 1, ..., Nt,

F i(x)− (Gi(x) + cig) ≤ 0 i = 1, ..., Nt,
Ax = b,

x ≤ x ≤ x,

(16)

where x, x ∈ IRn. After renumbering the variables if necessary, the matrix A in (16) can be written
as A = [B, N], where B is a non singular square matrix (see [5] and references therein). Let y
and z be the variables corresponding to the matrices B and N , respectively. Then, the solutions of
Ax = b are those x = (y, z) with y = B−1(b − Nz), so that it is possible to reduce the size of the
d.c. program (16) by defining the functions ϕ1(z) = F (B−1(b−Nz), z), ϕ2(z) = G(B−1(b−Nz), z),
ϕi

1(z) = F i(B−1(b−Nz), z) and ϕi
2(z) = Gi(B−1(b−Nz), z). By using these functions in (16) we

obtain the following equivalent d.c. program of reduced size

minimize ϕ1(z)− ϕ2(z)
subject to (ϕi

2(z) + cig)− ϕi
1(z) ≤ 0 i = 1, ..., Nt,

ϕi
1(z)− (ϕi

2(z) + cig) ≤ 0 i = 1, ..., Nt,

b ≤ Mz ≤ b,
z ≤ z ≤ z,

(17)

9

where M = B−1N and b, b, z and z are defined by
(
B−1b− b, z

)
= x and

(
B−1b− b, z

)
= x.

By defining the closed convex sets

Ω =

(z, t) :

ϕ1(z) + ϕ2(z) + (ϕi
2(z)− ϕi

1(z) + cig)− t ≤ 0, i = 1, ..., Nt,
ϕ1(z) + ϕ2(z) + (ϕi

1(z)− ϕi
2(z)− cig)− t ≤ 0, i = 1, ..., Nt,

b ≤ Mz ≤ b,
z ≤ z ≤ z

and
∆ = {(z, t) : ϕ1(z) + ϕ2(z)− t ≤ 0},

we reformulate (17) as the following equivalent reverse convex program:

minimize 2ϕ1(z)− t
subject to (z, t) ∈ Ω \ int∆.

(18)

By using a prismatical subdivision process, this formulation allows for an advantageous adaptation
of the combined outer approximation cone splitting conical algorithm for canonical d.c. programming
as described in [4].

5.2.2 Characteristics of generation systems and computational results

The characteristics of the generation systems we have considered are described in Table 1. The
names of the problems in Table 3 are of the form cnemi and cnemiXYZ, respectively, where n,
m, X, Y and Z have the following meanings: n (one digit) is the number of nodes, m (two digits)
is the number of time intervals, X = v when ki

j in (8) depends on water discharges, and X = k if
it is a constant, Y = 1 when the thermal units satisfy the entire demand for electricity in every
time interval, and Y = 0 if this is not possible and Z = b when we solve the problem instance
using the optimal d.c. representation of the power hydrogeneration functions, and Z = a otherwise.
The maximum number of iterations allowed in the global optimization algorithm is 5000, and the

Table 1: Characteristics of generation systems
Problem Nodes Intervals Dimension Linear const. Nonlinear const.

Ne Nt Ne(2Nt − 1) NeNt Nt

c2e02i 2 2 6 4 2
c2e03i 2 3 10 6 3
c4e03i 4 3 20 12 3

precision used is ε = 0.005. In Table 3 Iter indicates the number of iterations required, Obj.Val is
the optimal value obtained by the global optimization algorithm, and CPU time is the CPU time
in seconds. To solve all problems we have used a computer SUN ULTRA 2 with 256 Mb of main
memory and 2 CPUs of 200 MHz, SPCint95 7.88 and SPCfp95 14.70. Moreover, to compare the
performances on different computers, problems number 17 and 18 in Table 3 have been solved with
a computer Compaq AlphaServer HPC320: 8 nodes ES40 (4 EV68, 833 MHz, 64 KB/8 MB), 20
GB of main memory, 1.128 GB on disk and top speed of 53,31 Gflop/s, connected with Memory
Channel II of 100 MB/s.

