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Abstract

In many global optimization problems motivated by engineering applications, the number
of function evaluations is severely limited by time or cost.To ensure that each evaluation
contributes to the localization of good candidates for the role of global minimizer, a se-
quential choice of evaluation points is usually carried out. In particular, when Kriging is
used to interpolate past evaluations, the uncertainty associated with the lack of information
on the function can be expressed and used to compute a number of criteria accounting for
the interest of an additional evaluation at any given point.This paper introduces minimizer
entropy as a new Kriging-based criterion for the sequentialchoice of points at which the
function should be evaluated. Based onstepwise uncertainty reduction, it accounts for the
informational gain on the minimizer expected from a new evaluation. The criterion is ap-
proximated using conditional simulations of the Gaussian process model behind Kriging,
and then inserted into an algorithm similar in spirit to theEfficient Global Optimization
(EGO) algorithm. An empirical comparison is carried out between our criterion andex-
pected improvement, one of the reference criteria in the literature. Experimental results
indicate major evaluation savings over EGO. Finally, the method, which we call IAGO
(for Informational Approach to Global Optimization) is extended to robust optimization
problems, where both the factors to be tuned and the functionevaluations are corrupted by
noise.

Key words: Gaussian process, global optimization, Kriging, robust optimization, stepwise
uncertainty reduction

1 Introduction

This paper is devoted to global optimization in a context of expensive function eval-
uation. The objective is to find global minimizers inX (the factor space, a bounded
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subset ofRd) of an unknown functionf : X → R, using a very limited number of
function evaluations. Note that the global minimizer may not be unique (any global
minimizer will be denoted asx∗). Such a problem is frequently encountered in
the industrial world. For instance, in the automotive industry, optimal crash-related
parameters are obtained using costly real tests and time-consuming computer sim-
ulations (a single simulation of crash-related deformations may take up to 24 hours
on dedicated servers). It then becomes essential to favor optimization methods that
use the dramatically scarce information as efficiently as possible.

To make up for the lack of knowledge on the function, surrogate (also called meta
or approximate) models are used to obtain cheap approximations (Jones [2001]).
They turn out to be convenient tools for visualizing the function behavior or sug-
gesting the location of an additional point at whichf should be evaluated in the
search forx∗. Surrogate models based on Gaussian processes have received par-
ticular attention. Known in Geostatistics under the name ofKriging since the early
1960s (Matheron [1963]), Gaussian process models provide aprobabilistic frame-
work to account for the uncertainty stemming from the lack ofinformation on the
system. When dealing with an optimization problem, this framework allows the set
of function evaluations to be chosen efficiently (Jones [2001], Jones et al. [1998],
Huang et al. [2006]).

In this context, several strategies have been proposed, with significant advantages
over traditional optimization methods when confronted to expensive-to-evaluate
functions. Most of themimplicitly seek a likely value forx∗, and then assume it
to be a suitable location for a new evaluation off . Yet, given existing evaluation
results, the most likely location of a global minimizer is not necessarily a good eval-
uation point to improve our knowledge onx∗. As we shall show, by making full use
of Kriging, it is instead possible toexplicitlyestimate the probability distribution of
the optimum location, which allows an information-based search strategy.

Based on these observations, the present paper introduces minimizer entropy as a
criterion for the choice of new evaluation points. This criterion, directly inspired
from stepwise uncertainty reduction(Geman and Jedynak [1995]), is then inserted
in an algorithm similar to theEfficient Global Optimization(EGO) algorithm (Jones
et al. [1998]). We call the resulting algorithm IAGO, forInformational Approach
to Global Optimization.

Section 2 recalls the principle of Kriging-based optimization, along with some gen-
eral ideas on Gaussian process modeling that are used in Section 3 to build an es-
timate of the distribution of the global minimizers. Section 4 details the stepwise
uncertainty reduction approach applied to global optimization, while Section 5 de-
scribes the corresponding algorithm and its extensions to noisy problems. Section 6
illustrates the behavior of the new algorithm on some simplebenchmark problems,
along with its performances compared with those of the classical EGO algorithm,
chosen for its good compromise between local and global search (Sasena et al.
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[2002]). Finally, after a conclusion section and to make this paper self-contained,
Section 8 presents, as an appendix, some more results on Gaussian process model-
ing and Kriging.

2 Kriging-based global optimization

When dealing with expensive-to-evaluate functions, optimization methods based
on probabilistic surrogate models (and Kriging in particular) have significant ad-
vantages over traditional optimization techniques, as they require fewer function
evaluations. Kriging can indeed provide a cheap and accurate approximation of the
function, but also an estimate of the potential error in thisapproximation. Numerous
illustrations of this superiority can be found in the literature (see, for instance, Cox
and John [1997]) and many variations have been explored (forextensive surveys,
see Jones [2001] and Sasena et al. [2002]). As explained in this section, these meth-
ods deal with the cost of evaluation using an adaptive sampling strategy, replacing
the optimization of the expensive-to-evaluate functionf by a series of optimiza-
tions of a cheap criterion.

2.1 Gaussian process modeling and Kriging

This section briefly recalls the principle of Gaussian process (GP) modeling, and
lays down the necessary notation. A more detailed presentation is available in the
appendix (Section 8).

When modeling with Gaussian processes, the functionf is assumed to be a sample
path of a second-order Gaussian random processF . If we denote(Ω,A,P) the
underlying probability space, this amounts to assuming that ∃ω ∈ Ω, such that
F (ω, ·) = f(·). Whenever possible, we shall omit the dependence ofF in ω to
simplify notation.

In particular, given a set ofn evaluation pointsS = {x1, . . . ,xn} (the design),
∀xi ∈ S the evaluation resultf(xi) is viewed as a sample path of the random vari-
ableF (xi). Kriging computes an unbiased linear predictor ofF (x) in the vector
spaceHS = span{F (x1), . . . , F (xn)}, which can be written as

F̂ (x) = λ(x)TFS , (1)

with FS = [F (x1), . . . , F (xn)]
T, andλ(x) the vector of Kriging coefficients for

the prediction atx.

Given the covariance ofF , the Kriging coefficients can be computed along with the
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variance of the prediction error

σ̂2(x) = var(F̂ (x)− F (x)). (2)

The covariance ofF is chosen within a class of parametrized covariances (for in-
stance, the Matèrn class), and its parameters are either estimated from the data or
chosen a priori (see Section 8.3.2 for details on the choice of a covariance).

