
J Glob Optim (2009) 45:499–531
DOI 10.1007/s10898-008-9386-7

Interval propagation and search on directed acyclic
graphs for numerical constraint solving

Xuan-Ha Vu · Hermann Schichl ·
Djamila Sam-Haroud

Received: 20 November 2007 / Accepted: 2 December 2008 / Published online: 24 December 2008
© Springer Science+Business Media, LLC. 2008

Abstract The fundamentals of interval analysis on directed acyclic graphs (DAGs) for
global optimization and constraint propagation have recently been proposed in Schichl and
Neumaier (J. Global Optim. 33, 541–562, 2005). For representing numerical problems, the
authors use DAGs whose nodes are subexpressions and whose directed edges are com-
putational flows. Compared to tree-based representations [Benhamou et al. Proceedings of
the International Conference on Logic Programming (ICLP’99), pp. 230–244. Las Cruces,
USA (1999)], DAGs offer the essential advantage of more accurately handling the influ-
ence of subexpressions shared by several constraints on the overall system during propaga-
tion. In this paper we show how interval constraint propagation and search on DAGs can
be made practical and efficient by: (1) flexibly choosing the nodes on which propagations
must be performed, and (2) working with partial subgraphs of the initial DAG rather than
with the entire graph. We propose a new interval constraint propagation technique which
exploits the influence of subexpressions on all the constraints together rather than on indi-
vidual constraints. We then show how the new propagation technique can be integrated into
branch-and-prune search to solve numerical constraint satisfaction problems. This algorithm
is able to outperform its obvious contenders, as shown by the experiments.
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1 Introduction

A constraint satisfaction problem (CSP) consists of a finite set of constraints specifying
which combinations of values from given domains of variables are admitted. A CSP is said
to be numerical if its domains are continuous. Numerical CSPs, such as systems of nonlin-
ear equations and inequalities, arise in many applications and form a difficult problem class
since they are NP-hard. In practice, numerical constraints are usually expressed in factorable
form which means that they are composed of elementary operators or functions (e.g., +, ∗,
÷, √ and sin) and standard relations (e.g., ≤, <, �=, >, and ≥). Many solution techniques
exploit the factorability of such numerical constraints to efficiently solve numerical CSPs.
To achieve full mathematical rigor when performing operations on floating-point numbers,
most techniques are based on interval arithmetic or its variants.

The most commonly used complete strategy for finding the solutions of a numerical CSP
is branch-and-prune, which interleaves branching steps with pruning steps. Roughly speak-
ing, a branching step divides the problem into subproblems whose union is equivalent to the
initial one in term of the solution set, and a pruning step reduces/simplifies the problem in
some measure. The most well-known pruning technique is domain reduction, which reduces
the domains of variables without discarding any solution of the problem.

Over the last 20 years, many domain reduction techniques based on interval arithmetic
have been devised. In particular, an interesting approach in constraint programming, called
interval constraint propagation, was developed in the 1990s (see [2,3,24] and [9]). This
approach combines constraint propagation techniques, as defined in artificial intelligence,
with interval-analytic methods. The algorithm HC4 [5] is one of the most prominent repre-
sentatives of this family of domain reduction techniques. In HC4, each individual constraint
is represented by a tree whose nodes and edges stand respectively for subexpressions and
computational flows. Each node of the tree is associated with the (possible) range of the
corresponding subexpression.

In order to reduce the variables’ domains of a given constraint the technique recursively
performs forward evaluations and then backward projections on the whole tree represent-
ing the constraint. These two steps compute the ranges of nodes based on the ranges of
their children’s and parents’ respectively. When several constraints are involved, HC4 per-
forms forward evaluations and backward projections individually on each constraint, and
then propagates the reduction of the variables’ domains from tree to tree by using a variant
of arc consistency, AC3 [13].

The fact that each constraint is propagated individually is one of the main limitations of
this approach. The effects of the common subexpressions, shared by several constraints, is
only roughly taken into account.

Recently, a fundamental framework for interval analysis on directed acyclic graphs (DAGs)
has been proposed by [21] which overcomes this limitation. The authors suggested to replace
trees with DAGs and showed how to perform forward evaluations and backward projections
using this particular representation. The shift to DAGs potentially reduces the amount of
computation on common subexpressions shared by constraints, and explicitly relates con-
straints to constraints in the natural way they are composed, thus enhancing the constraint
propagation process.

The constraint propagation technique proposed in [21] is a direct generalization of HC4
in the sense that all the nodes of the DAG are forward evaluated then backward projected at
once. In practice, and as the problems grow large, situations often occur where only a small
number of nodes is worth considering for forward or backward inference as the other nodes
leave the domain ranges unchanged after computation.
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This paper builds on this idea and presents a new constraint propagation technique follow-
ing the DAG-based framework [21]. The contribution is twofold. Firstly, we show how the
DAG-based framework can be made efficient and practical by adaptively performing forward
evaluations and backward projections on chosen nodes of a DAG (see Sects. 4, 4.3 and 5).
In our approach, switching from evaluations to projections is made at the node level rather
than at the tree or DAG level.

Secondly, we show how the new propagation technique can be integrated into a generic
branch-and-prune search without the necessity to create multiple DAGs (see Sects. 4.3, 5 and
6). Our experiments carried out on impartially chosen benchmarks show that the new tech-
nique outperforms previously available propagation techniques by 1 to 2 orders of magnitude
or more in speed, while being roughly the same quality with respect to enclosure properties
(see Sect. 7).

The paper is organized as follows. Section 2 presents the necessary background and defi-
nitions, including the fundamentals of numerical constraint satisfaction (Sect. 2.1), and DAG
representation of numerical CSPs (Sect. 2.2). Section 3 describes a slight modification to
standard interval arithmetic that may reduce the amount of computation in constraint prop-
agation. Forward evaluation and backward propagation on DAGs as well as the notion of
partial DAG representation are presented in Sect. 4 and serve as basis for the core contribu-
tions of this paper (Sects. 5 and 6). Finally, Sect. 7 discusses the preliminary experimental
results.

2 Background and notation

Recall that a factorable function is one, which can be expressed as a finite composition of
pre-specified elementary operations, and that a constraint is called factorable if it involves
only factorable functions.

In the composition of a factorable constraint, each constraint representing an elementary
operation is called a primitive constraint.

A CSP solely consisting of factorable constraints is called factorable.
All of our work will be based on interval analysis. Extended introductions on the subject

can be found in [1,15,16], on interval methods for systems of equations in [17], on interval
methods for optimization in [7], and on some recent applications of interval arithmetic in [9].

We will use the following notation: We write R∞ ≡ R∪{−∞,+∞}. The set of all closed
intervals is denoted by I and the set of all intervals is denoted by IR. For a subset S of R we
denote the interval hull by 	
S.

The lower bound of a real interval x is defined as inf(x), and the upper bound as sup(x).
Let us denote x = inf(x) ∈ R∞ and x = sup(x) ∈ R∞. The midpoint will be written as
mid(x), the radius as rad(x), and the width as w(x).

Let f : D ⊆ R
n → R

m be a factorable function with one of its realizations f as arithmetic
expression. The natural extension of f is an interval function ff : IR

n → IR
m constructed

from f in which each real variable is replaced by an interval variable and each elementary
real operation is replaced by the natural extension of this operation. It is easy to prove that
ff is an interval form of the function f . Therefore, it is called a natural interval form of f
and denoted by f . Note that f indeed depends on the arithmetic expression used to realize f
(see e.g. [17, Chap. 1]), however, it is common usage to call every natural extension of f the
natural (interval) extension of f . For example, the natural interval form of the real function
f (x, y) = 2 ∗ x + x ∗ y is the interval function f(x, y) = 2 ∗ x + x ∗ y. However, the same
function f can be (better) represented by the interval function f(x, y) = x(2 + y).
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2.1 Numerical constraint satisfaction

2.1.1 Numerical constraint satisfaction problems

A constraint on a finite sequence of variables (x1, . . . , xk) taking values in respective domains
(D1, . . . , Dk) is a subset of the Cartesian product D1 ×· · ·× Dk , where k is a natural number,
that is, in N.

The concept of a constraint satisfaction problem is defined as follows.

Definition 1 A constraint satisfaction problem, abbreviated to CSP, is a triple (V,D, C) in
which V is a finite sequence of variables (v1, . . . , vn), D is a finite sequence of the respective
domains of the variables, and C is a finite set of constraints (each on a subsequence of V).
A solution of this problem is an assignment of values from D to V respectively such that all
constraints in C are satisfied. The set of all solutions is called the solution set.

In this paper, we only focus on numerical CSPs defined as follows.

Definition 2 A numerical constraint is a constraint on a sequence of variables whose domains
are continuous. A domain is called a continuous if its a real interval. If all the constraints of
a CSP are numerical, this CSP is called a numerical constraint satisfaction problem (abbre-
viated to NCSP).

In practice, a NCSP can often be represented in the following form:

f (x) ∈ b, (1)

where x is a vector of n real variables taking values in a box x ∈ I
n , b ≡ (b1,b2, . . . ,bm)

T

is an interval vector in I
m , and f = ( f1, f2, . . . , fm)

T is a factorable function from D ⊆ R
n

to R
m . For each j = 1, . . . , n, the interval b j is called the constraint range of the constraint

f j (x) ∈ b j .
Since more than 30 years ago, constraint satisfaction techniques, such as arc consistency

[14,28,29] and path consistency [14], have been devised to solve CSPs with discrete domains.
Those techniques perform reasoning procedures on constraints and explore the search space
by intelligently enumerating solutions. In order to solve NCSPs by means of constraint sat-
isfaction, continuous domains have often been converted into discrete domains by using
progressive discretization techniques [12,19]. Later on, many mathematical computation
techniques for continuous domains have been integrated into the framework of constraint
satisfaction in order to solve NCSPs more efficiently. Nowadays, these techniques are often
referred to as constraint programming, which implies the combination of computing and
reasoning aspects.

