Skip to main content
Log in

Pattern discrete and mixed Hit-and-Run for global optimization

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We develop new Markov chain Monte Carlo samplers for neighborhood generation in global optimization algorithms based on Hit-and-Run. The success of Hit-and-Run as a sampler on continuous domains motivated Discrete Hit-and-Run with random biwalk for discrete domains. However, the potential for efficiencies in the implementation, which requires a randomization at each move to create the biwalk, lead us to a different approach that uses fixed patterns in generating the biwalks. We define Sphere and Box Biwalks that are pattern-based and easily implemented for discrete and mixed continuous/discrete domains. The pattern-based Hit-and-Run Markov chains preserve the convergence properties of Hit-and-Run to a target distribution. They also converge to continuous Hit-and-Run as the mesh of the discretized variables becomes finer, approaching a continuum. Moreover, we provide bounds on the finite time performance for the discrete cases of Sphere and Box Biwalks. We embed our samplers in an Improving Hit-and-Run global optimization algorithm and test their performance on a number of global optimization test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali M.M., Khompatraporn C., Zabinsky Z.B.: A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J. Global Optim. 31(4), 635–672 (2005)

    Article  Google Scholar 

  2. Andersen H.C., Diaconis P.: Hit and run as a unifying device. Journal de la societe francaise de statistique & revue de statistique appliquee 148(4), 5–28 (2007)

    Google Scholar 

  3. Applegate D.L.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2006)

    Google Scholar 

  4. Baumert S., Ghate A., Kiatsupaibul S., Shen Y., Smith R.L., Zabinsky Z.B.: Discrete hit-and-run for sampling points from arbitrary distributions over subsets of integer hyper-rectangles. Oper. Res. 57(3), 727–739 (2009)

    Article  Google Scholar 

  5. Behrends E.: Introduction to Markov Chains: With Special Emphasis on Rapid Mixing. Vieweg, Braunschweig (2000)

    Google Scholar 

  6. Belisle C.J.P., Romeijn H.E., Smith R.L.: Hit-and-Run algorithms for generating multivariate distributions. Math. Oper. Res. 18(2), 255–266 (1993)

    Article  Google Scholar 

  7. Bertsimas D., Vempala S.: Solving convex programs by random walks. J. ACM 51(4), 0–556 (2004)

    Article  Google Scholar 

  8. Diaconis P., Stroock D.: Geometric bounds for eigenvalues of Markov chains. Ann. Appl. Probab. 1(1), 36–61 (1991)

    Article  Google Scholar 

  9. Dolan E.D., Morè J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  Google Scholar 

  10. Helsgaun K.: An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000)

    Article  Google Scholar 

  11. Kalai A.T., Vempala S.: Simulated annealing for convex optimization. Math. Oper. Res. 31(2), 253–266 (2006)

    Article  Google Scholar 

  12. Kristinsdottir B.P., Zabinsky Z.B., Tuttle M.E., Neogi S.: Optimal design of large composite panels with varying loads. Compos. Struct. 51(1), 93–102 (2001)

    Article  Google Scholar 

  13. Lovész L.: Hit-and-run mixes fast. Math. Program. 86(3), 443–461 (1999)

    Article  Google Scholar 

  14. Lovész L., Vempala S.: Simulated annealing in convex bodies and an O *(n 4) volume algorithm. Proc. Symp. Found. Comput. Sci. 44, 650–659 (2003)

    Google Scholar 

  15. Lovész L., Vempala S.: Hit-and-Run from a corner. SIAM J. Comput. 35(4), 985–1005 (2006)

    Article  Google Scholar 

  16. Molvalioglu O., Zabinsky Z.B., Kohn W.: The interacting-particle algorithm with dynamic heating and cooling. J. Global Optim. 43, 329–356 (2009)

    Article  Google Scholar 

  17. Montenegro R.R., Tetali P.: Mathematical Aspects of Mixing Times in Markov Chains. Now Publishers, Hanover (2005)

    Google Scholar 

  18. Pintér J.D.: Global Optimization: Scientific and Engineering Case Studies. Springer, New York (2006)

    Google Scholar 

  19. Romeijn H.E., Smith R.L.: Simulated annealing for constrained global optimization. J. Global Optim. 5(2), 101–126 (1994)

    Article  Google Scholar 

  20. Romeijn H.E., Zabinsky Z.B., Graesser D.L., Neogi S.: New reflection generator for simulated annealing in mixed-integer/continuous global optimization. J. Optim. Theory Appl. 101(2), 403–427 (1999)

    Article  Google Scholar 

  21. Ross S.M.: Stochastic Processes. Wiley, New York (1996)

    Google Scholar 

  22. Savic V., Tuttle M.E., Zabinsky Z.B.: Optimization of composite I-sections using fiber angles as design variables. Composit. Struct. 53(3), 265–277 (2001)

    Article  Google Scholar 

  23. Shen Y., Kiatsupaibul S., Zabinsky Z.B., Smith R.L.: An analytically derived cooling schedule for simulated annealing. J. Global Optim. 38(3), 333–365 (2007)

    Article  Google Scholar 

  24. Sinclair A.: Improved bounds for mixing rates of Markov chains and multicommodity flow. Comb. Prob. Comput. 1(04), 351–370 (1992)

    Article  Google Scholar 

  25. Smith R.L.: Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions. Oper. Res. 32(6), 1296–1308 (1984)

    Article  Google Scholar 

  26. Spall J.C.: Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control. Wiley, Hoboken (2003)

    Book  Google Scholar 

  27. Stattenberger G., Dankesreiter M., Baumgartner F., Schneider J.: On the neighborhood structure of the traveling salesman problem generated by local search moves. J. Stat. Phys. 129(4), 623–648 (2007)

    Article  Google Scholar 

  28. Zabinsky Z.B.: Stochastic methods for practical global optimization. J. Global Optim. 13(4), 433–444 (1998)

    Article  Google Scholar 

  29. Zabinsky Z.B.: Stochastic Adaptive Search for Global Optimization. Kluwer Academic Publishers, Boston (2003)

    Google Scholar 

  30. Zabinsky Z.B., Smith R.L., McDonald J.F., Romeijn H.E., Kaufman D.E.: Improving Hit-and-Run for global optimization. J. Global Optim. 3(2), 171–192 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huseyin Onur Mete.

Additional information

This work has been funded in part by NSF grant DMI-0244286, DMI-0244291, and CMMI-0908317.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mete, H.O., Shen, Y., Zabinsky, Z.B. et al. Pattern discrete and mixed Hit-and-Run for global optimization. J Glob Optim 50, 597–627 (2011). https://doi.org/10.1007/s10898-010-9534-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-010-9534-8

Keywords

Mathematics Subject Classification (2000)

Navigation