Oncef has been evaluated at all evaluation points inS, the predicted value off at
x is given by

f̂(x) = λ(x)TfS , (3)

with fS = [f(x1), . . . , f(xn)]
T (fS is viewed as a sample value ofFS). The same

results could be derived in a Bayesian framework, whereF (x) is Gaussian con-
ditionally to the evaluations carried out (FS = fS), with meanf̂(x) and variance
σ̂2(x).

Note that
∀ xi ∈ S, F̂ (xi) = F (xi), (4)

and that the prediction atxi ∈ S is f(xi). Whenf is assumed to be evaluated ex-
actly, Kriging is thus an interpolation, with the considerable advantage over other
interpolation methods that it also provides an explicit characterization of the pre-
diction error (zero-mean Gaussian with varianceσ̂2(x)).

2.2 Adaptive sampling strategies

The general principle of optimization using Kriging is iteratively to evaluatef at
a point that optimizes a criterion based on the model obtained using previous eval-
uation results. The simplest approach would be to choose a minimizer of the pre-
diction f̂ as a new evaluation point. However, by doing so, too much confidence
would be put in the current prediction and search is likely tostall on a local opti-
mum (as illustrated by Figure 1). To compromise between local and global search,
more emphasis has to be put on the prediction error that can indicate locations
where additional evaluations are needed to improve confidence in the model. This
approach has led to a number of criteria, based on both prediction and prediction
error, designed to select additional evaluation points.

A standard example of such a criterion isexpected improvement(EI). As the name
suggests, it involves computing how much improvement in theoptimum is ex-
pected, iff is evaluated at a given additional point. LetF be the Gaussian pro-
cess model, as before, andfmin be the current best function value obtained. The
improvement expected from an additional evaluation off atx givenfS, the results
of past evaluations, can then be expressed as

EI(x) = E [max (fmin − F (x) , 0) |FS = fS] .
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Fig. 1. Naive approach to optimization using Kriging: (top) predictionf̂ (bold line) of the
true functionf (dotted line, supposedly unknown) obtained from an initialdesign mate-
rialized by squares; (bottom) prediction after seven iterations of a direct minimization of
f̂ .

SinceF (x) is conditionally Gaussian with mean̂f(x) and variancêσ2(x), a con-
venient expression appears (Schonlau [1997]):

EI(x) = σ̂(x)

[

uΦ(u) +
dΦ

du
(u)

]

, (5)

with

u =
fmin − f̂(x)

σ̂(x)
andΦ the normal cumulative distribution function. The new evaluation point is then
chosen as a global maximizer of EI(x). An example is given on Figure 2, where the
problem that deceived the naive method of Figure 1 is directly solved with the EI
criterion. First introduced in (Jones et al. [1998]), this method has been used for
computer experiments in (Sasena et al. [2002]), while modified criteria have been
used in (Huang [2005]) and (Williams et al. [2000]) to deal with noisy functions.

In (Jones [2001]) and (Watson and Barnes [1995]), a fair number of alternative
criteria are presented and compared. Although quite different in their formulation,
they generally aim to answer the same question: What is the most likely position of
x∗? Another, and probably more relevant, question is: Where should the evaluation
be carried out optimally to improve our knowledge on the global minimizers?

In what follows, a criterion that addresses this question will be presented, along
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with its performances. The reference for comparison will beEI, which is, according
to Sasena et al. [2002], a reasonable compromise between local and global search,
and has been successfully used in many applications.

3 Estimating the density of x∗

Once a Kriging surrogate model̂f has been obtained, any global minimizer off̂
is a natural approximation ofx∗. However, it might be excessively daring to trust
this approximation as it does not take in account the uncertainty of the prediction.
A more cautious approach to estimatingx∗ is to use the probabilistic framework
associated withF . Of course,x∗ is not necessarily unique, and we shall focus on
describing the set of all global minimizers off as efficiently as possible.

3.1 Probabilistic modeling of the global minimizers off

According to the GP model, a global minimizerx∗ of f corresponds to a global
minimizer of this particular sample path ofF . More formally, consider therandom
setM∗

X of the global minimizers ofF overX, i.e. the set of all global minimizers
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Fig. 2. EI approach to optimization using Kriging: (top) f̂ (bold line), 95% confidence in-
tervals computed usinĝσ (dashed line) and true functionf (dotted line); (bottom) expected
improvement.
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for each sample path, which can be written as

M∗
X(ω) = {x

∗ ∈ X|F (ω,x∗) = min
u∈ X

F (ω, u)}, ∀ω ∈ Ω,

with Ω the sample set. To ensure thatM∗
X

is not empty, we assume thatF has con-
tinuous sample paths with probability one. This continuitycan be ensured through
a proper choice of covariances (see, e.g., (Abrahamsen [1997])).

Let X∗ be a random vector uniformly distributed onM∗
X. The probability density

function of this random vector conditional to past evaluation results, that we shall
thereafter call conditional density of the global minimizers, is of great interest, as
it allows one not only to estimate the global minimizers off (for example, through
the maximization of their probability density function), but also to characterize the
uncertainty associated with this estimation. In fact, given the resultsfS of previous
evaluations, the probability density functionpX∗|fS

(x) of X∗ conditionally tofS

contains all of what has been assumed and learned about the system. However,
no tractable analytical expression for such a quantity is available (Adler [2000],
Sjö [2000]). To overcome this difficulty, the approach takenhere is to consider a
discrete version of the conditional distribution, and to approximate it using Monte
Carlo simulations.

Let G = {x1, . . . ,xN} be a finite subset ofX,M∗
G be the random set of global

minimizers ofF overG, andX∗
G

be a random vector uniformly distributed onM∗
G

.
The conditional probability mass function ofX∗

G givenfS is then∀x ∈ G

pX∗

G
|fS
(x) = P(X∗

G
= x |FS = fS) .

It can be approximated using conditional simulations,i.e., simulations ofF that
satisfyFS = fS. Assuming that non-conditional simulations are available, several
methods exist to make them conditional (Chilès and Delfiner [1999]). Conditioning
by Kriging seems the most promising of them in the present context and will be
presented in the next section.

