Skip to main content
Log in

A non-smooth three critical points theorem with applications in differential inclusions

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We extend a recent result of Ricceri concerning the existence of three critical points of certain non-smooth functionals. Two applications are given, both in the theory of differential inclusions; the first one concerns a non-homogeneous Neumann boundary value problem, the second one treats a quasilinear elliptic inclusion problem in the whole \({\mathbb R^N}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arcoya D., Carmona J.: A nondifferentiable extension of a theorem of Pucci-Serrin and applications. J. Differ. Equ. 235(2), 683–700 (2007)

    Article  Google Scholar 

  2. Bonanno G.: Some remarks on a three critical points theorem. Nonlinear Anal. 54, 651–665 (2003)

    Article  Google Scholar 

  3. Bonanno G.: A critical points theorem and nonlinear differential problems. J. Global Optim. 28(3–4), 249–258 (2004)

    Article  Google Scholar 

  4. Bonanno G., Candito P.: Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearity. J. Differ. Equ. 244(12), 3031–3059 (2008)

    Article  Google Scholar 

  5. Brézis H.: Analyse Fonctionnelle-Théorie et Applications. Masson, Paris (1992)

    Google Scholar 

  6. Chang K.C.: Variational methods for non-differentiable functionals and their applications to partial differential equations .J. Math. Anal. Appl. 80, 102–129 (1981)

    Article  Google Scholar 

  7. Clarke F.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    Google Scholar 

  8. Krawcewicz W., Marzantowicz W.: Some remarks on the Lusternik-Schnirelman method for non- differentiable functionals invariant with respect to a finite group action. Rocky Mt. J. Math. 20, 1041–1049 (1990)

    Article  Google Scholar 

  9. Kristály A.: Infinitely many solutions for a differential inclusion problem in \({\mathbb{R}^N}\) . J. Differ. Equ. 220, 511–530 (2006)

    Article  Google Scholar 

  10. Marano S.A., Motreanu D.: On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems. Nonlinear Anal. 48, 37–52 (2002)

    Article  Google Scholar 

  11. Marano S.A., Papageorgiou N.S.: On a Neumann problem with p-Laplacian and non-smooth potential. Differ. Integral Equ. 19(11), 1301–1320 (2006)

    Google Scholar 

  12. Motreanu D., Varga Cs.: Some critical point results for locally Lipschitz functionals. Comm. Appl. Nonlinear Anal. 4, 17–33 (1997)

    Google Scholar 

  13. Pucci P., Serrin J.: A mountain pass theorem. J. Differ. Equ. 60, 142–149 (1985)

    Article  Google Scholar 

  14. Ricceri B.: On a three critical points theorem. Arch. Math. (Basel) 75, 220–226 (2000)

    Google Scholar 

  15. Ricceri B.: Existence of three solutions for a class of elliptic eigenvalue problems. Math. Comput. Model. 32, 1485–1494 (2000)

    Article  Google Scholar 

  16. Ricceri B.: Three solutions for a Neumann problem. Topol. Methods Nonlinear Anal. 20, 275–282 (2002)

    Google Scholar 

  17. Ricceri, B.: A three critical points theorem revisited. Nonlinear Anal. doi:10.1016/j.na.2008.04.010.

  18. Ricceri B.: Minimax theorems for limits of parametrized functions having at most one local minimum lying in a certain set. Topol. Appl. 153, 3308–3312 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru Kristály.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kristály, A., Marzantowicz, W. & Varga, C. A non-smooth three critical points theorem with applications in differential inclusions. J Glob Optim 46, 49–62 (2010). https://doi.org/10.1007/s10898-009-9408-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-009-9408-0

Keywords

Navigation