Skip to main content

Advertisement

Log in

Partitioning procedure for polynomial optimization

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We consider the problem of finding the minimum of a real-valued multivariate polynomial function constrained in a compact set defined by polynomial inequalities and equalities. This problem, called polynomial optimization problem (POP), is generally nonconvex and has been of growing interest to many researchers in recent years. Our goal is to tackle POPs using decomposition, based on a partitioning procedure. The problem manipulations are in line with the pattern used in the generalized Benders decomposition, namely projection followed by relaxation. Stengle’s and Putinar’s Positivstellensätze are employed to derive the feasibility and optimality constraints, respectively. We test the performance of the proposed partitioning procedure on a collection of benchmark problems and present the numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GLOBAL Library. http://www.gamsworld.org/global/globallib/globalstat.htm (2008)

  2. Ben-Tal, A., Nemirovski, A.: Lectures on modern convex optimization. MPS/SIAM Series on Optimization, SIAM, Philadelphia, PA (2001)

  3. Benders J.F.: Partitioning procedures for solving mixed-variables programming problems. Comput. Manag. Sci. 2(1), 3–19 (2005) reprinted from Numer. Math. 4(1962), pp. 238–252

    Article  Google Scholar 

  4. Boyd S., Vandenberghe L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  5. Cox D., Little J., O’Shea D.: Ideals, Varieties, and Algorithms. Undergraduate Texts in Mathematics. Springer, New York (1992)

    Google Scholar 

  6. Floudas, C.A.: Deterministic global optimization, Nonconvex Optimization and its Applications, vol 37. Kluwer, Dordrecht, Theory, methods and applications (2000)

  7. Floudas C.A., Pardalos P.M.: A Collection of Test Problems for Constrained Global Optimization Algorithms, Lecture Notes in Computer Science, vol 455. Springer, Berlin (1990)

    Google Scholar 

  8. Floudas C.A., Visweswaran V.: A global optimization algorithm (GOP) for certain classes of nonconvex NLPs: I. Theory Comput. Chem. Eng. 14(12), 1397–1417 (1990)

    Article  Google Scholar 

  9. Geoffrion A.M.: Elements of large-scale mathematical programming. I. Concepts. Manag. Sci. 16, 652–675 (1970)

    Article  Google Scholar 

  10. Geoffrion A.M.: Generalized benders decomposition. J. Optim. Theory Appl. 10, 237–260 (1972)

    Article  Google Scholar 

  11. Henrion D., Lasserre J.B.: GloptiPoly: global optimization over polynomials with Matlab and SeDuMi. ACM Trans. Math. Softw. 29(2), 165–194 (2003)

    Article  Google Scholar 

  12. Hogan W.W.: Point-to-set maps in mathematical programming. SIAM Rev. 15, 591–603 (1973)

    Article  Google Scholar 

  13. Kleniati, P.M., Parpas, P., Rustem, B.: Decomposition-based method for sparse semidefinite relaxations of polynomial optimization problems. J. Optim. Theory Appl. doi:10.1007/s10957-009-9624-2 (2009)

  14. Lasserre J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2000/2001)

    Article  Google Scholar 

  15. Lasserre J.B.: Convergent SDP-relaxations in polynomial optimization with sparsity. SIAM J. Optim. 17(3), 822–843 (2006)

    Article  Google Scholar 

  16. Laurent M.: Sums of squares, moment matrices and optimization over polynomials. In: Putinar, M., Sullivant, S. (eds) Emerging applications of algebraic geometry, IMA Vol. in Math. and its Appl., vol 149., pp. 157–270. Springer, New York (2009)

    Google Scholar 

  17. Meyer R.: The validity of a family of optimization methods. SIAM J. Control 8, 41–54 (1970)

    Article  Google Scholar 

  18. Nie J., Schweighofer M.: On the complexity of Putinar’s Positivstellensatz. J. Complex. 23(1), 135–150 (2007)

    Article  Google Scholar 

  19. Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. Ph.D. thesis, California Institute of Technology (2000)

  20. Parrilo P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. 96(2, Ser. B), 293–320 (2003)

    Article  Google Scholar 

  21. Prestel A., Delzell C.N.: Positive Polynomials. Springer Monographs in Mathematics. Springer, Berlin (2001)

    Google Scholar 

  22. Putinar M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42(3), 969–984 (1993)

    Article  Google Scholar 

  23. Schmüdgen K.: The K-moment problem for compact semi-algebraic sets. Math. Ann. 289(2), 203–206 (1991)

    Article  Google Scholar 

  24. Schweighofer M.: Optimization of polynomials on compact semialgebraic sets. SIAM J. Optim. 15(3), 805–825 (2005)

    Article  Google Scholar 

  25. Stengle G.: A nullstellensatz and a positivstellensatz in semialgebraic geometry. Math. Ann. 207, 87–97 (1974)

    Article  Google Scholar 

  26. Sturm J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11/12(1–4), 625–653 (1999)

    Article  Google Scholar 

  27. Tind J., Wolsey L.A.: An elementary survey of general duality theory in mathematical programming. Math. Program. 21(3), 241–261 (1981)

    Article  Google Scholar 

  28. Tuy H.: Convex Analysis and Global Optimization, Nonconvex Optimization and its Applications, vol 22. Kluwer, Dordrecht (1998)

    Google Scholar 

  29. Visweswaran V., Floudas C.A.: A global optimization algorithm (GOP) for certain classes of nonconvex NLPs: II. Application of theory and test problems. Comput. Chem. Eng. 14(12), 1419–1434 (1990)

    Article  Google Scholar 

  30. Visweswaran V., Floudas C.A.: Unconstrained and constrained global optimization of polynomial functions in one variable. J. Global Optim. 2(1), 73–99 (1992)

    Article  Google Scholar 

  31. Waki H., Kim S., Kojima M., Muramatsu M.: Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity. SIAM J. Optim. 17(1), 218–242 (2006)

    Article  Google Scholar 

  32. Wolsey L.A.: A resource decomposition algorithm for general mathematical programs. Math. Program. Stud. 14, 244–257 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Polyxeni-Margarita Kleniati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleniati, PM., Parpas, P. & Rustem, B. Partitioning procedure for polynomial optimization. J Glob Optim 48, 549–567 (2010). https://doi.org/10.1007/s10898-010-9529-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-010-9529-5

Keywords

Navigation