3.2 Conditioning by Kriging

This method, due to G. Matheron, uses the unbiasedness of theKriging prediction
to transform non-conditional simulations into simulations interpolating the results
fS of the evaluations. LetZ be a zero-mean Gaussian process with covariancek (the
same as that ofF ) andẐ be its Kriging predictor based on the random variables
Z(xi), xi ∈ S, and consider the random process

T (x) = f̂(x) +
[

Z(x)− Ẑ(x)
]

, (6)
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where f̂ is the mean of the Kriging predictor based on the design points in S.
Since this Kriging predictor is an interpolator, at evaluation points inS, we have
f̂(xi) = f(xi). Equation (4) implies thatZ(xi) = Ẑ(xi), which leads toT (xi) =
f(xi), ∀xi ∈ S. In other words,T is such that all its sample paths interpolate the
known values off . It is then easy to check thatT has the same finite-dimension
distributions asF conditionally to past evaluation results (Delfiner [1977]). Note
that the same vectorλ(x) of Kriging coefficients is used to interpolate the data and
the simulations at design points. Using (3), one can rewrite(6) as

T (x) = Z(x) + λ(x)T [fS −ZS] , (7)

with ZS = [Z(x1), . . . , Z(xn)]
T.

In summary, to simulateF over G conditionally to past evaluation resultsfS,
we can simulate a zero-mean Gaussian processZ overG, and use the following
method:

• Compute, for every point inG, the vector of Kriging coefficients based on the
design points inS,

• compute the Kriging prediction̂f(x) based on past evaluation resultsfS for
everyx in G,

• sample overG non-conditional sample paths ofZ (provided that a Gaussian
sampler is available, setting the proper covariance can be achieved using, for
example, the Cholesky decomposition),

• apply (7) at every point inG.

With this sampling method (see Figure 3 for an illustration), it becomes straight-
forward to estimatepX∗

G
|fS

. Let x∗
i be a global minimizer of thei-th conditional

simulation (i = 1, . . . , r) overG (if it is not unique, choose one randomly). Then,
for anyx in G the empirical probability mass distribution

p̂X∗

G
|fS
(x) =

1

r

r
∑

i=1

δx∗

i
(x), (8)

with δ the Kronecker symbol, tends almost surely towardspX∗

G
|fS
(x) asr tends to-

wards infinity. Moreover,pX∗

G
|fS

tends in distribution towardspX∗|fS
asG becomes

dense inX.

Figure 4 presents the approximation achieved byp̂X∗

G
|fS

for an example where lo-
cating a global minimizer is not easy. Knowing the conditional distribution ofX∗

G

gives valuable information on the areas ofX where a global minimizer might be
located, and that ought to be investigated. This idea will bedetailed in the next
section.
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Fig. 3. Conditioning a simulation: (top) unknown real curvef (doted line), sample points
(squares) and associated Kriging predictionf̂ (bold line); (middle) non-conditional simula-
tion z, sample points and associated Kriging predictionẑ (bold line); (bottom) the simula-
tion of the Kriging errorz − ẑ is picked up from the non-conditional simulation and added
to the Kriging prediction to get the conditional simulation(thin line).

4 The stepwise uncertainty reduction strategy

The knowledge about the global minimizers off is summarized by the approxima-
tion p̂X∗

G
|fS

of the conditional probability mass function ofX∗
G. In order to evaluate

the interest of a new evaluation off at a given point, a measure of the expected in-
formation gain is required. An efficient measure isconditional entropy, as used in
sequential testing (Geman and Jedynak [1995]) in theStepwise Uncertainty Reduc-
tion (SUR) strategy. This section extends the SUR strategy to global optimization.

4.1 Conditional entropy

The entropy of a discrete random variableU (expressed in bits) is defined as:

H(U) = −
∑

u

P(U = u) log2 P(U = u).

H(U) measures the spread of the distribution ofU . It decreases as this distribution
gets more peaked. In particular :
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Fig. 4. Estimation of the conditional point mass distribution ofX∗
G

: (top) Kriging interpo-
lation, 95% confidence intervals and sample points; (bottom) estimated point mass distri-
bution ofX∗

G
using 10000 conditional simulations ofF and a regular grid forG.

• p̂X∗

G
|fS
(x) = 1/N ∀x ∈ G ⇒ H(X∗

G
) = log2(N),

• p̂X∗

G
|fS
(x) =











0 if x 6= x0

1 if x = x0

⇒ H(X∗
G
) = 0

Similarly, for any eventB, the entropy ofU relative to the probability measure
P(.|B) is

H(U |B) = −
∑

u

P(U = u|B) log2 P(U = u|B).

The conditional entropy of U given another discrete random variableV is

H(U |V ) =
∑

v

P(V = v)H(U |V = v),

and the conditional entropy ofU givenB andV is

H(U |B, V ) =
∑

v

P(V = v|B)H(U |B, V = v). (9)

More details on conditional entropy can be found in Cover andThomas [1991].
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4.2 Conditional minimizer entropy

ConsiderFQ(x) a discrete version ofF (x), defined asFQ(x) = Q(F (x)) with
Q a quantization operator.Q is characterized by a finite set ofM real numbers
{y1, . . . , yM}, and defined as

∀u ∈ R Q(u) =



























y1 if u ≤ y1

yi if yi−1 < u ≤ yi ∀i ∈ J2,MK

yM if yM < u

For optimization problems, the SUR strategy for the selection of the next value of
x ∈ X at whichf will be evaluated will be based onH(X∗

G|FS = fS, FQ(x)),
the conditional entropy ofX∗

G
givenFQ(x) and the evaluation results{FS = fS}

(we shall refer to it later on as conditional entropy of the minimizer, or simply
conditional entropy).

Using (9) we can write

H(X∗
G
|FS = fS, FQ(x)) =

M
∑

i=1

P(FQ(x) = yi|FS = fS)H(X∗
G
|FS = fS, FQ(x) = yi)

(10)
with

H(X∗
G|FS = fS, FQ(x) = yi) = −

∑

u∈G

pX∗

G
|fS,yi(u) log2 pX∗

G
|fS,yi(u) ,

and
pX∗

G
|fS,yi(u) = P(X∗ = u|FS = fS, FQ(x) = yi).

H(X∗
G|FS = fS, FQ(x)) is a measure of the anticipated uncertainty remaining

in X∗
G

given the candidate evaluation pointx and the resultfS of the previous
evaluations. Anticipation is introduced in (10) by considering the entropy ofX∗

G

resulting from every possible sample value ofFQ(x). At each stage of the iterative
optimization, the SUR strategy retains for the next evaluation a point that minimizes
the expected conditional minimizer entropy after the evaluation, i.e., a point that
maximizes the expected gain in information aboutX∗

G
.

