Skip to main content
Log in

Are dualities appropriate for duality theories in optimization?

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We raise some questions about duality theories in global optimization. The main one concerns the possibility to extend the use of conjugacies to general dualities for studying dual optimization problems. In fact, we examine whether dualities are the most general concepts to get duality results. We also consider the passage from a Lagrangian approach to a perturbational approach and the reverse passage in the framework of general dualities. Since a notion of subdifferential can be defined for any duality, it is natural to examine whether the familiar interpretation of multipliers as generalized derivatives of the performance function associated with a dualizing parameterization of the given problem is still valid in the general framework of dualities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alvarez O., Barron E.N., Ishii H.: Hopf-Lax formulas for semicontinuous data, Indiana. Univ. Math. J. 48(3), 993–1035 (1999)

    Google Scholar 

  2. Aubin J.-P., Ekeland I.: Minimisation de critères intégraux. C.R. Acad. Sci. Paris A 281(9), 285–288 (1975)

    Google Scholar 

  3. Aubin J.-P., Ekeland I.: Applied Nonlinear Analysis. Wiley, New York (1984)

    Google Scholar 

  4. Auslender A.: Existence of optimal solutions and duality results under weak conditions. Math. Program. Ser. A 88, 45–59 (2000)

    Article  Google Scholar 

  5. Balder E.J.: An extension of duality-stability relations to nonconvex problems. SIAM J. Control Optim. 15, 329–343 (1977)

    Article  Google Scholar 

  6. Balder E.J.: Nonconvex duality-stability relations pertaining to the interior penalty method. Math. Oper. Stat., Ser. Optim. 11, 367–378 (1980)

    Google Scholar 

  7. Barron E.N.: Viscosity solutions and analysis in L . In: Clarke, F.H., Stern, R.J. (eds) Nonlinear Analysis Differential Equations and Control, pp. 1–60. Kluwer, Dordrecht (1999)

    Google Scholar 

  8. Barron E.N., Jensen R.: Semicontinuous viscosity solutions of Hamilton-Jacobi equations with convex Hamiltonians. Comm. Partial Diff. Eq. 15, 1713–1742 (1990)

    Article  Google Scholar 

  9. Barron E.N., Liu W.: Calculus of variations in L . Appl. Math. Opt. 35, 237–243 (1997)

    Article  Google Scholar 

  10. Barron E.N., Jensen R., Liu W.: Hopf-Lax formula for v t + H(v, Dv) = 0. J. Differ. Eq. 126, 48–61 (1996)

    Article  Google Scholar 

  11. Ben-Tal A., Teboulle M.: A conjugate duality scheme generating a new class of differentiable duals. SIAM J. Optim. 6(3), 617–625 (1996)

    Article  Google Scholar 

  12. Birkhoff G.: Lattice Theory. American Mathematical Society, Providence (1966)

    Google Scholar 

  13. Bourass A., Giner E.: Kuhn-Tucker conditions and integral functionals. J. Convex Anal. 8, 533–553 (2001)

    Google Scholar 

  14. Breckner W.W., Kassay G.: A systematization of convexity concepts for sets and functions. J. Convex Anal. 4(1), 109–127 (1997)

    Google Scholar 

  15. Crouzeix J.-P.: Conjugacy in quasiconvex analysis, in convex analysis and its applications. In: Auslender, A. (eds) Lecture Notes in Economics and Mathematical Systems, vol. 144, pp. 66–99. Springer, Berlin (1977)

    Google Scholar 

  16. Crouzeix J.-P.: La convexité généralisée en économie mathématique. ESAIM Proc. 13, 31–40 (2003)

    Google Scholar 

  17. Dolecki S., Kurcyusz S.: On Φ-convexity in extremal problems. SIAM J. Control Optim. 16, 277–300 (1978)

    Article  Google Scholar 

  18. Eberhard A., Nyblom M., Ralph D. et al.: Applying generalised convexity notions to jets. In: Crouzeix, J.-P. (eds) Generalized Convexity Generalised Monotonicity: Recent Results, pp. 111–157. Kluwer, Dordrecht (1998)

    Google Scholar 

  19. Ekeland I., Témam R.: Analyse Convexe et Problèmes Variationnels. Dunod Paris English translation, North Holland (1976)

    Google Scholar 

  20. Fan K.: On systems of linear inequalities Ann. Math. Stud. 38, 99–156 (1956)

    Google Scholar 

  21. Flachs J., Pollatschek M.A.: Duality theorems for certain programs involving minimum or maximum operations. Math. Progr. 16, 348–370 (1969)