Most techniques for solving NCSPs follow the branch-and-prune framework, which
interleaves branching steps with pruning steps. A branching step divides a problem into
subproblems whose union is equivalent to the initial problem in term of the solution set,
and a pruning step reduces a problem. Pruning steps are usually performed by using domain
reduction techniques, which reduce the domains of variables without discarding any solution
of the problem. Inspired by the classical constraint satisfaction techniques, an interesting
approach in constraint programming, called interval constraint propagation, was developed
in the 1990s (see [2,3,24] and [9]). This approach combines constraint propagation tech-
niques in constraint satisfaction with interval-analytic methods in mathematics. The idea is
that one cannot exactly achieve consistency properties such as arc consistency for numerical
constraints under floating-point number systems, therefore replaces the consistencies with
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relaxations that are tractable under floating-point number systems. For example, given a con-
straint c on variables (x1, . . . , xk) with respective domains (D1, . . . , Dk), arc consistency
reduces each Di to the projection of c on xi , denoted c[xi ]. The interval variant of arc con-
sistency only reduces each Di to the smallest union of intervals that contains c[xi ]. However,
this is still intractable in practice. One may wish to replace it with a weaker property that each
Di is the smallest interval containing c[xi ]. This introduces a new concept of consistency:
hull consistency [2,3]. Other concepts of consistency such as kB-consistency [11] and box
consistency [4] have also been introduced. In constraint programming, achieving those con-
sistency properties has often been implemented by a search or interval constraint propagation
technique in combination with mathematical tools such as interval arithmetic.

2.1.2 Achieving hull consistency by constraint propagation

Let be given a factorable numerical constraint and one of its compositions. In [2,3] the authors
proposed to achieve hull consistency for the initial constraint by achieving hull-consistency
for its primitive constraints in the given composition [5]. A faster propagation algorithm to
achieve hull consistency for a single constraint was proposed in [5]. To reduce the domains of
the variables of a number of constraints, the technique, called HC4, achieves hull consistency
for individual constraints, and then propagates the reduction of the variables’ domains from
constraint to constraint by using a variant of arc consistency, AC3 [13].

To solve a NCSP of the form (1), the HC4 algorithm represents each constraint of the
problem as a tree (defining a way to compose the constraint). Each node of the tree represents
a primitive constraint. Each node N of the tree is associated with two intervals, called the
forward and backward node ranges, denoted Nf and Nb, respectively.

The exact value, hence the exact range, of the subexpression represented by a node must
be contained in both of the two node ranges.

Example 1 The tree representation of the following NCSP is depicted in Fig. 1:
{√x + 2

√
xy + 2

√
y ≤ 7, 0 ≤ x2√y − 2xy + 3

√
y ≤ 2, x ∈ [1, 16], y ∈ [1, 16]}.

The HC4 algorithm is presented as Algorithm 1. It invokes another algorithm, HC4revise,
to achieve hull consistency for a constraint. HC4revise performs two main processes: recur-
sive forward evaluation (RFE) and recursive backward projection (RBP). HC4revise is
presented concisely in Algorithm 2, where TN denotes the tree rooted at node N. At Line 1
of RBP, an elementary operation ψ(N1, . . . ,Nq) represented by node N defines a relation
ψ∗ on the sequence (N,N1, . . . ,Nq); where N,N1, . . . ,Nq play the role of variables taking
values in Nb,Nf

1, . . . ,Nf
q , respectively. Sinceψ is an elementary operation,ψ∗ is very simple

and can be projected on its variables by using simple formulas in [5].

Algorithm 1: The HC4 algorithm—hull consistency on primitive constraints
Input: a NCSP P ≡ (V ≡ (x1, . . . , xn),D,C), a domain box x ⊆ D.
Output: new domains x′ ∈ I

n of V .
x′ := x; WAITINGLIST := C;
while WAITINGLIST �= ∅ and x′ �= ∅ do

Take a constraint C from WAITINGLIST;
y := HC4revise(TC , x′); � On page 504.1

if y �= x′ then
Put into WAITINGLIST the constraint C and every constraint C ′ sharing with C at least one
variable whose domain has been reduced at Line 1;
x′ := y;
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Fig. 1 The tree representation of the NCSP in Example 1

Algorithm 2: The HC4revise algorithm
Input: a tree TC ; domains x ∈ I

n of variables (x1, . . . , xn).
Output: new domains x ∈ I

n of (x1, . . . , xn).
RFE(TC , x); � On page 504.

Cb := the constraint range of C ;
RBP(TC , x); � On page 504.

Procedure RFE(in/out: a tree TN; in: x ∈ I
n)

if N is a variable xi then Nf := xi ;
else if N is an expression ψ(N1, . . . ,Nq ) then

Nf := ψ(RFE(TN1 , x), . . . ,RFE(TNq , x));

Procedure RBP(in/out: a tree TN, x ∈ I
n)

if N is a variable xi then xi := xi ∩ Nb;
else if N is an expression ψ(N1, . . . ,Nq ) then

Nb := Nb ∩ Nf;
Let ψ∗ be the relation N = ψ(N1, . . . ,Nq ) on interval vector (Nb,Nf

1, . . . ,Nf
q )

T;1

for i := 1, . . . , q do
Nb

i := Nf
i ∩ ψ∗[Ni ]; � Intersected with the projection of ψ∗ on Ni .

RBP(TNi , x);

2.2 DAG representations for numerical CSPs

We use the concept of a DAG representation of a constraint system as in [21].
We recall the following fundamental result, which illustrates the precedence relationship

of nodes in a directed acyclic multigraph.
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Theorem 1 For every directed acyclic multigraph (V, E, f ), there exists a total order � on
the vertices V such that for every v ∈ V and every ancestor u of v, we have v � u.

Remark 1 Procedure NodeLevel on page 517, is a simple algorithm for assigning a level to
each node such that any sorting in descending order of the obtained levels will result in a
required order.

2.2.1 DAG representation

As proposed in [21], a directed acyclic multigraph with ordered edges, abbreviated to DAG,
can be used to represent the factorable NCSP (1). Since the problem (1) is factorable, the
function f can be composed of a sequence of elementary operations/functions such as +,
∗, /, log, exp, sqr, and sqrt. In this composition, each variable is represented by a leaf.
Each elementary operation/function φ : D ⊆ R

k → R that takes as input k subexpressions
x1, . . . , xk is represented by a node N with k edges, each runs from the node representing
xi to the node N, where 1 ≤ i ≤ k. These k edges represent the computational flow in
the natural composition of the operation φ. The obtained representation is called the DAG
representation of the considered problem.

Notation 1 Each node N in the DAG representation is associated with an interval, denoted
as τN and called the node range of N, in which the exact range of the associated subexpres-
sion must lie. N is also associated with a real variable, denoted by ϑN, that represents the
value of the subexpression represented by N.

For efficiency and compactness, the standard elementary operations in the DAG repre-
sentation are replaced with more general operations. For example, multiple applications of
binary elementary operations of the forms in {x + y, x − y, x + a, a + x, x − a, a − x, ax}
are replaced with a k-ary operation a0 + a1x1 + · · · + ak xk , which is interpreted as a k-ary
operation + (see Fig. 2a), where 1 ≤ k ∈ N. Similarly, multiple applications of the binary
multiplication x ∗ y are replaced with a k-ary multiplication (or product) a0 ∗ x1 ∗ · · · ∗ xk ,
which is interpreted as the k-ary operation ∗ (see Fig. 2b), where 2 ≤ k ∈ N. In general,
each edge of a DAG representation is associated with a respective coefficient of the operation
represented by its target. When not specified in figures, this coefficient equals to 1. The other
constants involving an operation are stored at the node representing the operation (see Fig. 2).
As a result, the DAG representation no longer have nodes representing constants as in the
tree representation (see Sect. 2.1.2).

Much more detailed descriptions of DAG representations can be found in Sects. 4.1 and
5.3 of [20].

We need to use multigraphs, for efficiency, instead of simple graphs for DAG representa-
tions because some special operations can take the same input more than once. For example,

Fig. 2 A node and its
computational flows in a DAG
representation

a1

xi

ai ak

a0

xkx1 xi

a0

xkx1

(a) (b)
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the expression x x can be represented by the binary power operation x y without introducing a
new unary operation x x . In all cases, a normal directed acyclic graph is sufficient to represent
a NCSP, provided that we introduce new elementary operations such as the unary operation
x x . The ordering of edges is needed for non-commutative operations like the division. For
convenience, a ground node, called G, is added to each DAG representation to be the parent
of all nodes that represents the constraints. In fact, the ground node can be interpreted as the
logical AND operation.

Example 2 Consider the following constraint system
⎧
⎨

⎩

√
x + 2

√
xy + 2

√
y ≤ 7,

0 ≤ x2√y − 2xy + 3
√

y ≤ 2,
x ∈ [1, 16], y ∈ [1, 16],

which can be written into the form (1) as follows
⎧
⎨

⎩

√
x + 2

√
xy + 2

√
y ∈ [−∞, 7],

x2√y − 2xy + 3
√

y ∈ [0, 2],
x ∈ [1, 16], y ∈ [1, 16].