The conditional entropy of the minimizer thus takes in account the conditional sta-
tistical properties ofF and particularly the covariance of the model. There lies the
interest of the SUR strategy applied to global optimization. It makes use of what
has been previously assumed and learned aboutf to pick up the most informative
evaluation point. By contrast, the EI criterion (as most standard criteria) depends
only on the conditional mean and variance ofF at the design point considered.
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5 Implementing the SUR strategy

5.1 IAGO algorithm

Our algorithm is similar in spirit to a particular strategy for Kriging-based opti-
mization known asEfficient Global Optimization(EGO) (Jones et al. [1998]). EGO
starts with a small initial design, estimates the parameters of the covariance ofF
and computes the Kriging model. Based on this model, an additional point is se-
lected in the design space to be the location of the next evaluation off using the
EI criterion. The parameters of the covariance are then re-estimated, the model re-
computed, and the process of choosing new points continues until the improvement
expected from sampling additional points has become sufficiently small. The IAGO
algorithm uses the same idea of iterative incorporation of the obtained information
to the prior on the function, but with a different criterion.

The computation of the conditional entropy using (10) requires the choice of a
quantization operatorQ. We use the fact thatF (x) is conditionally Gaussian with
known mean and variance (obtained by Kriging), to select a set of possible values
{y1, . . . , yM}, such that

P (FQ(x) = yi|FS = fS) =
1

M
∀ i ∈ J1 : MK .

By doing so, we choose a different quantization operatorQ for each value ofx
to improve the precision with which the empirical mean of theentropy reduction
over possible evaluation results is computed. This is simply an improved version of
Monte Carlo integration. Here we used a set of ten possible values (M = 10).

For each of these possible values (or hypothesesF (x) = yi), p̂fS,yi is computed
using conditional simulations. The conditional entropy isthen obtained using (10).
These operations are carried out on a discrete set of candidate evaluation points
(see Section 5.2 for some details on the choice of this set), and a new evaluation of
f is finally performed at a point that minimizes the conditional entropy. Next, as
in the EGO algorithm, the covariance parameters are re-estimated and the model
re-computed. The procedure for the choice of an additional evaluation point is de-
scribed in Table 1.

When the number of additional function evaluations is not specified beforehand,
we propose to use as a stopping criterion the conditional probability that the global
minimum of the GP model be no further apart of the current minimumfn

min of the
Kriging interpolation than a given tolerance thresholdδ. The algorithm then stops
when

P(F ∗ < fn
min + δ|FS = fS) < PStop ,

12



Algorithm
Input: Set S = {x1, . . . ,xn} of evaluation points and corresponding valuesfS of the

functionf
Output: Additional evaluation pointxnew

1. ChooseG, a discrete representation ofX

2. Set covariance parameters either a priori or by maximum-likelihood estimation based
onfS

3. Computer non-conditional simulations overG
4. Computef̂(x) andσ̂(x) overG by Kriging fromfS
5. while the set of candidate points has not been entirely explored
6. do Take an untried pointxc in the set of candidate points
7. Compute the parameters{y1, . . . , yM} of the quantization operatorQ
8. ComputeΛ = [λ(x1), . . . ,λ(xN )] the matrix of Kriging coefficients at every

point inG based on evaluation points inS andxc

9. for i← 1 to M

10. do Construct conditional simulations using (7) and assuming thatf(xc) =
yi

11. Find a global minimizerx∗
k of the kth conditional simulation overG

(k = 1, . . . , r)
12. EstimatepX∗

G
|fS,yi overG using (8)

13. ComputeH(X∗
G
|FS = fS, FQ(xc) = yi)

14. Compute the conditional entropy given an evaluation atxc using (10)
15. Outputxnew that minimizes the conditional entropy over the set of candidate points

Table 1
Selection of a new evaluation point forf .

with F ∗ = minx∈ G F (x), andPStop ∈ [0, 1] a critical value to be chosen by
the user. Proposed by Schonlau (Schonlau [1997]), this stopping criterion is well
suited here, since evaluating the repartition function off(x∗) does not require any
additional computation.

5.2 Computational complexity

With the previous notation,n the number of evaluation points,r the number of
conditional simulations,N the number of points inG andM number of possible
results for an evaluation, the computational complexity for the approximation of
conditional entropy (Steps 7 to 14 in Table 1) is as follows:

• computing Kriging coefficients at every point inG (Step 8):O(nN) (once the co-
variance matrix in (17) has been factorized, Kriging at an untried point is simply
in O(n)),

• constructing conditional simulations (Step 10):O(nrN) (M is actually not in-
volved since the main part of conditioning can be carried outoutside the loop on
the possible evaluation values),

• locating the global minimizers for each simulation by exhaustive search (Step 11):
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O(rNM),

Since all other operations are inO(N) at most, evaluating conditional entropy at
any given point requiresO(N) operations.

To complete the description of an implementable algorithm,we must specify a
choice forG and a policy for the minimization of conditional entropy. What follows
is just an example of a possible strategy, and many variants could be considered.

The simplest choice forG is a uniform grid onX. However, as the number of
evaluations off increases, the spread ofpX∗

G
|fS

diminishes along with the precision
for the computation of the entropy. To keep a satisfactory precision over time,G can
be a random sample of points inX, re-sampled after every evaluation off with the
densityp̂X∗

G
|fS

. Re-sampling makes it possible to use a setG with a smaller cardinal
and to escape, at least partly, the curse of dimensionality (to resample usinĝpX∗

G
|fS

,
any non-parametric density estimator could be used along with a sampling method
such as Metropolis Hastings, see, e.g., (Chib and Greenberg[1995])).

Ideally, to choose an additional evaluation point forf using IAGO, conditional
entropy should be minimized overX. However, this of course is in itself a global
optimization problem, with many local optima. It would be possible to design an ad-
hoc optimization method (as in (Jones [2001])), but this perspective is not explored
here. Instead, we evaluate the criterion extensively over achosen set of candidate
points. Note that only the surrogate model is involved at this stage, which makes
the approach practical. The idea is, exactly as for the choice ofG, to use a space-
filling sample coveringX and resampled after each new evaluation. The current
implementation of IAGO simply uses a Latin Hyper Cube (LHC) sample, however,
it would be easy to adapt this sample iteratively using the conditional distribution
of the minimizersp̂X∗

G
|fS

as a prior. For instance, areas of the design space where
the density is sufficiently small could be ignored. After a few evaluations, a large
portion of the design space usually satisfies this property,and the computations
saved could be used to improve knowledge on the criterion by sampling where
p̂X∗

G
|fS

is high (using the same approach as for the choice ofG).