    Article  Google Scholar 

  22. Flores-Bazán F.: On a notion of subdifferentiability for non-convex functions. Optimization 33, 1–8 (1995)

    Article  Google Scholar 

  23. Flores-Bazán F., Hadjisavvas N., Vera C.: An optimal alternative theorem and applications to mathematical programming. J. Global Optim. 37, 229–243 (2007)

    Article  Google Scholar 

  24. Frenk J.B.G., Kassay G.: Lagrangian duality and cone convexlike functions. J. Optim. Theroy Appl. 134, 207–222 (2007)

    Article  Google Scholar 

  25. Fujishige S.: Theory of submodular programs: a Fenchel-type min-max theorem and subgradients of submodular functions. Math. Progr. 29, 142–155 (1984)

    Article  Google Scholar 

  26. Giner E.: Lipschitzian properties of integral functionals on Lebesgue spaces L p , 1 ≤ p < ∞. Set-Valued Anal. 1(2), 105–123 (2007)

    Google Scholar 

  27. Goebel R., Rockafellar R.T.: Generalized conjugacy in Hamilton-Jacobi theory for fully convex Lagrangians. J. Convex Anal. 9(2), 463–473 (2002)

    Google Scholar 

  28. Goh C.J., Yang X.Q.: Nonlinear Lagrangian theory for nonconvex optimization. J. Optim. Theory Appl. 109(1), 99–121 (2001)

    Article  Google Scholar 

  29. Greenberg H.P., Pierskalla W.P.: Quasiconjugate function and surrogate duality. Cahiers du Centre d’Etude de Recherche Oper 15, 437–448 (1973)

    Google Scholar 

  30. Ioffe A.D.: Abstract convexity and non-smooth analysis. Adv. Math. Econ. 3, 45–61 (2001)

    Google Scholar 

  31. Ioffe A.D., Rubinov A.M.: Abstract convexity and nonsmooth analysis. Global Aspects Adv. Math. Econ. 4, 1–23 (2002)

    Google Scholar 

  32. Janin R.: Sur la dualité en programmation dynamique. C.R. Acad. Sci. Paris A 277, 1195–1197 (1973)

    Google Scholar 

  33. Kurcyuszn S.: Some remarks on generalized Lagrangians. In: Céa, J. (eds) Optimization Techniques, Proceedings of the 7th IFIP Conference, Nice, 1975, Part 2, Lecture Notes Computer Science 41, pp. 362–388. Springer, New York (1976)

    Google Scholar 

  34. Kutateladze S.S., Rubinov A.M.: Minkowski duality and its applications. Russian Math. Surv. 27, 137–191 (1972)

    Article  Google Scholar 

  35. Laurent P.-J.: Approximation et Optimisation. Hermann, Paris (1972)

    Google Scholar 

  36. Li, D., Sun, X.: Nonlinear Lagrangian methods in constrained nonlinear optimization. In: Optimization Methods and Applications, Applied Optimization, 52, pp. 267–277. Kluwer, Dordrecht (2001)

  37. Lindberg, P.O.: A generalization of Fenchel conjugation giving generalized Lagrangians and symmetric nonconvex duality. In: Survey of Mathematical Programming, Proceeding of the International Symposium, vol. 1, Budapest 1976, pp. 249–267 (1980)

  38. Lovász L.: Submodular functions and convexity. In: Bachem, A., Grötschel, M., Korte, B. (eds) Mathematical Programming the State of the Art Bonn 1982, pp. 235–257. Springer, Berlin (1983)

    Google Scholar 

  39. Magnanti T.L.: Fenchel and Lagrange duality are equivalent. Math. Program 7, 253–258 (1974)

    Article  Google Scholar 

  40. Martínez-Legaz J.-E.: Fenchel duality and related properties in generalized conjugation theory. Southeast Asian Bull. Math. 19, 99–106 (1995)

    Google Scholar 

  41. Martínez-Legaz J.-E.: Quasiconvex duality theory by generalized conjugation methods. Optimization 19, 603–652 (1988)

    Article  Google Scholar 

  42. Martínez-Legaz J.-E., Singer I.: Dualities between complete lattices. Optimization 21, 481–508 (1990)

    Article  Google Scholar 

  43. Martínez-Legaz J.-E., Singer I.: ∨-dualities and ⊥-dualities. Optimization 22, 483–511 (1991)

    Article  Google Scholar 

  44. Martínez-Legaz J.-E., Singer I.: *-dualities. Optimization 30, 295–315 (1994)

    Article  Google Scholar 

  45. Martínez-Legaz J.-E., Singer I.: Subdifferentials with respect to dualities. ZOR Math. Methods Oper. Res. 42(1), 109–125 (1995)