(2)

The DAG representation of the constraint system (2) is depicted in Fig. 3. Two constraints of
(2) are represented by two nodes N9 and N10. Two variables, x and y, are represented by two
nodes N1 and N2, respectively. The sequence (N1,N2, . . . ,N10) of nodes given in Fig. 3 is
an example of ordering as stated in Theorem 1.

For the same constraint system, the DAG representation is clearly more concise than the
tree representation described in Sect. 2.1.2.

Fig. 3 The DAG representation of the constraint system (2)
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3 Modification to standard interval arithmetic

Expressions that are only defined on subsets of R
n are often encountered in practice. For

example, a division by zero, such as 1 ÷ 0, is not defined. Consequently, the division of two
intervals is not defined in (standard) interval arithmetic when the denominator contains zero.
In such cases, many implementations of interval arithmetic give, by convention, the universe
interval [−∞,∞] as result. This is an extension of (standard) interval arithmetic for all pur-
poses, in order to conform to the inclusion property. If we use this implementation to evaluate
the range of a function f : D ⊂ R

n → R
m , we will often get unnecessarily overestimated

bounds of the form [−∞,∞] in case the denominators of the divisions in f contain zero. In
order to avoid such over-estimations, we have to extend functions depending on their use in
specific computations. In this section, building on the concept of a multifunction, we propose
a way to extend functions that are only defined on subsets of R

n .
We do not use the concept of constraint sets (see e.g. [18]) here because they often pro-

vide overly pessimistic enclosures of the result of arithmetic operations. For example, the
cset division is equivalent to ÷R, which is neither in forward mode nor in backward mode
optimal.

3.1 Extending domains of functions

We start by recalling the definition of a multifunction from [23, p. 34].

Definition 3 (Multifunction) Let X and Y be two sets. A multifunction F from X to Y (a
relation on X × Y ), denoted as F : X → Y , is a subset F ⊆ X × Y . The inverse of F is a
multifunction F−1 : Y → X defined by the rule: (y, x) ∈ F−1 ⇔ (x, y) ∈ F . We define
the values of F at x to be F(x) ≡ {y ∈ Y | (x, y) ∈ F}, and the fibers of F for y ∈ Y to be
F−1(y) ≡ {x ∈ X | (x, y) ∈ F}.

In Definition 3, if for some x ∈ X there is no y ∈ Y such that (x, y) ∈ F , we have that
F(x) = ∅. From Definition 3 we can see that a function is, in fact, a special multifunction
that is single-valued.

The concepts of image and inverse image (of a set) under a multifunction are similar to
those for functions:

Definition 4 (Image, Inverse Image) Let X and Y be two sets, F : X → Y a multifunction.
The image of a subset A ⊆ X under F is defined and denoted by

F(A) ≡
⋃

x∈A

F(x) = {y ∈ F−1 | F−1(y) ∩ A �= ∅}. (3)

The inverse image of a subset B ⊆ Y under F is defined and denoted by

F−1(B) ≡
⋃

y∈B

F−1(y) = {x ∈ F | F(x) ∩ B �= ∅}. (4)

Next, we define a special class of multifunctions.

Definition 5 (Extended Function) Let f be a function from a set X to a set Y , X ′ a superset
of X , and Z a set of some subsets of Y possibly including ∅. A Z-extended function over X ′
of f is a multifunction F : X ′ → Y such that

∀x ∈ X : F(x) = { f (x)}, (5)

∀x ∈ X ′ \ X : F(x) ∈ Z . (6)
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Note 1 When we do not care about Z in Definition 5, we just call F an extended function
over X ′ of f .

Notation 2 For simplicity, in Definition 5, for all x ∈ X we write F(x) = f (x) when no
confusion can arise.

A Z -extended function F , as defined in Definition 5, corresponds to a function g : X ′ →
Y ∪ Z defined as

g(x) ≡
{

f (x) if x ∈ X ,
F(x) otherwise.

(7)

If X ′ = X , then f (x) = g(x) for all x in X . By Definition 5, it is easy to prove the following
theorem.

Theorem 2 Let f , F and other notations be as in Definition 5. Then, for every subset S of
X ′, we have

f (S) ≡ { f (x) | x ∈ S ∩ X} ⊆ F(S). (8)

Consider the case X = D ⊆ R
n, Y = R

m . It is easy to see that, for any function
f : D ⊆ R

n → R
m , there is only one Z -extended function from R

n to R
m if Z has only one

element, for example, when Z is either {∅} or {R}.

Example 3 The domain of the standard division x ÷ y is D÷ = {(x, y) ∈ R
2 | y �= 0}. The

unique {∅}-extended function over R of the standard division is defined as

÷∅ (x, y) ≡ x ÷∅ y ≡
{

x/y if y �= 0,
∅ otherwise.

(9)

The unique {R}-extended function over R of the standard division is defined as

÷R (x, y) ≡ x ÷R y ≡
{

x/y if y �= 0,
R otherwise.

(10)

The following is a {∅,R}-extended function over R of the standard division:

÷� (x, y) ≡ x ÷� y ≡
⎧
⎨

⎩

x/y if y �= 0,
∅ if x �= 0, y = 0,
R otherwise.

(11)

Example 4 The domain of the standard square root
√

x is the interval [0,+∞]. The unique
{∅}-extended function over R of the square root is defined as

√
x

∅ ≡
{√

x if x ≥ 0,
∅ otherwise.

(12)

The unique {R}-extended function over R of the square root is defined as

√
x

R ≡
{√

x if x ≥ 0,
R otherwise.

(13)
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3.2 Extending interval forms

We now define the concept of interval form for a multifunction. This definition also holds
for extended functions which are special cases of multifunctions.

Definition 6 Let F : D ⊆ R
n → R

m be a multifunction. A function [F] : I
n → I

m is called
an interval form of F if the following inclusion property holds:

∀x ∈ D,∀x ∈ I
n : x ∈ x ⇒ F(x) ⊆ [F](x). (14)

The natural interval form of f is an instance of an interval form. The following theorem
states the inclusion property of interval forms of multifunctions.

Theorem 3 Let f : D ⊆ R
n → R

m be a function and F : D′ ⊇ D → R
m an extended

function over D′ of f . Then every interval form of F is also an interval form of f .

Proof Let [F] : I
n → I

m be an interval form of F . Then for every x ∈ D and every box
x ∈ I

n containing x , we have f (x) ∈ { f (x) | x ∈ x} = F(x) ⊆ [F](x). 	

Definition 7 (Interval Division: [÷∅], [÷R], [÷�]) Let x = [x, x] and y = [y, y] be two
intervals. We define three natural interval forms of the division given by (9, 10) and (11),
respectively:

[÷∅](x, y) ≡ x[÷∅]y ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅ if y = [0, 0],
[0, 0] else if x = [0, 0],
x ÷ y else if 0 /∈ y,
[x/y,+∞] else if x ≥ 0 ∧ y = 0,
[−∞, x/y] else if x ≥ 0 ∧ y = 0,
[−∞, x/y] else if x ≤ 0 ∧ y = 0,
[x/y,+∞] else if x ≤ 0 ∧ y = 0,
[−∞,+∞] otherwise;

(15)

[÷R](x, y) ≡ x[÷R]y ≡
{

x ÷ y if 0 /∈ y,
[−∞,+∞] otherwise; (16)

[÷�](x, y) ≡ x[÷�]y ≡
{

x[÷∅]y if 0 /∈ x ∨ 0 /∈ y,
[−∞,+∞] otherwise.

(17)

Some authors [8] use the tightest range of the division of two intervals; however, the result
is not always an interval in that case.

Theorem 4 For any two intervals x and y in I, we have

x[÷∅]y ⊆ x[÷�]y ⊆ x[÷R]y.
Proof This is obvious from Definition 7. 	

Theorem 5 Let x, y, and z be three real numbers living in three intervals x, y, and z in I,
respectively. Then we have

x = y ∗ z ⇒ z ∈ x � y for all � ∈ {[÷�], [÷R]}, (18)

z = x/y ⇒ z ∈ x � y for all � ∈ {[÷∅], [÷�], [÷R]}. (19)

Proof Notice that from a given equality x = y ∗ z we can deduce the following:
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– If y �= 0, then z = x/y;
– If y = 0, then x = 0, and z can take an arbitrary value.

The rest of the proof follows directly from Definition 7. 	

On one hand, Theorem 5 shows that, when given the relation x = y ∗ z, it is safe to use

the domain reduction z := x � y for any � ∈ {[÷�], [÷R]}. On the other hand, if the equality
z = x/y is given, we can safely reduce the domain of z by the rule z := x � y for any
� ∈ {[÷R], [÷�], [÷∅]}, because the case y = 0 is not admitted by definition.

Theorem 4 and 5 show that the tightness of a natural interval form of a function defined
on a subset of R

n usually depends on the underlying extended function. In turn, the extended
function should be chosen based on the context of the computation. Many interval imple-
mentations (e.g., [30]) use the division [÷R] in all computations. However, from Theorem 5
we can see that it is safe to use the division [÷∅] in computations such as forward evaluations
and use the division [÷�] in computations such as backward propagations, as described in
Sects. 2.1.2 and 4.

4 Forward-Backward propagation on DAG representations

In [21] the authors have adapted to DAGs the forward evaluations and backward propaga-
tions defined on trees [5]. The forward and backward procedures they propose work at the
graph level, which means that all the nodes of the graph are forward evaluated then backward
propagated at once.