As dimension increases, trying to cover the factor space while keeping the same
accuracy leads to an exponential increase in complexity. However, in a context of
expensive function evaluation, the objective is less to specify exactly all global
minimizers (which could be too demanding in function evaluations anyway), than
to use available information efficiently to reduce the likely areas for the location
of these minimizers. This is exactly the driving concept behind IAGO. In practice,
within a set of one thousand candidate points, picking an additional evaluation point
requires about five minutes with a standard personal computer (and this figure is
relatively independent of the dimension of the factor space). Moreover, the result
obtained can be trusted to be a consistent choice within thisset of candidate points,
in regard of what has been assumed and learned aboutf .

14



5.3 Taking noise in account

Practical optimization problems often involve noise. Thissection discusses possible
adaptations of the optimization algorithm that make it possible to deal with noisy
situations, namely noise on the evaluation off and noise on the factors.

5.3.1 Noise on the evaluation off

When the evaluations off are corrupted by noise, the algorithm must take this fact
into account. A useful tool to deal with such situations isnon-interpolative Kriging
(see Section 8.2).

If the evaluation atxi ∈ S is assumed to be corrupted by an additive Gaussian
noiseεi with known mean and variance, the Kriging prediction shouldno longer
be interpolative (see Section 8.2). The optimization algorithm remains nearly un-
changed, except for the conditional simulations. We now wish to build sample paths
of F conditionally to evaluation results, i.e. realizations ofthe random variables
f(xi) + εi for xi ∈ S. Since the variance of the prediction error is no longer zero
at evaluation points (in other words, there is some uncertainty left on the values of
f at evaluation points), we first have to sample, at each evaluation points, from the
distribution ofF conditionally to noisy evaluation results. An interpolative simula-
tion, based on these sample values, is then built using conditioning by Kriging. An
example of such a simulation is proposed on Figure 5.

5.3.2 Noise on the factors

In many industrial design problems, the variability of the values of the factors in
mass production has a significant impact on the performance that can be achieved.
In such a case, one might want to design a system that optimizes some performance
measure while ensuring that the performance uncertainty (stemming from noise on
the factors) remains under control. These so-calledrobust optimizationproblems
can generally be written as

argmin
x ∈ D

J(x) , (11)

with J(x) a cost function reflecting some statistical property of the corrupted per-
formance measuref(x + ε), whereε is a random vector accounting for noise on
the factors. Classical cost functions are:

• mean:J(x) = Eε[f(x+ ε)],

• standard deviation:J(x) = σε[f(x+ ε)] =
√

( var(f(x+ ε))),
• linear combination of mean and standard deviation:J(x) = Eε[f(x + ε)] +

kσε[f(x+ ε)],
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Fig. 5. Example of prediction by Kriging (bold line) of noisymeasurements represented
by squares. Dashed lines represent 95% confidence regions for the prediction and the thin
solid line is an example of conditional simulation obtainedusing the method presented in
Section 5.3.1 (crosses represent the simulated measurements.)

• α-quantile:J(x) = Qα(x)
with Qα(x) such thatP(f(x+ ε) < Qα(x)) = α.

Using, for example, theα-quantile as a cost function, it is possible to adapt our
optimization algorithm to solve (11). Given a set of evaluation resultsfS at noise-
free evaluation points, and assuming that it is possible to sample from the dis-
tribution pε of ε, a Monte-Carlo approximation̂Qα(x) of Qα(x) is easily ob-
tained by computinĝf(x+ ε) over a set sampled frompε. The global optimization
algorithm can then be applied toQα(x) instead off , using pseudo-evaluations
Q̂α

S
= [Q̂α(x1), . . . , Q̂

α(xn)] instead offS.

It is of course possible to combine these ideas and to deal simultaneously with noise
both on the factors and the function evaluations.

6 Illustrations

This section contains some simple examples of global optimization using IAGO,
with a regular grid as a set of candidate evaluation points. An empirical compar-
ison with global optimization using expected improvement is also presented. The
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Matérn covariance class will be used for Kriging prediction, as it facilitates the tun-
ing of the variance, regularity and range of correlation of the underlying random
process, but note that any kind of admissible covariance could have been used. The
parameters of the covariance may be estimated from the data using a maximum-
likelihood approach (see Section 8.3).

6.1 A one-dimensional example

Consider the function with two global minimizers illustrated by Figure 6 and de-
fined byf : x 7−→ 4[1− sin(x+ 8 exp(x− 7))]. Given an initial design consisting
of three points, the IAGO algorithm is used to compute six additional points itera-
tively. The final Kriging model is depicted in the left part ofFigure 6, along with
the resulting point mass conditional distribution for the minimizer on the right part.
After adding some noise on the function evaluations, the variant of the algorithm
presented in Section 5.3.1 is also applied to the function with the same initial de-
sign. In both cases, the six additional evaluations have significantly reduced the
uncertainty associated with the position of the global minimizers. The remaining
likely locations reduce to two small areas centered on the two actual global min-
imizers. In the noisy case, larger zones are identified, a direct consequence of the
uncertainty associated with the evaluations.

Figure 7 illustrates robust optimization using the same function and initial design.
The cost function used is the 90%-quantileQ90%, which is computed on the surro-
gate model but also, and only for the sake of comparison, on the true function using
Monte Carlo uncertainty propagation (the quantile is approximated using 5000 sim-
ulations). After six iterations of the robust optimizationalgorithm, the distribution
of the robust minimizer is sufficiently peaked to give a good approximation of the
true global robust minimizer.

These result are encouraging as they show that the requirement of a fast uncertainty
reduction is met. The next section provides some more examples, along with a
comparison with EGO, the EI-based global optimization algorithm.