10

Table 2: Results and CPU requirements of problems solved (ε = 0.001)
Instance DC Norm Iter Obj.Val CPU time
HOM2r1 opt 0.707 32 −8.1224 0.07

(1) 1.732 54 −8.1224 0.12
(2) 1.732 163 −8.1224 0.77

HOM3r2 opt 3.339 150 1.4999 3.41
(1) 13.601 601 1.5000 69.78

POL3r2 opt 3.396 99 2.5000 1.44
(1) 13.711 287 2.5000 12.75

Table 3: Results and CPU requirements of problems solved (ε = 0.005)
Num Instance Iter Obj.Val CPU time

1 c2e02ik0a 13 114.348 1.00
2 c2e02ik0b 11 114.347 0.77

3 c2e02iv0a 277 93.036 89.66
4 c2e02iv0b 21 93.266 3.44

5 c2e02ik1a 12 114.348 0.88
6 c2e02ik1b 10 114.347 0.67

7 c2e02iv1a 14 93.093 1.11
8 c2e02iv1b 13 93.092 0.95

9 c2e03ik0a 1062 262.795 2037.04
10 c2e03ik0b 1030 262.296 1409.44

11 c2e03iv0a 1077 250.016 1951.55
12 c2e03iv0b 904 262.498 1433.19

13 c2e03ik1a 1223 262.796 1972.71
14 c2e03ik1b 1117 262.796 1810.76

15 c2e03iv1a 1079 250.015 1454.01
16 c2e03iv1b 1056 250.015 1420.34

17 c4e03ik0a 5000 374.068 115359.00
23064.80

18 c4e03ik0b 5000 374.067 70771.50
13105.80

6 Conclusions

The superior computational efficiency of the method when we use the optimal d.c. representation is
clearly shown in Tables 2 and 3. In all instances where we used it, the algorithm obtained better

11

CPU times and needed fewer iterations than in problem instances where it was not used.
In the hydroelectric generation problem, on the instances with constant coefficient of efficiency

and unit conversion, our algorithms appear to work well as they succeed to find a good solution.
However, instances with a variable coefficient of efficiency yield less accurate optimal values, but all
solutions are very near to the optimal. The superior computational efficiency reveals particularly
high when we compare problem instances number 3 and 4. We also observe from instances number
17 and 18 that the CPU time can be reduced to one fifth by using the Compaq AlphaServer HPC320
computer. Note that the optimal d.c. representations of the power hydrogeneration functions give
us more efficient d.c. representations of the functions in (11), but the latter are not necessarily the
optimal d.c. representation of these functions, whose calculation would require the solution of a
harder semi-infinite programming problem.

As the sizes of the problems increase, the problems become more and more difficult to solve. The
size of the problem instances is a very serious limitation.

From our numerical experiments we conclude that by using optimal d.c. representations of the
objective polynomial functions more efficient implementations for nonconvex optimization problems
is obtained, both in the case of problems having a specific structure, as in the generation problem,
and in the case when no such a structure exists.

References

[1] Brunat, J.M. and Montes, A. The power-composition determinant and its application to global
optimization. SIAM J. Matrix Anal.Appl., 23(2):459–471, 2001.

[2] Chambadal, L. and Ovaert, J.L. Algèbre Linéaire et Algèbre Tensorielle. Dunod Université.
Dunod, Paris, 1968.

[3] Ferrer, A. Representation of a polynomial function as a difference of convex polynomials, with
an application. Lectures Notes in Economics and Mathematical Systems, 502:189–207, 2001.

[4] Ferrer, A. Applying global optimization to a problem in short-term hydrotermal scheduling.
Nonconvex Optimization and its Applications, 77:263–285, 2005.

[5] Heredia, F.J. and Nabona, N. Optimum short-term hydrothermal scheduling with spinning
reverse through network flows. IEEE Trans. on Power Systems, 10(3):1642–1651, 1995.

[6] Kaliski, J., Haglin, D., Roos, C. and Terlaky, T. Logarithmic barrier decomposition methods for
semi-infinite programming. Int.Trans.Oper.Res., 4(4):285–303, 1997.

[7] Luc, D.T., Martinez-Legaz, J.E. and Seeger, A. Least deviation decomposition with respect to
a pair of convex sets. Journal of Convex Analysis, 6(1):115–140, 1998.

[8] Zhi-Quan Luo, Roos, C. and Terlaky, T. Complexity analysis of logarithmic barrier decomposi-
tion methods for semi-infinite linear programming. Applied Numerical Mathematics, 29:379–394,
1999.

12