In this section we shift the original definitions to the node level. The goal is to make it
possible to run forward evaluation and backward propagation adaptively on particular nodes
only. As shown in Sect. 5, the nodes will be chosen depending on their ability to cause changes
in the domain ranges of their related expressions. This section also introduces the notion of a
partial DAG representation which will make it possible to perform branch-and-prune search
without creating multiple DAGs. This section uses Notation 1.

4.1 Forward evaluation on DAG representations

Forward evaluation at a node N is concerned with evaluating the range of the expression
represented by N on the basis of the node ranges of the children of N.

Consider the DAG representation of a factorable NCSP of the form (1). Let N be a node
that is not the ground node and that has k children: C1, . . . ,Ck . Suppose the operation rep-
resented by N is a function h : Dh ⊆ R

k → R. The relation between N and its children is
given by ϑN = h(ϑC1 , . . . , ϑCk ). We define the forward evaluation at node N as follows.

Definition 8 (Forward Evaluation) Consider a node N and its operation h as described above.
Let [h] be an interval form of the {∅}-extended function over R of h. The forward evaluation
at N using [h] is defined and denoted by

FE(N, [h]) ≡ (τN := τN ∩ [h](τC1 , . . . , τCk )). (20)

Example 5 Consider the node N7 in Fig. 3, h(z) ≡ √
z, where z ≡ ϑN5 . We can use any

interval form [h] of the {∅}-extended function over R of h, which is the function
√

z∅ defined
by (12), for the forward evaluation in (20). We can use, for example, the natural interval form
h(z) ≡ √

z in place of [h] in (20).
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Remark 2 We can also replace [h] in (20) with an interval form of the recursive subexpression
whose variables are the initial variables. For instance, we can replace the interval form [h]
of the node N7 in Fig. 3 with the natural interval form of the recursive subexpression (

√
xy)

composed of the nodes N7, N4, N1, and N2. That is, we can replace [h] with the bivariate
interval function

√
xy.

In our implementation, we use the natural interval form for simplicity. The natural interval
form of the function h(x1, . . . , xk) = a0 +a1x1 +· · ·+ak xk is the function h(x1, . . . , xk) =
a0 + a1x1 +· · ·+ akxk .1 Similarly, the natural interval form of the function h(x1, . . . , xk) =
ax1 . . . xk is the function h(x1, . . . , xk) = ax1 . . . xk . The division of two reals has multiple
natural interval forms because it is not defined when the denominator is zero (see Sects.
3.1 and 3.2). In Definition 7, we have provided three versions that can be called the natural
interval forms of the real division: [÷∅], [÷�], and [÷R]. They all can be used in the forward
evaluation defined by (20) if h is the real division.

Theorem 6 (Correctness) Consider the DAG representation of a factorable numerical CSP
given in (1). The forward evaluation defined in Definition 8, when applied to any node, never
discards a solution of the considered problem.

Proof For every solution of the considered problem, there exists an assignment of values
from the intervals τN, τC1 , . . . , τCk to the variables ϑN, ϑC1 , . . . , ϑCk , respectively, such
that ϑN = h(ϑC1 , . . . , ϑCk ). Because [h] is an interval form of the {∅}-extended function
over R of h, it follows from Theorem 3 that h(ϑC1 , . . . , ϑCk ) ∈ [h](τC1 , . . . , τCk ). Thus,
ϑN ∈ τN ∩ [h](τC1 , . . . , τCk ). The proof is, therefore, complete. 	


4.2 Backward propagation on DAG representations

Backward propagation at a node N will reduce the node range of each child of N on the basis
of the node ranges of N and on the node ranges of its other children.

Consider the DAG representation of a factorable NCSP of the form (1). Let N be a node
that is not the ground node and that has k children: C1, . . . ,Ck . The operation represented
by N is a function h : Dh ⊆ R

k → R. The backward propagation attempts to prune each
node range τCi of Ci based on the node range τN of N and based on the node ranges of the
other children, where 1 ≤ i ≤ k. In other words, for each child Ci , the backward propagation
attempts to encloses the i th projection of the relation ϑN = h(ϑC1 , . . . , ϑCk ) on the variable
ϑCi in a tight interval. This procedure is called the i th backward propagation at N and denoted
by BP(N,Ci ). We define the following as the backward propagation at N:

BP(N) ≡ {BP(N,C1), . . . ,BP(N,Ck)}. (21)

Although the exact projection of a relation is expensive, in general, an enclosure of the exact
projection of an elementary operation can often be obtained at low cost. Indeed, suppose that
we can infer from the relation ϑN = h(ϑC1 , . . . , ϑCk ) an equivalent relation

ϑCi = gi (ϑN, ϑC1 , . . . , ϑCi−1 , ϑCi+1 , . . . , ϑCk )

for some i ∈ {1, . . . , k}, where gi is a function from Dg ⊆ R
k to R such that

Dg ⊇ τN × τC1 × · · · × τCi−1 × τCi+1 × · · · × τCk .

1 Note that if the coefficients a0, . . . , ak are real and we are working on the floating-point number system,
we can replace each ai in h with the smallest interval containing it, where 1 ≤ i ≤ k.
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Let [gi ] be an interval form of the {∅}-extended function over R of gi . The i th backward
propagation, denoted BP(N,Ci ), can then be defined as

BP(N,Ci ) ≡ (τCi := τCi ∩ [gi ](τN, τC1 , . . . , τCi−1 , τCi+1 , . . . , τCk )). (22)

In case we cannot infer such a function gi , more complicated rules have to be constructed
in order to obtain the i th projection of the relation N = f (C1, . . . ,Ck) if the cost is low,
otherwise the relation can be ignored. Fortunately, we can tightly enclose such projections
at low cost for most elementary operations, as shown in Definition 9.

Remark 3 In general, the relation x = y ∗ z and the relation z = x/y are not equivalent
because the latter discards the case y = 0 while the former does not.

Example 6 Consider the node N10 in Fig. 3. The relation given at N10 is ϑN10 = h(ϑN5 , ϑN6 ,

ϑN8), where the function h is defined as h(x1, x2, x3) ≡ −2x1 + 3x2 + x3. Therefore, we
can infer three equivalent relations:

ϑN5 = g1(ϑN10 , ϑN6 , ϑN8),

ϑN6 = g2(ϑN10 , ϑN5 , ϑN8),

ϑN8 = g3(ϑN10 , ϑN5 , ϑN6),

where the three functions g1, g2 and g3 are defined as follows:

g1(x1, x2, x3) ≡ (−x1 + 3x2 + x3)/2,

g2(x1, x2, x3) ≡ (x1 + 2x2 − x3)/3,

g3(x1, x2, x3) ≡ x1 + 2x2 − 3x3.

Definition 9 (Backward Propagation Rule) Let h be the elementary operation represented
by node N, as discussed above. We use the notation � to mean that either the division [÷�]
or the division [÷R] can be used at the place the notation � appears, but the former is better.
The rules for backward propagation are given as follows:

1. If h is a univariate function such as sqr, sqrt, exp, and log and if [h] is an interval form
of the {∅}-extended function of h, we define

BP(N,C1) ≡ (
τC1 := τC1 ∩ [h−1](τN)

)
,

where the notation of interval form, [h−1](x), shall denote the union of some intervals
that contains the inverse image h−1(x);

2. If h is defined as h(x1, . . . , xk) ≡ a0 + a1x1 + · · · + ak xk , we define for i = 1, . . . , k:

BP(N,Ci ) ≡
⎛

⎝τCi := τCi ∩
⎛

⎝(τN − a0 −
k∑

j=1; j �=i

a j ∗ τC j )� ai

⎞

⎠

⎞

⎠ ;

3. If h is defined as h(x1, . . . , xk) ≡ ax1 . . . xk , we define for i = 1, . . . , k:

BP(N,Ci ) ≡
⎛

⎝τCi := τCi ∩
⎛

⎝τN � (a ∗
k∏

j=1; j �=i

τC j )

⎞

⎠

⎞

⎠ ;

4. If h is defined as h(x, y) ≡ x/y, we define

BP(N,C1) ≡ (
τC1 := τC1 ∩ (τN ∗ τC2)

)
,

BP(N,C2) ≡ (
τC2 := τC2 ∩ (τC1 � τN)

)
.
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The following theorem states the correctness of the backward propagation rules given in
Definition 9.

Theorem 7 (Correctness) Consider the DAG representation of a factorable numerical CSP
given in (1). The backward propagation defined in Definition 9, when applied to any node,
never discards any solution of the considered problem.

Proof By an argument similar to the Proof of Theorem 6, we have that the result for the first
rule is due to the definition of h−1 in Definition 4, and for the other rules, to Theorem 5 and
to the inclusion property of the operations +, −, and ∗ in (standard) interval arithmetic. 	


Procedure NodeOccurrences(in: a node N; in/out: a vector Voc)

foreach C ∈ children(N) do
Voc[C] := Voc[C] + 1;
NodeOccurrences(C, Voc);

4.3 Partial DAG representations

When solving NCSPs using a branch-and-prune scheme, the branching step splits the prob-
lem into subproblems, potentially easier to solve. Each subproblem often consists of the
following two components:

1. a subset of the initial constraints set, called the set of running constraints;
2. a sequence of subdomains for the involved variables.

If we use DAG representations in the pruning steps, we have to construct a DAG represen-
tation for each subproblem. A simple way is to construct a new DAG explicitly to represent
each subproblem. However, the total cost of creating such DAGs for the whole solving pro-
cess is potentially high, because there are often a huge number of branching steps during the
solution process.