6.2 Empirical comparison with expected improvement

Consider first the function described by Figure 8. Given an initial design of three
points, both the EI and conditional entropy are computed. Their optimization pro-
vides two candidate evaluation point forf , which are also presented on Figure 8,
along with the post-evaluation prediction and conditionalpoint mass distribution
for X∗

G
. For this example, the regularity parameter of the Matérn covariance is set

a priori to a high value (2.5), and it is therefore likely thattwo evaluations close to
one another, as proposed by the IAGO algorithm, will give some valuable informa-
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(a) Kriging prediction and point mass distribution of the global minimizers
based on the initial design
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(b) Standard IAGO algorithm (noise free case)
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(c) IAGO algorithm for noisy evaluations (the additive noise is zero-mean
Gaussian with standard deviation 0.2)

Fig. 6. Example of global optimization using IAGO on a function of one variable (dotted
line), with an initial design consisting of three points (represented by squares). Six addi-
tional evaluations are carried out (triangles) using two versions of the IAGO algorithm.
The graphs on theleft part of the figure account for final predictions, while theright part
presents the final point mass distributions of the global minimizers

tion about the part ofX located on the left of the evaluation point, while improving
the characterization of the global minimizer. By taking in account the covariance
of F through conditional simulations, the conditional entropyuses regularity to
conclude faster. The resulting conditional point mass distribution of the minimiz-
ers is then generally more peaked using the IAGO algorithm than using the EGO
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Fig. 7. Example of robust optimization using IAGO and the cost functionQ90%. The func-
tion f (dotted line), corrupted by a Gaussian noise on the factor (zero mean with a standard
deviation of 0.2), is studied starting from an initial design of three points (as in Figure 6).
Six additional evaluations are carried out (triangles), which are used to estimate the cost
function based on the Kriging model (bold line), along with the estimated point mass dis-
tribution of the robust minimizers (right). The cost functionQ90% estimated, only for the
sake of comparison, from the true function using Monte Carlouncertainty propagation is
also provided (mixed line).

algorithm (as illustrated by Figure 8(c) and Figure 8(b)).

Consider now the Branin function (see, for instance, (Dixonand Szegö [1978])),
defined as

f : [−5, 10]× [0, 15] −→ R

(x1, x2) 7−→
(

x2 −
5.1
4π2x

2
1 +

5
π
x1 − 6

)2

+10
(

1− 1
8π

)

cos(x1) + 10 .

It has three global minimizersx∗
1 ≈ (−3.14, 12.27)T, x∗

2 ≈ (3.14, 2.27)T and
x∗
3 ≈ (9.42, 2.47)T, and the global minimum is approximately equal to 0.4. Given

an initial uniform design of fifteen points, fifteen additional points are iteratively
selected and evaluated using the IAGO and EGO algorithms. These parameters are
estimated on the initial design, and kept unchanged during both procedures. The po-
sitions of these points are presented on Figure 9 (left), along with the three global
minimizers. Table 2 summarizes the results obtained with EGO and IAGO, based
on the final Kriging models obtained with both approaches. Note that the EI crite-
rion in EGO is maximized with a high precision, while the conditional entropy in
IAGO is computed over a thousand candidate evaluation points located on a regu-
lar grid. It appears nevertheless that the algorithm using EI stalls on a single global
minimizer, while the conditional entropy allows a relatively fast estimation of all
three of them. Besides, the search is more global with IAGO, which yields a bet-
ter global approximation of the supposedly unknown function. If twenty additional
evaluations are carried out (as presented in the right part of Figure 9), the final
Kriging prediction using the SUR approach estimates the minimum with an error
of less than 0.05 for all three minimizers (cf. Table 2), while the EI criterion does
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(a) Initial prediction and density of the global minimizers
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(b) Prediction and density of the global minimizers after anadditional evalua-
tion of f chosen with EI
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(c) Prediction and density of the global minimizers after anadditional evalua-
tion of f chosen with conditional entropy

Fig. 8. Comparison between conditional entropy and EI: theleft side contains the Kriging
predictions before and after an additional evaluation chosen with either EI or conditional
entropy, while theright side presents the corresponding conditional density of theglobal
minimizers.

not improve the information on any minimizer any further. The difference between
the two strategies is clearly evidenced. The EI criterion, overestimating the confi-
dence in the initial prediction, has led to performing evaluations extremely close
to one another, for a very small information gain. In a context of expensive func-
tion evaluation, this is highly detrimental. The entropy criterion, using the same
covariance parameters, does not stack points almost at the same location before
having identified the most likely zones for the minimizers. The use of what has
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EGO IAGO

15 iterations 35 iterations 15 iterations 35 iterations

Euclidean distance betweenx∗

1
and

its final estimate
3.22 3.22 2.18 0.23

Value of the true function at esti-
mated minimizer

17.95 17.95 2.59 0.40

Euclidean distance betweenx∗

2
and

its final estimate
2.40 2.40 0.44 0.18

Value of the true function at esti-
mated minimizer

13.00 13.00 0.85 0.42

Euclidean distance betweenx∗

3
and

its final estimate
0.04 0.04 0.82 0.23

Value of the true function at esti-
mated minimizer

0.40 0.40 1.94 0.44

Table 2
Estimation results for the Branin function using evaluations of Figure 9

been assumed and learned about the function is clearly more efficient in this case,
and this property should be highly attractive when dealing with problems of higher
dimension.
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(b) 35 iterations using EGO
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(c) 15 iterations using IAGO
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(d) 35 iterations using IAGO

Fig. 9. fifteen iterations of two optimization algorithms, that differ by their criteria for se-
lecting evaluation points forf , on the Branin function: (top) the EI criterion is used, (bot-
tom) the conditional entropy criterion is used with a thousand candidate evaluation points
for f set on a regular grid (squares account for initial data, triangles for new evaluations,
and crosses give the actual locations of the three global minimizers).
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7 Discussion

7.1 Robustness to uncertainty on the covariance parameters

Jones [2001] studies the potential of Kriging-based globaloptimization methods
such as EGO. One of his most important conclusions, is that these methods “can
perform poorly if the initial sample is highly deceptive”. An eloquent example is
provided on page 373, where a sinus function is sampled usingits own period,
leading to a flat prediction over the domain, associated witha small prediction
error.

This potential for deception is present throughout the IAGOprocedure, and should
not be ignored. To overcome this difficulty, several methodshave been proposed
(see, e.g., the Enhanced Method 4 in (Jones [2001]) or (Gutmann [2001])), which
achieve some sort of robustness to an underestimation of theprediction error and
more generally to a bad choice of covariance. They seem to perform better than
classical algorithms, including EGO.

Comparing the IAGO approach to such methods is an interesting topic for future
research. The issue considered here was to demonstrate the interest of the condi-
tional entropy criterion, and we feel that this should be done independently from
the rest of the procedure.

