Skip to main content
Log in

Asymptotic convergence of an inertial proximal method for unconstrained quasiconvex minimization

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper deals with the convergence analysis of a second order proximal method for approaching critical points of a smooth and quasiconvex objective function defined on a real Hilbert space. The considered method, well-known in the convex case, unifies proximal method, relaxation and inertial-type extrapolation. The convergence theorems established in this new setting improve recent ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alvarez F.: On the minimizing property of a second order dissipative dynamical system in Hilbert spaces. SIAM J. Control Optim. 39, 1102–1119 (2000)

    Article  Google Scholar 

  2. Alvarez F.: Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space. SIAM J. Optim. 14(3), 773–782 (2004)

    Article  Google Scholar 

  3. Alvarez F., Attouch H.: An inertial proximal method for monotone operators via discretization of a nonlinear oscillator with damping. Set Valued Anal. 9, 3–11 (2001)

    Article  Google Scholar 

  4. Attouch H., Soubeyran A.: Inertia and reactivity in decision making as cognitive variational inequalities. J. Convex Anal. 13(2), 207–224 (2006)

    Google Scholar 

  5. Attouch H., Teboulle M.: Regularized Lotka-Volterra dynamical system as continuous proximal-like method in optimization. J. Optim. Theory Appl. 121, 541–580 (2004)

    Article  Google Scholar 

  6. Attouch H., Goudon X., Redont P.: The heavy ball with friction I The continuous dynamical system. Commun. Contemp. Math. 2(N1), 1–34 (2000)

    Article  Google Scholar 

  7. Aussel D.: Subdifferential properties of quasiconvex and pseudoconvex function, unified approach. J. Optim. Theor. Appl. 97, 29–45 (1998)

    Article  Google Scholar 

  8. Aussel, D.: Contributions en analyse multivoque et en optimization. Ph.D. thesis, Université Monpellier 2 (2005)

  9. Crouzeix J.P.: Characterizations of generalized convexity and generalized monotonicity: a survey. Nonconvex Optim. Appl. 27, 237–256 (1998)

    Google Scholar 

  10. Goudou, X., Munier, J.: The gradient and heavy ball with friction dynamical systems: the quasiconvex case. Math. Progam. Ser. B. doi:10.1007/s10107-007-0109-5 (2007)

  11. Gromicho J.: Quasiconvex optimization and location theory. Kluwer Academic Publishers, Dordrecht, Netherlands (1998)

    Google Scholar 

  12. Guler O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control 29(2), 403–419 (1991)

    Article  Google Scholar 

  13. Jules F., Maingé P.E.: Numerical approaches to a stationnary solution of a second order dissipative dynamical system. Optimization 51(2), 235–255 (2002)

    Article  Google Scholar 

  14. Kaplan A., Tichatschke R.: Proximal point methods and nonconvex optimization. J. Global Optim. 13, 389–406 (1998)

    Article  Google Scholar 

  15. Kiwiel K.C.: Convergence and efficiency of subgradient methods for quasiconvex minimization. Math. Prog. Ser. A. 90, 1–25 (2001)

    Article  Google Scholar 

  16. Kiwiel K.C., Murty K.: Convergence of the steepest descent method for minimization of quasiconvex functions. J. Optim. Theory Appl. 89(1), 221–226 (1996)

    Article  Google Scholar 

  17. Martinet B.: Perturbation des méthodes d’optimisation. Appl. R.A.I.R.O Numer. Anal. 12, 154–171 (1978)

    Google Scholar 

  18. Maingé P.E.: Inertial iterative process for fixed points of certain quasi-nonexpansive mappings. Set Valued Anal. 15(1), 67–79 (2007)

    Article  Google Scholar 

  19. Moudafi A., Oliny M.: Convergence of a splitting inertial proximal method for monotone operators. J. Comput. Appl. Math. 155, 447–454 (2003)

    Google Scholar 

  20. Opial Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591–597 (1967)

    Article  Google Scholar 

  21. Pan, S, Chen, J.S.: Entropy-like proximal algorithms based on a second order homogeneous distance function for quasi-convex programming. J. Glob. Optim. doi:10.1007/s10898-007 (2007)

  22. Papa Quiroz, E.A., Roberto Oliviera, P.: Classic and Logarithmic-Quadratic proximal point method for quasiconvex minimization. Optimization Online (2006)

  23. Rockafellar R.T.: Augmented Lagrangians and applications of proximal point algorithm in convex programming. Math. Oper. Res. 1, 97–116 (1976)

    Article  Google Scholar 

  24. Rockafellar R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  Google Scholar 

  25. Solodov M.V., Svaiter B.F.: A unified framework for some inexact proximal point algorithms. Numer. Funct. Anal. Optim. 22, 1013–1035 (2001)

    Article  Google Scholar 

  26. Takayama, A.: Mathematical Economics, 2nd edn. Cambridge University Press (1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul-Emile Maingé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maingé, PE. Asymptotic convergence of an inertial proximal method for unconstrained quasiconvex minimization. J Glob Optim 45, 631–644 (2009). https://doi.org/10.1007/s10898-008-9388-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-008-9388-5

Keywords

Mathematics Subject Classification (2000)

Navigation