Alternatively, we propose to attach a piece of restriction information to the DAG repre-
sentation of the initial problem so that it can be interpreted as the DAG representation of a
subproblem (without creating a new DAG). When using such pieces of restriction informa-
tion, it is possible to perform forward evaluations and backward propagations on the DAG
representation of the initial problem without increasing the time and space for dealing with
DAGs. A combination of such a piece of restriction information and the DAG representation
of the initial problem is called the partial DAG representation of a subproblem. It is also
called, for convenience, a partial DAG representation of the initial problem. For example,
partial DAG representations of the problem (2) are depicted in Fig. 4. We use partial DAG
representations instead of DAG representations in our new propagation algorithm (Sect. 5).

In order to represent a subproblem with a set of running constraints without having to
create a new DAG, we use a vector Voc whose size equals the number of nodes in the DAG
representation DG of the initial problem. For each node N of DG, we use the entry Voc[N] to
count the number of occurrences of N in the recursive composition of the running constraints.
We present a simple recursive procedure, called NodeOccurrences, to compute such a
vector.

If we invoke NodeOccurrences at all the nodes representing the running constraints,
then each entry Voc[N] will contains the number of occurrences of N in the recursive compo-
sition of the running constraints. In particular, we have Voc[N] = 0 if and only if N is not in
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Fig. 4 The partial DAG representations of the problem (2) in the cases: (a) the first constraint is the unique
running constraint; and (b) the second constraint is the unique running constraint. The grey nodes and dotted
edges are ignored. The node levels are given in parenthesis

the representation of the running constraints. Therefore, by combining DG with a vector Voc,
we have the so-called partial DAG representation for a subproblem. In computations, we can
use partial DAG representations in a way similar to the way we use DAG representations,
except that we ignore every node N corresponding to Voc[N] = 0.

5 Constraint propagation on partial DAG representations

This section presents our new algorithm, called FBPD which generalizes to DAGs the HC4
algorithm originally proposed in [5] for tree representations of constraints.

We recall that, at each iteration, the HC4 algorithm invokes the HC4revise algorithm
(see Sect. 2.1.2), which in turn consists of two recursive propagation procedures: a recursive
forward evaluation (RFE) and a recursive backward propagation (RBP). In order to reduce
the node ranges and, in particular, the domains of variables, RFE performs forward evalu-
ations at all nodes of the tree representation of a constraint in the post-order and then RBP
performs backward propagations at all nodes of this tree representation in the pre-order.

Consider a factorable NCSP. We propose in this section a new propagation algorithm that
enhances the HC4 algorithm by:

– working on (partial) DAG representations, instead of tree representations, of the considered
problem;

– exploiting the common subexpressions of the constraints as the influence of the constraints
on each other;

– flexibly choosing nodes at which the forward evaluations and backward propagations are
performed.

Moreover, the nature of the new propagation algorithm makes it possible to use different
interval forms at different steps of the propagation. As discussed above, the new propagation
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Algorithm 6: The FBPD algorithm—a constraint propagation on DAGs
Input: a DAG, DG, with the ground G, domains D, running constraints C.
Output: new domains D.
Reset all node ranges of DG to [∞,∞];
Set the node ranges of variables & constraints to D & the constraint ranges of C, resp.;
Lf := ∅; Lb := ∅; Voc := (0, . . . , 0); Vch := (0, . . . , 0);
Vlvl := (0, . . . , 0); � This can be made optional together with Line 2.1
foreach node C representing a running constraint in C do

NodeOccurrences(C, Voc); � On page 513.
NodeLevel(C, Vlvl); � This can be made optional together with Line 1. On page 517.2
ReForwardEvaluation(C, Vch, Lb); � A full recursive forward evaluation. On page 516.3
if the infeasible status was detected then return D := ∅;

while Lb �= ∅ ∨ Lf �= ∅ do
N := getNextNode(Lb,Lf);4
if N was taken from Lb then

foreach child C of N do
BP(N,C); � See Definition 9.5
if τC = ∅ then return D := ∅; � The infeasible status was detected.
if the change of τC is amenable to doing forward evaluations then6

foreach P ∈ parents(C) \ {N,G} do
if Voc[P] > 0 then Put P into Lf; � P occurs in a running constraint.

if the change of τC is amenable to doing a backward propagation then7
Put C into Lb;

else � N was taken from Lf.
FE(N, [h]); � h is the operator at N, [h] is an interval form of h, see Definition 8.8
if τN = ∅ then return D := ∅; � The infeasible status was detected.
if the change of τN is amenable to doing forward evaluations then9

foreach P ∈ parents(N) \ {G} do
if Voc[P] > 0 then Put P into Lf; � P occurs in some running constraint.

if the change of τN is amenable to doing a backward propagation then10
Put N into Lb;

Update D with the node ranges of the variables;

algorithm works on partial DAG representations of the initial problem to reduce time and
space when dealing with DAG representations. Since the main processes of the new algo-
rithm are forward evaluations and backward propagations, we call it the Forward-Backward
Propagation on DAGs (FBPD). The main steps of the FBPD algorithm are presented in
Algorithm 6.

The FBPD algorithm takes as input a subproblem that is represented by the DAG rep-
resentation DG of the initial problem, a sequence D of subdomains of variables, and a set
C of running constraints of the subproblem. Like the HC4 algorithm, the FBPD algorithm
relies on two types of processes: forward evaluation and backward propagation. Unlike the
HC4 algorithm, the FBPD algorithm, however, performs these processes on the basis of one
node at a time rather than all nodes at once. The choice of the next node for the next process
in the FBPD algorithm is adaptively made based on the results of the previous processes.
Moreover, in the FBPD algorithm the choice of the interval form [h] of an operation h for
forward evaluations and backward propagations is not necessarily fixed. The interval form
[h] can be chosen statically or dynamically based on the nature of h at the current context.

In the next subsections, we describe in detail the procedures that are not made explicit in
Algorithm 6.
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Fig. 5 The DAG representation of the system (2) after a recursive forward evaluation

5.1 Initialization phase

Similarly to the HC4 algorithm, the FBPD algorithm performs a recursive forward evaluation
at the initialization phase (Line 3 in Algorithm 6) to evaluate the node ranges of all nodes in
the partial DAG representation of the subproblem. That is, FBPD computes the node ranges
of the nodes of DG that correspond to nonzero entries in Voc. Procedure ReForwardEval-
uation provides such an algorithm. In order to avoid evaluating the same subexpressions
multiple times, we use a vector, Vch, to mark the caching status of node ranges. A node N is
marked as “cached” by setting Vch[N] := 1 if its node range has already been computed.

The result of the recursive forward evaluation of the NCSP given in (2) is depicted in
Fig. 4 (in case only one constraint is running in the subproblem) and Fig. 5 (in case both
constraints are running in the subproblem).

Procedure ReForwardEvaluation(in: a node N; in/out: a vector Vch, a list Lb)
if N is a leaf or Vch[N] = 1 then return; � N is a leaf or has been cached.
foreach C ∈ children(N) do

ReForwardEvaluation(C, Vch, Lb);
if N = G then return;
FE(N, [h]); � This is similar to Line 8 in Algorithm 6.
Vch[N] := 1; � The node range of N is cached.
if τN = ∅ then return infeasible;
if the change of τN is amenable to doing a backward propagation then11

Put C into Lb;
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Fig. 6 The node levels are updated at each call to the FBPD algorithm

5.2 Getting the next node

The FBPD algorithm uses two waiting lists, Lf and Lb, to store the nodes waiting for further
processing. The first list, Lf, is a list of nodes that is scheduled for forward evaluation, that
is, for evaluating its node range based on the node ranges of its children. The second list, Lb,
is a list of nodes waiting for backward evaluation (reducing the node ranges of their children
based on their own node ranges). In general, the nodes in Lf should be sorted such that
the forward evaluation at a node is performed after the forward evaluations at its children.
Analogously, the nodes in Lb should be sorted such that the backward propagation at a node
is performed before the backward propagations at its children.

Procedure NodeLevel assigns to each node a node level such that the node level of an
arbitrary node is smaller than the node levels of its descendants (see Theorem 1). We then sort
the nodes of Lb and Lf in ascending order and descending order of node levels, respectively,
to meet the above requirements.

The call to Procedure NodeLevel at Line 2 in Algorithm 6 can be made optional as
follows. The first option is to invoke NodeLevel only at the first call to the FBPD algo-
rithm. The node levels of the initial DAG still meet the requirements on the ordering of the
waiting lists. The numbers in brackets following the node names in Fig. 4 are the node levels
computed for the initial DAG representation. Figure 6 illustrates the second option that is to
invoke NodeLevel at Line 2 in Algorithm 6 each time the FBPD algorithm is invoked.

The getNextNode function at Line 4 in Algorithm 6 chooses one of the two nodes at the
beginning of Lb and Lf. The choosing strategy we use in our implementation is backward

Procedure NodeLevel(in: a node N; in/out: a vector Vlvl)

foreach child C of node N do
Vlvl[C] := max{Vlvl[C], Vlvl[N] + 1};
NodeLevel(C, Vlvl);
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propagation first, that is, taking the node at the beginning of Lb whenever Lb is not empty.
Of course, more involved strategies can also be considered.

5.3 Is the change of a node range amenable to further processing?

For simplicity, at the Lines 6, 7, 9 and 10 of Algorithm 6 we have only briefly presented the
procedures to check if the change of a node range is amenable to a forward evaluation or
backward propagation. We now describe them in detail.