It is of course essential to make the IAGO algorithm robust toerrors in the estima-
tion of the covariance parameters. In many industrial problems, this can be easily
done by using prior knowledge on the unknown function to restrict the possible val-
ues for these parameters. For example, experts of the field often have information
regarding the range of values attainable by the unknown function. This information
can be directly used to restrict the search space for the variance of the modeling
processF , or even to choose it beforehand.

More generally, given the probabilistic framework used here, it should be relatively
easy to develop a Bayesian or minimax extension of the IAGO algorithm to guide
the estimation of the parameters of the covariance. A comparison with robust meth-
ods such as those detailed in (Jones [2001]) will then be essential.

7.2 Conclusions and perspectives

In this paper, a stepwise uncertainty reduction strategy has been used for the se-
quential global optimization of expensive-to-evaluate functions. This strategy iter-
atively selects a minimizer of the conditional minimizer entropy as the new evalua-
tion pointxnew. To compute this entropy, a Gaussian random model of the function
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evaluations is used and the minimizer entropy is estimated through Kriging and
conditional simulations. At each iteration, the result of the evaluation atxnew is
incorporated in the data base used to re-build the Kriging model (with a possible
re-estimation of the parameters of its covariance).

We have shown on some simple examples that, compared to the classical EI-based
algorithm EGO, the method proposed significantly reduces the evaluation effort in
the search for global optimizers. The SUR strategy allows the optimization method
to adapt the type of search to the information available on the function. In particular,
the conditional entropy criterion makes full use of the assumed regularity of the
unknown function to balance global and local searches.

Choosing an adequate set of candidate points is a crucial point, as it must allow a
good estimation of a global minimizer of the criterion, while keeping computation
feasible. Promising results have already been obtained with space-filling designs,
and adaptive sampling based on the conditional density of the global minimizers
should provide useful results as dimension increases.

Extension to constrained optimization is an obviously important topic of future in-
vestigations. When it is easy to discard the candidate points inX that do not satisfy
the constraints, the extension is trivial. For expensive-to-evaluate constraints, the
extension is a major challenge.

Finally, the SUR strategy associated with conditioning by Kriging is a promising
solution for the robust optimization of expensive-to-evaluate functions, a problem
that is central to many industrial situations, for which an efficient product design
must be found in the presence of significant uncertainty on the values actually taken
by some factors in mass production. In addition, robustnessto the uncertainty as-
sociated with the estimation of the parameters of the covariance should also be
sought.

8 Appendix: modeling with Gaussian processes

This section recalls the main concepts used in this paper, namely Gaussian process
modeling and Kriging. The major results will be presented along with the general
framework for the estimation of the model parameters.

8.1 Kriging whenf is evaluated exactly

Kriging (Matheron [1963], Chilès and Delfiner [1999]) is a prediction method
based on random processes that can be used to approximate or interpolate data.
It can also be understood as a kernel regression method, suchassplines(Wahba

23



[1998]) orSupport Vector Regression(Smola [1998]). It originates from geostatis-
tics and is widely used in this domain since the 60s. Kriging is also known as the
Best Linear Unbiased Prediction(BLUP) in statistics, and has been more recently
designated as Gaussian Processes (GP) in the 90s in the machine learning commu-
nity.

As mentioned in Section 2.1, it is assumed that the functionf is a sample path of a
second-order Gaussian random processF . Denote bym(x) = E[F (x)] the mean
of F (x) and byk(x,y) its covariance, written as

k(x,y) = cov(F (x), F (y)).

Kriging then computes the BLUP ofF (x), denoted byF̂ (x), in the vector space
generated by the evaluationsHS = span{F (x1), . . . , F (xn)}. As an element of
HS, F̂ (x) can be written as

F̂ (x) = λ(x)TFS , (12)

As the BLUP,F̂ (x) must have the smallest variance for the prediction error

σ̂2(x) = E[(F̂ (x)− F (x))2], (13)

among all unbiased predictors. The variance of the prediction error satisfies

σ̂2(x) = k(x,x) + λ(x)TKλ(x)− 2λ(x)Tk(x), (14)

with
K = (k(xi,xj)) , (i, j) ∈ J1, nK2

then× n covariance matrix ofF at evaluation points inS, and

k(x) = [k(x1,x), . . . , k(xn,x)]
T

the vector of covariances betweenF (x) andFS

The prediction method (Matheron [1969]) assumes that the mean ofF (x) can be
written as a finite linear combination

m(x) = βTp(x),

whereβ is a vector of fixed but unknown coefficients, and

p(x) = [p1(x), . . . , pl(x)]
T

is a vector of known functions of the factor vectorx. Usually these functions are
monomials of low degree in the components ofx (in practice, the degree does not
exceed two). These functions may be used to reflect some priorknowledge on the
unknown function. As we have none for the examples considered here, we simply
use an unknown constant.
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The Kriging predictor atx is then the best linear predictor subject to the unbi-
asedness constraintE(F̂ (x)) = m(x), whatever the unknownβ. The unbiasedness
constraint translates into

βTP Tλ(x) = βTp(x), (15)

with

P =















p(x1)
T

...

p(xn)
T















.

For (15) to be satisfied for allβ, the Kriging coefficients must satisfy the linear
constraints

P Tλ(x) = p(x), (16)
calleduniversality constraintsby Matheron. At this point, Kriging can be reformu-
lated as follows: find the vector of Kriging coefficients thatminimizes the variance
of the prediction error (14) subject to the constraints (16). This problem can be
solved via a Lagrangian formulation, withµ(x) a vector ofl Lagrange multipliers.
The coefficientsλ(x) are then solutions of the linear system of equations







K P

P T
0













λ(x)

µ(x)





 =







k(x)

p(x)





 , (17)

with 0 a matrix of zeros. A convenient expression for the variance of the prediction
error is obtained by substitutingk(x)− Pµ(x) for Kλ(x) in (14) as justified by
(17), to get

σ̂2(x) = E

[

F (x)− F̂ (x)
]2

= k(x,x)− λ(x)Tk(x)− p(x)Tµ(x) . (18)

The variance of the prediction error atx can thus be computed without any evalu-
ation off , using (17) and (18). It provides a measure of the quality associated with
the Kriging prediction. Evaluations off remain needed to estimate the parameters
of the covariance ofF (if any), as will be seen in Section 8.3.2.

Oncef has been evaluated at all evaluation points, the predictionof the value taken
by f atx becomes

f̂(x) = λ(x)TfS , (19)
with fS = [f(x1), . . . , f(xn)]

T (fS is viewed as a sample value ofFS).