    Article  Google Scholar 

  46. Martínez-Legaz J.-E. et al.: On lower subdifferentiable functions. In: Hoffmann, K.H. (eds) Trends in Mathematical Optimization Int Series Numer Math 84, pp. 197–232. Birkhauser, Basel (1988)

    Google Scholar 

  47. Moreau J.-J.: Inf-convolution, sous-additivité, convexité des fonctions numériques. J. Math. Pures et Appl. 49, 109–154 (1970)

    Google Scholar 

  48. Moreau J.-J.: Fonctionnelles Convexes, Séminaire sur les Equations aux Dérivées Partielles, Collège de France, (1966–1967), second edition, Facoltà di Ingegneria, Universita di Roma “Tor Vergata” (2003)

  49. Oettli W., Schläger D.: Conjugate functions for convex and nonconvex duality. J. Global Optim. 13(4), 337–347 (1998)

    Article  Google Scholar 

  50. Ore O.: Galois connexions. Trans. Amer. Math. Soc. 55, 493–513 (1944)

    Article  Google Scholar 

  51. Pallaschke D., Rolewicz S.: Foundations of Mathematical Optimization Convex Analysis Without Linearity. Kluwer, Dordrecht (1998)

    Google Scholar 

  52. Penot J.-P.: Multipliers and generalized derivatives of performance functions. J. Optim. Theory Appl. 93(3), 609–618 (1997)

    Article  Google Scholar 

  53. Penot J.-P.: Duality for radiant and shady programs. Acta Math. Vietnam. 22(2), 541–566 (1997)

    Google Scholar 

  54. Penot J.-P.: What is quasiconvex analysis?. Optimization 47, 35–110 (2000)

    Article  Google Scholar 

  55. Penot J.-P.: Duality for anticonvex programs. J Global Optim 19, 163–182 (2001)

    Article  Google Scholar 

  56. Penot J.-P.: Augmented Lagrangians, duality and growth conditions. J. Nonlinear Convex Anal. 3(3), 283–302 (2002)

    Google Scholar 

  57. Penot J.-P.: A Lagrangian approach to quasiconvex analysis. J. Optim. Theory Appl. 117(3), 637–647 (2003)

    Article  Google Scholar 

  58. Penot J.-P.: Rotundity smoothness and duality. Control Cyberneti. 32(4), 711–733 (2003)

    Google Scholar 

  59. Penot J.-P.: The bearing of duality on microeconomics. Adv. Math. Econ. 7, 113–139 (2005)

    Article  Google Scholar 

  60. Penot J.-P.: Radiant and co-radiant dualities. Pacific J. Math., to appear.

  61. Penot J.-P., Rubinov A.M.: Multipliers and general Lagrangians. Optimization 54(4–5), 443–467 (2005)

    Article  Google Scholar 

  62. Penot J.-P., Volle M.: Dualité de Fenchel et quasi-convexité. C.R. Acad. Sci. Paris Série I 304(13), 371–374 (1987)

    Google Scholar 

  63. Penot J.-P., Volle M.: On quasi-convex duality. Math. Oper. Res. 15(4), 597–625 (1990)

    Article  Google Scholar 

  64. Penot J.-P., Volle M.: On strongly convex and paraconvex dualities. In: Cambini, A., Castagnoli, E., Martein, L., Mazzoleni, P., Schaible S., (eds) Generalized Convexity and Fractional Programming with Economic Applications. Proceedings, Pisa, Italy 1988, Lecture notes in Economics and Mathematical Systems # 345, pp. 198–218. Springer, Berlin (1990)

    Google Scholar 

  65. Penot J.-P., Volle M.: Surrogate programming and multipliers in quasiconvex programming. SIAM J. Control Optim. 42(6), 1994–2003 (2003)

    Article  Google Scholar 

  66. Penot J.-P., Volle M.: Duality methods for the study of Hamilton-Jacobi equations. ESAIM Proc. 17, 96–142 (2007)

    Article  Google Scholar 

  67. Penot J.-P., Volle M. et al.: Another duality scheme for quasiconvex problems. In: Hoffmann, K.H. (eds) Trends in Mathematical Optimization International Series Numer Math 84, pp. 259–275. Birkhäuser, Basel (1988)