Let M denote the node C at Line 5 or the node N at Line 8 in Algorithm 6. The backward
propagation at Line 5 and the forward evaluation at Line 8 in Algorithm 6 have the same
form

τM := τM ∩ y, (23)

where y is the interval computed by the forward evaluation or backward propagation right
before intersecting with τM at the considered line. Let Wold and Wnew be the widths of τM
and τM ∩ y, respectively, right before the intersection.

In practice, the change of τM after performing (23) is amenable to doing forward evalua-
tions at M’s parents if both conditions Wnew < rf ∗ Wold and Wnew + df < Wold hold, where
rf ∈ (0, 1] and df ≥ 0 are real parameters.

Similarly, the change of τM after performing the intersection (23) is amenable to doing
a backward propagation at M if both conditions Wnew < rb ∗ Wold and Wnew + db < Wold

hold, where rb ∈ (0, 1] and db ≥ 0 are real parameters. In addition to that, the condition
y � τM must also hold if y has been computed by the forward evaluation (at Line 8).

The parameters rf, df, rb and db can be predetermined or dynamically computed. In our
implementation these parameters are predetermined.

5.4 Properties of the new propagation algorithm

The FBPD algorithm is contractive and correct in the following sense.

Theorem 8 Let� : I
n → I

n be a function representing the FBPD algorithm. This function
takes as input the domains of the input problem in the form of a box x ∈ I

n and returns a
box in I

n, denoted as �(x), that represents the domains of the output problem of the FBPD
algorithm. If the input problem contains only the operations h defined in Definition 8 and
9, then the FBPD algorithm terminates at a finite number of iterations and the following
properties hold:

(Contractiveness) �(x) ⊆ x, (24)

(Correctness) �(x) ⊇ x ∩ S, (25)

where S is the exact solution set of the input problem.

Proof All the node ranges in the DAG representation of the considered problem are never
inflated at each step of the FBPD algorithm. Hence, the FBPD algorithm must terminate at
a finite number of iterations because of the finite nature of floating-point numbers. In partic-
ular, the ranges of the nodes representing the variables are never inflated. Thus, the property
(24) holds. Moreover, the forward evaluations and backward propagations used in the FBPD
algorithm are defined in Definition 8 and 9. It follows from Theorem 6 and 7 that they never
discard a solution. Therefore, the property (25) also holds. 	
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Theorem 9 Let M be a node in the (partial) DAG representation of the output subproblem
of the FBPD algorithm.

– Suppose that the FBPD algorithm uses a fixed interval form [h] of the elementary oper-
ation h presented by M at all steps. Let y be the interval computed right before the last
intersection in the forward evaluationFE(M, [h]) (Definition 8). Then the following holds:

w(τM ∩ y) ≥ rf ∗ w(τM) ∨ w(τM ∩ y)+ df ≥ w(τM).

– Suppose that N is a parent of M and that the FBPD algorithm uses fixed interval forms
of elementary operations in BP(N,M) at all steps. Let z be the interval computed right
before the last intersection in the backward propagation BP(N,M) (Definition 9). Then
the following holds:

w(τM ∩ z) ≥ rb ∗ w(τM) ∨ w(τM ∩ z)+ db ≥ w(τM).

Proof This follows directly from the discussion in Sect. 5.3. 	


6 Coordinating constraint propagation and search

Next, we consider the issue of coordinating constraint propagation and search for solving
NCSPs in the branch-and-prune framework—the most common framework for exhaustively
solving NCSPs. The most widely used search algorithm is based on the bisection of domains,
and is hence called bisection search. It is suitable for solving problems with isolated solu-
tions. However, it is often inefficient for solving problems with a continuum of solutions. For
such problems, therefore, we need more advanced search techniques. We consider the issue
of integrating the FBPD algorithm into a generic branch-and-prune search algorithm, called
BnPSearch, described in Algorithm 9.

Algorithm 9: The BnPSearch algorithm—a generic branch-and-prune search
Input: a CSP P ≡ (V,D,C).
Output: L∀, Lε . � Lists of inner and undiscernible boxes, respectively.
Construct the DAG representation, DG, of P ;
FPBD(DG,C,D); � Prune the domains in D by using Algorithm 6.
if D = ∅ then return infeasible;
if the domains in D are small enough then

Lε := Lε ∪ {(D,C)};
return;

WAITINGLIST := {(D,C)};
while WAITINGLIST �= ∅ do

Get a couple (D0,C0) from WAITINGLIST; �/* Di=1,k ⊆ D0, Ci=1,k ⊆ C0. */
Split the CSP (V,D0,C0) into sub-CSPs {(V,D1,C1), . . . , (V,Dk ,Ck )};
for i := 1, . . . , k do

if Ci = ∅ then
L∀ := L∀ ∪ {Di }; � All points in Di are solutions.
continue for;

FPBD(DG,Ci ,Di ); � Prune the domains in Di by using Algorithm 6.
if Di = ∅ then continue for;
if the domains in Di are small enough then

Lε := Lε ∪ {(Di ,Ci )}; � This CSP is not amenable to further splitting.

WAITINGLIST := WAITINGLIST ∪ {(Di ,Ci )};
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The BnPSearch algorithm produces two lists: L∀, Lε . The first list, L∀, consists of
completely feasible domain boxes, called inner boxes or feasible boxes. That is, all points
of a box in L∀ are a solution of the problem. The second list, Lε , consists of subproblems,
each consisting of a domain box and a set of running constraints. Each domain box of a
subproblem in Lε is canonical or smaller than the required precision ε. These domain boxes
are called undiscernible boxes.

Owning to Theorem 8 and the finite nature of the floating-point number system, it is easy
to prove that the branch-and-prune search in Algorithm 9 terminates after a finite number of
iterations. Moreover, this search algorithm never discards any solution. Note that the UCA6
and UCA6+ algorithms in [22,25] are specific instances of this generic search.

7 Experiments

We have carried out experiments on the FBPD algorithm and two other well-known state-of-
the-art interval constraint propagation techniques. The first propagation technique is a variant
of box consistency [4] implemented in a commercial product, ILOG Solver (v6.0), hereafter
denoted as BOX. The second constraint propagation technique is the HC4 algorithm (see
Sect. 2.1.2) in an implementation by IRIN based on the JAIL interval library and the
arcchi platform. These two constraint propagation techniques have been used since they
have been readily available and constitute the basic machinery behind efficient state-of-the-art
methods for solving numerical CSP [6,10]. The experiments are carried out on 33 problems,
which are impartially chosen and divided into five test cases, to analyze the empirical results:

– The test case T1 (see Sect. A.1) consists of eight easy problems with isolated solutions.
These problems are solvable in short time by the search using all three propagators.

– The test case T2 (see Sect. A.2) consists of four problems of moderate difficulty with
isolated solutions. These problems are solvable by the search using FBPD and BOX and
cause the search using HC4 being out of time without reaching 106 splits.

– The test case T3 (see Sect. A.3) consists of eight hard problems with isolated solutions.
These problems cause the search using FBPD to stop due to running more than 106 splits,
cause the search using HC4 to be out of time without reaching 106 splits, and cause the
search using BOX either to be out of time or to stop due to running more than 106 splits.2

– The test case T4 (see Sect. A.4) consists of seven easy problems with a continuum of
solutions. These problems are solvable in short time at the predefined precision 10−2.

– The test case T5 (see Sect. A.5) consists of six hard problems with a continuum of solutions.
These problems are solvable in short time at the predefined precision 10−1.

The timeout value is set to 10 h for all the test cases. The timeout values will be used
as the running time for the techniques that are out of time in the next result analysis favor
of slow techniques. For the first three test cases, the precision is 10−4, and the search is
done by bisection. For the last two test cases, the search is performed using the UCA6 [22],
algorithm for inequalities. The comparison of the interval propagation techniques is based
on the following measures:

– The running time: The relative ratio of the running time of each propagator to that of
FBPD is called the relative time ratio.

2 FBPD essentially works at the node level. Evaluation/propagation procedures can therefore be run on
selected nodes rather than on the entire graph. This enables the use of different interval forms at different steps
of a propagation procedure. Such an approach was tested in [26]. This extension of FBPD was then able to
solve 6 problems out of 8 in the test case T3.
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– The number of boxes: The relative ratio of the number of boxes in the output of each
propagator to that of FBPD is called the relative cluster ratio.

– The number of splits/iterations: The number of splits in search needed to solve the prob-
lems. The relative ratio of the number of splits used by each propagator to that of FBPD
is called the relative iteration ratio.

– The volume of boxes (only for T1, T2, T3): We consider the reduction per dimension d
√

V/D;
where d is the dimension of the problem, V is the total volume of the output boxes, D
is the volume of the initial domains. The relative ratio of the reduction gained by each
propagator to that of FBPD is called the relative reduction ratio.

– The volume of inner boxes (only for T4, T5): The ratio of the volume of inner boxes to the
volume of all output boxes is called the inner volume ratio.

The lower the relative ratio is, the better the performance/quality is; and the higher the
inner volume ratio is, the better the quality is.

The overviews of results in our experiments are given in Tables 1 and 2.
In Table 3, we give the overrun ratio of each propagator for the test case T1. The overrun

ratio is defined as ε/ d
√

V/N ; where ε is the required precision, d is the dimension of the
problem, V is the total volume of the output boxes, N is the number of output boxes.

Clearly, FBPD outperforms both BOX and HC4 by 1 to 2 orders of magnitude or more
in speed. For problems with a continuum of solutions, FBPD has roughly the same quality
with respect to enclosure properties.