It is easy to check that (17) implies that

∀ xi ∈ S, F̂ (xi) = F (xi).

The prediction off at xi ∈ S is thenf(xi), so Kriging is an interpolation with
the considerable advantage that it also accounts for model uncertainty through an
explicit characterization of the prediction error.
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Remark: The Bayesian framework (see, for instance, Williams and Rasmussen
[1996]) is an alternative approach to derive the BLUP, in which the modelF is
viewed as a Bayesian prior on the output. In the case of a zero-mean model, the
conditional distribution of the function is then Gaussian with mean

E [F (x)|FS = fS] = k(x)TK−1fS, (20)

and variance

Var [F (x)|FS = fS] = k(x,x)− k(x)TK−1k(x),

which are exactly the mean (19) and variance (18) of the Kriging predictor for a
modelF with zero mean. The Kriging predictor can also be viewed as the condi-
tional mean ofF (x) in the case of an unknown mean, if the universality constraints
are viewed as a non-informative prior onβ.

8.2 Kriging whenf is evaluated approximately

The Kriging predictor was previously defined as the element of the spaceHS gen-
erated by the random variablesF (xi) that minimizes the prediction error. A natural
step is to extend this formulation to the case of a function whose evaluations are cor-
rupted by additive independent and identically distributed Gaussian noise variables
εi with zero mean and varianceσ2

ε . The model of the observations then becomes
F obs
xi

= F (xi) + εi i = 1, . . . , n, and the Kriging predictor forF (x) takes the form

F̂ (x) = λ(x)TF obs
S

with F obs
S

=
[

F obs
x1 , . . . , F obs

xn

]

T

. The unbiasedness constraint
(16) remain unchanged, while the mean-square error (2) becomes

E[F̂ (x)− F (x)]2 = k(x,x) + λ(x)T(K + σ2
εIn)λ(x)− 2λ(x)Tk(x),

with In the identity matrix. Finally, using Lagrange multipliers as before, it is easy
to show that the coefficientsλ(x) of the prediction must satisfy







K + σ2
εIn P

P T 0













λ(x)

µ(x)





 =







k(x)

p(x)





 . (21)

The resulting prediction is no longer interpolative, but can still be viewed as the
mean of the conditional distribution ofF . The variance of the prediction error is
again obtained using (18).

8.3 Covariance choice

Choosing a suitable covariance functionk(·, ·) for a givenf is a recurrent and
fundamental question. It involves the choice of a parametrized class (or model) of
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covariance, and the estimation of its parameters.

8.3.1 Covariance classes

The asymptotic theory of Kriging (Stein [1999]) stresses the importance of the
behaviour of the covariance near the origin. This behaviouris indeed linked with
the quadratic-mean regularity of the random process. For instance, if the covari-
ance is continuous at the origin, then the process will be continuous in quadratic
mean. In practice, one often uses covariances that areinvariant by translation(or
equivalentlystationary), isotropic, and such that regularity can be adjusted. Non-
stationary covariances are seldom used in practice, as theymake parameter esti-
mation particularly difficult (Chilès and Delfiner [1999]).Isotropy, however, is not
required and can even be inappropriate when the factors are of different natures.
An example of an anisotropic, stationary covariance class is k(x,y) = k(h), with

h =
√

(x− y)TA(x− y) where(x,y) ∈ X
2 andA is a symmetric positive defi-

nite matrix.

A number of covariance classes are classically used (for instance exponentialh 7→
σ2 exp(−θ|h|α), product of exponentials, or polynomial). TheMatérn covariance
class offers the possibility to adjust regularity with a single parameter (Stein [1999]).
The Fourier transform of a Matérn covariance is

k̂(ω) =
σ2

(ω2
0 + ω2)ν+1/2

, ω ∈ R , (22)

whereν controls the decay of̂k(ω) at infinity and therefore the regularity of the co-
variance at the origin. Stein [1999]) advocates the use of the following parametriza-
tion of the Matérn class:

k(h) =
σ2

2ν−1Γ(ν)

(

2ν1/2h

ρ

)ν

Kν

(

2ν1/2h

ρ

)

, (23)

whereKν is the modified Bessel function of the second kind (Yaglom [1986]). This
parameterization is easy to interpret, asν controls regularity,σ2 is the variance
(k(0) = σ2), andρ represents therangeof the covariance,i.e., the characteris-
tic correlation distance. To stress the significance and relevance of the regularity
parameter, Figure 10 shows the influence ofν on the covariance, and Figure 11
demonstrates its impact on the sample paths. Since Kriging assumes thatf is a
sample path ofF , a careful choice of the parameters of the covariance is essential.

8.3.2 Covariance parameters

The parameters for a given covariance class can either be fixed using prior knowl-
edge on the system, or be estimated from experimental data. In geostatistics, es-
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Fig. 10. Matérn covariances for the parameterization (22) with ρ = 0.5, σ2 = 1. Solid line
corresponds toν = 4, dashed line toν = 1 and dotted line toν = 0.25.
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timation is carried out using the adequacy between the empirical and model co-
variances (Chilès and Delfiner [1999]). In other areas, cross validation (Wahba
[1998]) and maximum likelihood (Stein [1999]) are mostly employed. For sim-
plicity and generality reasons (Stein [1999]), the maximum-likelihood method is
preferred here.

The maximum-likelihood estimate of the parameters of the covariance maximizes
the probability density of the data. Using the joint probability density of the ob-
served Gaussian vector, and assuming that the mean ofF (x) is zero for the sake of
simplicity, the maximum-likelihood estimate of the vectorθ of the covariance pa-
rameters is obtained (see, for instance, Vechia [1998]) by minimizing the negative
log-likelihood

l(θ) =
n

2
log 2π +

1

2
log detK(θ) +

1

2
fT

S
K(θ)−1fS , (24)

In the case of an unknown mean forF (x), it is possible to estimate the parameters,
using for example theREstricted Maximum Likelihood(REML, see Stein [1999]).
This is the approach used for the examples in this paper.

Figure 12 illustrates prediction by Kriging with a Matérn covariance, the parame-
ters of which have been estimated by REML. The prediction interpolates the data,
and confidence intervals are deduced from the square root of the variance of the
prediction error to assess the quality of the prediction between data. Figure 12 also
contains a series of conditional simulations (obtained with the method explained
in Section 3.2), namely sample paths ofF that interpolate the data. As implied by
(20), the Kriging prediction is the mean of these conditional simulations.
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