    Google Scholar 

  68. Penot J.-P. et al.: Unilateral analysis and duality. In: Savard, G. (eds) GERAD Essays and Surveys in Global Optimization, pp. 1–37. Springer, New York (2005)

    Chapter  Google Scholar 

  69. Rockafellar R.T.: Augmented Lagrange multiplier functions and duality in nonconvex programming. SIAM J. Control Optim. 12, 268–285 (1974)

    Article  Google Scholar 

  70. Rockafellar R.T.: Conjugate Duality and Optimization. CBMS-NSF Series 16 SIAM, Philadelphia (1974)

    Google Scholar 

  71. Rockafellar R.T., Wets R.J.-B.: Variational Analysis. Springer, Berlin (1997)

    Google Scholar 

  72. Rolewicz S.: Convex analysis without linearity. Control Cybern. 23, 247–256 (1994)

    Google Scholar 

  73. Rolewicz S.: Duality and convex analysis in the absence of linear structure. Math. Japonica 44, 165–182 (1996)

    Google Scholar 

  74. Rubinov A.M.: Abstract Convexity and Global Optimization. Kluwer, Dordrecht (2000)

    Google Scholar 

  75. Rubinov A.M.: Radiant sets and their gauges. In: Demyanov, V., Rubinov, A.M. (eds) Quasidifferentiability and Related Topics, Kluwer, Dordrecht (2000)

    Google Scholar 

  76. Rubinov A.M., Glover B.M.: On generalized quasiconvex conjugation. In: Censor, Y., Reich, S. (eds) Recent Developments in Optimization Theory and Nonlinear Analysis, pp. 199–216. American Mathematical Society, Providence (1997)

    Google Scholar 

  77. Rubinov A.M., Simsek B.: Conjugate quasiconvex nonnegative functions. Optimization 35, 1–22 (1995)

    Article  Google Scholar 

  78. Rubinov A.M., Glover B.M., Yang X.Q. et al.: Nonlinear unconstrained optimization methods: a review. In: Yang, X. (eds) Progress in Optimization, pp. 65–77. Kluwer, Dordrecht (2000)

    Google Scholar 

  79. Rubinov A.M., Huang X.X., Yang X.Q.: The zero duality gap property and lower semicontinuity of the perturbation function. Math. Oper. Res. 27, 775–791 (2002)

    Article  Google Scholar 

  80. Simons S.: Minimax and Monotonicity Lecture Notes in Maths # 1693. Springer, Berlin (1998)

    Google Scholar 

  81. Singer I.: Some relations between dualities, polarities, coupling functions and conjugations. J. Math. Anal. Appl. 115, 1–22 (1986)

    Article  Google Scholar 

  82. Singer I.: Abstract Convex Analysis. Wiley, New York (1997)

    Google Scholar 

  83. Thach P.T.: Quasiconjugate of functions, duality relationships between quasiconvex minimization under a reverse convex constraint and quasiconvex maximization under a convex constraint and application. J. Math. Anal. Appl. 159, 299–322 (1991)

    Article  Google Scholar 

  84. Thach P.T.: A nonconvex duality with zero gap and applications. SIAM J. Optim. 4, 44–64 (1994)

    Article  Google Scholar 

  85. Thach P.T.: Diewert-Crouzeix conjugation for general quasiconvex duality and applications. J. Optim. Theory Appl. 86(3), 719–743 (1995)

    Article  Google Scholar 

  86. Tind J., Wolsey L.A.: An elementary survey of general duality theory in mathematical programming. Math. Program 21, 241–261 (1981)

    Article  Google Scholar 

  87. Volle M.: Conjugaison par tranches. Annali Mat. Pura Appl. 139, 279–312 (1985)

    Article  Google Scholar 

  88. Zaffaroni A.: Is every radiant function the sum of quasiconvex functions? Math. Methods Oper. Res. 59, 221–233 (2004)

    Article  Google Scholar 

  89. Zaffaroni A.: Convex coradiant sets with a continuous concave gauge. J. Convex Anal. 15(2), 325–343 (2008)

    Google Scholar 

  90. Zălinescu C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Paul Penot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penot, JP. Are dualities appropriate for duality theories in optimization?. J Glob Optim 47, 503–525 (2010). https://doi.org/10.1007/s10898-009-9478-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-009-9478-z

Keywords

Mathematics Subject Classification (2000)

Navigation