For isolated solutions, very narrow boxes are produced by any technique in comparison
to the required precision. However, the new technique is about 1.1–2.0 times less tight than
the other techniques in the measure of reduction per dimension (which hardly matters in
applications).

Table 1 A comparison of three constraint propagation techniques, FBPD, BOX and HC4, in solving NCSPs

Propagator (a) Isolated solutions (b) Continuum of solutions

� Relative
time
ratio

Relative
reduction
ratio

Relative
cluster
ratio

Relative
iteration
ratio

Relative
time
ratio

Inner
volume
ratio

Relative
cluster
ratio

Relative
iteration
ratio

FBPD 1.000 1.000 1.000 1.000 1.000 0.922 1.000 1.000

BOX 20.863 0.625 0.342 0.731 20.919 0.944 0.873 0.854

HC4 203.285 0.906 1.266 0.988 403.915 0.941 0.896 0.879

In the section (a), the averages of the relative time ratios are taken over all the problems in the test cases
T1, T2, T3; and the averages of the other relative ratios are taken over the problems in the test case T1. In the
section (b), the averages of the relative ratios are taken over all the problems in the test cases T4, T5

Table 2 The averages of the relative time ratios are taken over the problems in each test case

Propagator (a) Isolated solutions (b) Continuum of solutions

� Test case T1 Test case T2 Test case T3 Test case T4 Test case T5

FBPD 1.00 1.00 1.00 1.00 1.00

BOX 24.21 28.98 13.45 11.55 31.85

HC4 94.42 691.24 68.17 191.86 651.31
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Table 3 The overrun ratios for the test case T1

Problem � BIF3 REI3 WIN3 ECO5 ECO6 NEU6 ECO7 ECO8 Average

FBPD 1.626 1.360 2.075 1.711 1.676 3.198 1.513 1.455 1.827

BOX 2.957 1.974 3.080 1.579 1.660 6.748 1.521 1.485 2.625

HC4 2.229 1.914 1.492 1.647 1.679 4.949 1.488 1.449 2.106

An overrun ratio greater than 1 would satisfy the requirements of applications

The gain in performance is more important for under-constrained problems than for well-
constrained ones.

8 Conclusion

We propose a new constraint propagation technique, called FBPD, which makes the fun-
damental framework of interval analysis on DAGs [21] efficient and practical for numeri-
cal constraint propagation. We also propose a method to coordinate constraint propagation
(FBPD) and exhaustive search on partial DAG representations, where only one DAG for
each problem is needed for the whole solution process. The experiments, carried out on vari-
ous problems, show that the new approach can outperform previously available propagation
techniques by 1 to 2 orders of magnitude or more in speed, while being roughly of same
quality with respect to enclosure properties. Moreover, FBPD essentially works at the node
level. Evaluation and propagation procedures can therefore be run on selected nodes rather
than on the entire graph. This enables the use of different enclosure techniques at different
steps of the propagation process opens up promising perspectives [26].
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Appendix

A. Numerical benchmarks

A.1 Test case T1: problems with isolated solutions

A.1.1 Problem BIF3

A bifurcation problem:
⎧
⎨

⎩

5x9 − 6x5 y2 + xy4 + 2xz = 0;
−2x6 y + 2x2 y3 + 2yz = 0;
x2 + y2 = 0.265625;

where x, y, z in
[−108, 108

]
.
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A.1.2 Problem ECO5

An economic problem:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(x1 + x1x2 + x2x3 + x3x4)x5 − 1 = 0;
(x2 + x1x3 + x2x4)x5 − 2 = 0;
(x3 + x1x4)x5 − 3 = 0;
x4x5 − 4 = 0;
x1 + x2 + x3 + x4 + 1 = 0;

where x1, . . . , x5 in [−10, 10].

A.1.3 Problem ECO6

An economic problem:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(x1 + x1x2 + x2x3 + x3x4 + x4x5)x6 − 1 = 0;
(x2 + x1x3 + x2x4 + x3x5)x6 − 2 = 0;
(x3 + x1x4 + x2x5)x6 − 3 = 0;
(x4 + x1x5)x6 − 4 = 0;
x5x6 − 5 = 0;
x1 + x2 + x3 + x4 + x5 + 1 = 0;

where x1, . . . , x6 in [−10, 10].

A.1.4 Problem ECO7

An economic problem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x1 + x1x2 + x2x3 + x3x4 + x4x5 + x5x6)x7 − 1 = 0;
(x2 + x1x3 + x2x4 + x3x5 + x4x6)x7 − 2 = 0;
(x3 + x1x4 + x2x5 + x3x6)x7 − 3 = 0;
(x4 + x1x5 + x2x6)x7 − 4 = 0;
(x5 + x1x6)x7 − 5 = 0;
x6x7 − 6 = 0;
x1 + x2 + x3 + x4 + x5 + x6 + 1 = 0;

where x1, . . . , x7 in [−10, 10].

A.1.5 Problem ECO8

An economic problem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x1 + x1x2 + x2x3 + x3x4 + x4x5 + x5x6 + x6x7)x8 − 1 = 0;
(x2 + x1x3 + x2x4 + x3x5 + x4x6 + x5x7)x8 − 2 = 0;
(x2 + x1x3 + x2x4 + x3x5 + x4x6)x7 − 2 = 0;
(x4 + x1x5 + x2x6 + x3x7)x8 − 4 = 0;
(x5 + x1x6 + x2x7)x8 − 5 = 0;
(x6 + x1x7)x8 − 6 = 0;
x7x8 − 7 = 0;
x1 + x2 + x3 + x4 + x5 + x6 + x7 + 1 = 0;

where x1, . . . , x8 in [−10, 10].
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A.1.6 Problem NEU6

A neurophysiology problem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2
1 + x2

3 = 1;
x2

2 + x2
4 = 1;

x5x3
1 + x6x3

2 = 5;
x5x1x2

3 + x6x2
4 x2 = 4;

x5x3
3 + x6x3

4 = 3;
x5x2

1 x3 + x6x2
2 x4 = 2;

x1 ≥ x2;
x1 ≥ 0;
x2 ≥ 0;

where x1, . . . , x6 in [−100, 100].

A.1.7 Problem REI3

A neurophysiology problem:
⎧
⎪⎪⎨

⎪⎪⎩

x2 − y2 + z2 = 0.5;
x3 − y3 + z3 = 0.5;
x4 − y4 + z4 = 0.5;
2xy + 6y2 + 2yz − 2x − 4y − 2z + 1 = 0;

where x, y, z in [−10, 10].

A.1.8 Problem WIN3

A neurophysiology problem:
⎧
⎪⎪⎨

⎪⎪⎩

4xz − 4xy2 − 16x2 − 1 = 0;
2y2z + 4x + 1 = 0;
2x2z + 2y2 + x = 0;
2xy + 6y2 + 2yz − 2x − 4y − 2z + 1 = 0;

where x, y, z in
[−105, 105

]
.

A.2 Test case T2: problems with isolated solutions

A.2.1 Problem CYC5

A cyclic problem:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a + b + c + d + e = 0;
ab + bc + cd + de + ea = 0;
abc + bcd + cde + dea + eab = 0;
abcd + bcde + cdea + deab + eabc = 0;
abcde − 1 = 0;

where a, b, c, d, e in [−10, 10].
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A.2.2 Problem GS5.1

A Gough Steward problem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2
1 + y2

1 + z2
1 = 31,

x2
2 + y2

2 + z2
2 = 39,

x2
3 + y2

3 + z2
3 = 29,

x1x2 + y1 y2 + z1z2 + 6x1 − 6x2 = 51,
x1x3 + y1 y3 + z1z3 + 7x1 − 2y1 − 7x3 + 2y3 = 50,
x2x3 + y2 y3 + z2z3 + x2 − 2y2 − x3 + 2y3 = 34,
−12x1 + 15y1 − 10x2 − 25y2 + 18x3 + 18y3 = −32,
−14x1 + 35y1 − 36x2 − 45y2 + 30x3 + 18y3 = 8,
2x1 + 2y1 − 14x2 − 2y2 + 8x3 − y3 = 20,

where x1 ∈ [0.00; 5.57], y1 ∈ [0.00, 2.70], z1 ∈ [0.00, 5.57], x2 ∈ [−6.25, 0.00], y2 ∈
[−2.00, 0.00], z2 ∈ [0.00, 6.25], x3 ∈ [−5.39,−1.00], y3 ∈ [−5.39, 0.00], z3 ∈ [0.00, 5.39].

A.2.3 Problem KOL2

Kolev’s benchmark:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

((4x3 + 3x6)x3 + 2x5)x3 + x4 = 0,
((4x2 + 3x6)x2 + 2x5)x2 + x4 = 0,
((4x1 + 3x6)x1 + 2x5)x1 + x4 = 0,
x4 + x5 + x6 + 1 = 0,
(((x2 + x6)x2 + x5)x2 + x4)x2 + (((x3 + x6)x3 + x5)x3 + x4)x3 = 0,
(((x1 + x6)x1 + x5)x1 + x4)x1 + (((x2 + x6)x2 + x5)x2 + x4)x3 = 0,

where x1 ∈ [0.0333, 0.2173], x2 ∈ [0.4000, 0.6000], x3 ∈ [0.7826, 0.9666], x4 ∈ [−0.3071,
−0.1071], x5 ∈ [1.1071, 1.3071], x6 ∈ [−2.1000,−1.9000].

A.2.4 Problem YAM60

The Yama160 problem:

(n + 1)2xi−1 − 2(n + 1)2xi + (n + 1)2xi+1 + exi = 0, (for i = 1, . . . , n),

where n = 60, x0 = xn+1 = 0, and xi ∈ [−10, 10] (for i = 1, . . . , n),

A.3 Test case T3: problems with isolated solutions

A.3.1 Problem CAP4

A Caprasse problem:
⎧
⎪⎪⎨

⎪⎪⎩

y2z + 2xyt − 2x − z = 0;
−x3z + 4xy2z + 4x2 yt + 2y3t + 4x2 − 10y2 + 4xz − 10yt + 2 = 0;
2yzt + xt2 − x − 2z = 0;
−xz3 + 4yz2t + 4xzt2 + 2yt3 + 4xz + 4z2 − 10yt − 10t2 + 2 = 0;

where x, y, z, t in R.
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A.3.2 Problem DID9

A Didrit problem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2
1 + y2

1 + z2
1 = 31;

x2
2 + y2

2 + z2
2 = 39;

x2
3 + y2

3 + z2
3 = 29;

x1x2 + y1 y2 + z1z2 + 6x1 − 6x2 = 51;
x1x3 + y1 y3 + z1z3 + 7x1 − 2y1 − 7x3 + 2y3 = 50;
x2x3 + y2 y3 + z2z3 + x2 − 2y2 − x3 + 2y3 = 34;
−12x1 + 15y1 − 10x2 − 25y2 + 18x3 + 18y3 = −32;
−14x1 + 35y1 − 36x2 − 45y2 + 30x3 + 18y3 = 8;
2x1 + 2y1 − 14x2 − 2y2 + 8x3 − y3 = 20;

where xi , yi , zi in [−10, 10] for i = 1, 2, 3.

A.3.3 Problem GS5.0

A Gough Steward problem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2
1 + y2

1 + z2
1 = 31,

x2
2 + y2

2 + z2
2 = 39,

x2
3 + y2

3 + z2
3 = 29,

x1x2 + y1 y2 + z1z2 + 6x1 − 6x2 = 51,
x1x3 + y1 y3 + z1z3 + 7x1 − 2y1 − 7x3 + 2y3 = 50,
x2x3 + y2 y3 + z2z3 + x2 − 2y2 − x3 + 2y3 = 34,
−12x1 + 15y1 − 10x2 − 25y2 + 18x3 + 18y3 = −32,
−14x1 + 35y1 − 36x2 − 45y2 + 30x3 + 18y3 = 8,
2x1 + 2y1 − 14x2 − 2y2 + 8x3 − y3 = 20,

where x1 ∈ [−2.00; 5.57], y1 ∈ [−5.57, 2.70], z1 ∈ [0.00, 5.57], x2 ∈ [−6.25, 1.30],
y2 ∈ [−6.25, 2.70], z2 ∈ [−2.00, 6.25], x3 ∈ [−5.39, 0.70], y3 ∈ [−5.39, 3.11], z3 ∈
[−3.61, 5.39].

A.3.4 Problem KAT8

A Katsura problem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−x1 + 2x2
8 + 2x2

7 + 2x2
6 + 2x2

5 + 2x2
4 + 2x2

3 + 2x2
2 + x2

1 = 0;
−x2 + 2x8x7 + 2x7x6 + 2x6x5 + 2x5x4 + 2x4x3 + 2x3x2 + 2x2x1 = 0;
−x3 + 2x8x6 + 2x7x5 + 2x6x4 + 2x5x3 + 2x4x2 + 2x3x1 + x2

2 = 0;
−x4 + 2x8x5 + 2x7x4 + 2x6x3 + 2x5x2 + 2x4x1 + 2x3x2 = 0;
−x5 + 2x8x4 + 2x7x3 + 2x6x2 + 2x5x1 + 2x4x2 + x2

3 = 0;
−x6 + 2x8x3 + 2x7x2 + 2x6x1 + 2x5x2 + 2x4x3 = 0;
−x7 + 2x8x2 + 2x7x1 + 2x6x2 + 2x5x3 + x2

4 = 0;
−1 + 2x8 + 2x7 + 2x6 + 2x5 + 2x4 + 2x3 + 2x2 + x1 = 0;

where x1, . . . , x8 in [−10, 10].
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A.3.5 Problem KIN9

A kinematics problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z2
1 + z2

2 + z2
3 − 12z1 − 68 = 0;

z2
4 + z2

5 + z2
6 − 12z5 − 68 = 0;

z2
7 + z2

8 + z2
9 − 24z8 − 12z9 + 100 = 0;

z1z4 + z2z5 + z3z6 − 6z1 − 6z5 − 52 = 0;
z1z7 + z2z8 + z3z9 − 6z1 − 12z8 − 6z9 + 64 = 0;
z4z7 + z5z8 + z6z9 − 6z5 − 12z8 − 6z9 + 32 = 0;
2z2 + 2z3 − z4 − z5 − 2z6 − z7 − z9 + 18 = 0;
z1 + z2 + 2z3 + 2z4 + 2z6 − 2z7 + z8 − z9 − 38 = 0;
z1 + z3 − 2z4 + z5 − z6 + 2z7 − 2z8 + 8 = 0;

where z1, . . . , z9 in [−1000, 1000].

A.3.6 Problem REI4

A Reinmer system:

⎧
⎪⎪⎨

⎪⎪⎩

x2 − y2 + z2 − t2 = 0.5;
x3 − y3 + z3 − t3 = 0.5;
x4 − y4 + z4 − t4 = 0.5;
x5 − y5 + z5 − t5 = 0.5;

where x, y, z, t in [−10, 10].

A.3.7 Problem REI5

A Reinmer system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−1 + 2x2
1 − 2x2

2 + 2x2
3 − 2x2

4 + 2x2
5 = 0;

−1 + 2x3
1 − 2x3

2 + 2x3
3 − 2x3

4 + 2x3
5 = 0;

−1 + 2x4
1 − 2x4

2 + 2x4
3 − 2x4

4 + 2x4
5 = 0;

−1 + 2x5
1 − 2x5

2 + 2x5
3 − 2x5

4 + 2x5
5 = 0;

−1 + 2x6
1 − 2x6

2 + 2x6
3 − 2x6

4 + 2x6
5 = 0;

where x1, . . . , x5 in [−1, 1].

A.3.8 Problem REI6

A Reinmer system:
〈

−0.5 +
n∑

i=1

(−1)i+1xk
i = 0 (k = 1, . . . , n); n = 6, xi ∈ [−1, 1] (for i = 1, . . . , n)

〉
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A.4 Test case T4: problems with continuums of solutions

A.4.1 Problem F2.2

Tricuspoid and Circle:
{
(x2 + y2 + 12x + 9)2 ≤ 4(2x + 3)3;
x2 + y2 ≥ 2;

where x, y in [−2, 2].

A.4.2 Problem F2.3

Foliumd, Circle, and Trifolium:
⎧
⎨

⎩

x3 + y3 ≥ 3xy;
x2 + y2 ≥ 0.1;
(x2 + y2)(y2 + x(x + 1)) ≤ 4xy2;

where x, y in [−3, 3].

A.4.3 Problem S04

Circle:
〈
x2 + y2 ≤ 1; x, y ∈ [−2, 2]

〉

A.4.4 Problem S05

〈
x

√
(y − 5)2 + 1

≤ 1; x, y ∈ [1, 10]

〉

A.4.5 Problem S06

〈
12y

√
(x − 12)2 + y2

≤ 10; x ∈ [−50, 50] , y ∈ [0, 50]

〉

A.4.6 Problem S07

〈
x2 + y2 ≥ 20; x2 + y2 ≤ 50; x ∈ [−50, 50] , y ∈ [0, 50]

〉

A.4.7 Problem WP

A Kinematic Pair (of a wheel and a pawl):
〈

20 ≤
√

x2 + y2 ≤ 50,
12y

√
(x − 12)2 + y2

≤ 10; x ∈ [−50, 50] , y ∈ [0, 50]

〉
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A.5 Test case T5: problems with continuums of solutions

A.5.1 Problem G1.1

{
x2

1 + 0.5x2 + 2(x3 − 6) ≥ 0;
x2

1 + x2
2 + x2

3 ≤ 25;
where x1, x2, x3 in [−8, 8].

A.5.2 Problem G1.1

{
x2

1 + 0.5x2 + 2(x3 − 3) ≥ 0;
x2

1 + x2
2 + x2

3 ≤ 25;
where x1, x2, x3 in [−8, 8].

A.5.3 Problem H1.1

⎧
⎪⎨

⎪⎩

x2
1 + x2

2 + x2
3 ≤ 9;

(x1 − 0.5)2 + (x2 − 1)2 + x2
3 ≥ 4;

x2
1 + (x2 − 0.2)2 ≥ x3;

where x1, x2, x3 in [−4, 4].

A.5.4 Problem P1.4

{
x2 + y2 + z2 <= 4;
(x − 2)2 + y2 + z2 >= 4;

where x, y, z in [−4, 4].

A.5.5 Problem P2

⎧
⎨

⎩

x2 ≤ y,
ln y + 1 ≥ z,
xz ≤ 1,

where x ∈ [0, 15] , y ∈ [1, 200] , z ∈ [−10, 10].

A.5.6 Problem P3

⎧
⎪⎪⎨

⎪⎪⎩

x2 ≤ y,
ln y + 1 ≥ z,
xz ≤ 1,
x3/2 + ln(1.5z + 1) ≤ y + 1,

where x ∈ [0, 15] , y ∈ [1, 200] , z ∈ [0, 10].
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