Skip to main content
Log in

Gauss–Newton method for convex composite optimizations on Riemannian manifolds

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

A notion of quasi-regularity is extended for the inclusion problem \({F(p)\in C}\) , where F is a differentiable mapping from a Riemannian manifold M to \({\mathbb R^n}\) . When C is the set of minimum points of a convex real-valued function h on \({\mathbb R^n}\) and DF satisfies the L-average Lipschitz condition, we use the majorizing function technique to establish the semi-local convergence of sequences generated by the Gauss-Newton method (with quasi-regular initial points) for the convex composite function hF on Riemannian manifold. Two applications are provided: one is for the case of regularities on Riemannian manifolds and the other is for the case when C is a cone and DF(p 0)(·) − C is surjective. In particular, the results obtained in this paper extend the corresponding one in Wang et al. (Taiwanese J Math 13:633–656, 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler R., Dedieu J.P., Margulies J., Martens M., Shub M.: Newton’s method on Riemannian manifolds and a geometric model for human spine. IMA J. Numer. Anal. 22, 359–390 (2002)

    Article  Google Scholar 

  2. Azagra D., Ferrera J., López-Mesas F.: Nonsmooth analysis and Hamilton–Jacobi equations on Riemannian manifolds. J. Funct. Anal. 220, 304–361 (2005)

    Article  Google Scholar 

  3. Balogh J., Csendes T., Rapcsák T.: Some global optimization problems on Stiefel manifolds. J. Global Optim. 30, 91C101 (2004)

    Article  Google Scholar 

  4. Borwein J.M.: Stability and regular points of inequality systems. J. Optim. Theory Appl. 48, 9–52 (1986)

    Google Scholar 

  5. Burke J.V.: An exact penalization viewpoint of constrained optimization. SIAM J. Control Optim. 29, 968–998 (1991)

    Article  Google Scholar 

  6. Burke J.V.: Descent methods for composite nondifferentiable optimization problems. Math. program. 33(3), 260–279 (1985)

    Article  Google Scholar 

  7. Burke J.V., Ferris M.C.: A Gauss–Newton method for convex composite optimization. Math. Program. 71, 179–194 (1995)

    Google Scholar 

  8. Burke J.V., Ferris M.C.: A Gauss–Newton method for convex composite optimization. Math. Program. (Ser. A) 71, 179–194 (1995)

    Google Scholar 

  9. Dedieu J.P., Priouret P., Malajovich G.: Newton’s method on Riemannian manifolds: covariant alpha theory. IMA J. Numer. Anal. 23, 395–419 (2003)

    Article  Google Scholar 

  10. DoCarmo M.P.: Riemannian Geometry. Birkhauser, Boston (1992)

    Google Scholar 

  11. Ferreira O.P., Oliveira P.R.: Proximal point algorithm on Riemannian manifolds. Optimization 51, 257–270 (2002)

    Article  Google Scholar 

  12. Ferreira O.P., Pérez L.R., Lucambio , Németh S.Z.: Singularities of monotone vector fields and an extragradient-type algorithm. J. Global Optim. 31(1), 133–151 (2005)

    Article  Google Scholar 

  13. Ferreira O.P., Svaiter B.F.: Kantorovich’s theorem on Newton’s method in Riemannian manifolds. J. Complex. 18, 304–329 (2002)

    Article  Google Scholar 

  14. Flecher R.: Second order correction for nondifferentiable optimization. In: Watson, G.A. (eds) Numerical Analysis, Lecture Notes in Mathematics, vol. 912, pp. 85–114. Spring, Berlin (1982)

    Google Scholar 

  15. Flecher R.: Practical Methods of Optimization, 2nd edn. Wiley, New York (1987)

    Google Scholar 

  16. Gragg W.B., Tapai R.A.: Optimal error bounds for the Newton–Kantorovich theorems. SIAM J. Numer. Anal. 11, 10–13 (1974)

    Article  Google Scholar 

  17. Helgason S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, Inc, New York (1978)

    Google Scholar 

  18. Helmke U., Huper K., Moore J.B.: Quadratically convergent algorithms for optimal dexterous hand grasping. IEEE Trans. Robot. Automat. 18(2), 138–146 (2002)

    Article  Google Scholar 

  19. Helmke U., Moore J.B.: Optimization and Dynamical Systems. Springer, New York (1994)

    Google Scholar 

  20. Hiriart-Urruty J., Lemarechal C.: Convex Analysis and Minimization Algorithms II, Vol. 305 of Grundlehren der Mathematschen Wissenschaften. Springer, New York (1993)

    Google Scholar 

  21. Jittorntrum K., Osborne M.R.: Strong uniqueness and second order convergence in nonlinear discrete approximation. Numer. Math. 34, 439–455 (1980)

    Article  Google Scholar 

  22. Ledyaev Y.S., Zhu Q.J.: Nonsmooth analysis on smooth manifolds. Trans. Am. Math. Soc. 359, 3687–3732 (2007)

    Article  Google Scholar 

  23. Li C., López G., Martín-Márquez V.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. 79(2), 663–683 (2009)

    Article  Google Scholar 

  24. Li C., Ng K.F.: Majorizing functions and convergence of the Gauss–Newton method for convex composite optimization. SIAM J. Optim. 18, 613–642 (2007)

    Article  Google Scholar 

  25. Li C., Wang J.H.: Convergence of the Newton method and uniqueness of zeros of vector fields on Riemannian manifolds. Sci. China Ser. A 48, 1465–1478 (2005)

    Article  Google Scholar 

  26. Li C., Wang J.H.: Newton’s method on Riemannian manifolds: Smale’s point estimate theory under the γ-condition. IMA J. Numer. Anal. 26, 228–251 (2006)

    Article  Google Scholar 

  27. Li C., Wang J.H.: Newton’s method for sections on Riemannian manifolds: generalized covariant α-theory. J. Complex. 24, 423–451 (2008)

    Article  Google Scholar 

  28. Li C., Wang X.H.: On convergence of the Gauss–Newton method for convex composite optimization. Math. Program. 91, 349–356 (2002)

    Article  Google Scholar 

  29. Li S.L., Li C., Liou Y.C., Yao J.C.: Existence of solutions for variational inequalities on Riemannian manifolds. Nonlinear Anal. 71, 5695–5706 (2009)

    Article  Google Scholar 

  30. Lippert, R., Edelman, A.: Nonlinear eigenvalue problems with orthogonality constraints (Section 9.4). In: Bai Z, Demmel J, Dongarra J, Ruhe A, van der Vorst H (eds) Templates for the Solution of Algebraic Eigenvalue Problems, pp. 290–314. SIAM, Philadelphia (2000)

  31. Ma Y., Kosecka J., Sastry S.S.: Optimization criteria and geometric algorithms for motion and structure estimation. Int. J. Comput. Vis. 44, 219–249 (2001)

    Article  Google Scholar 

  32. Madsen, K.: Minimization of nonlinear approximation function. Ph.D.Thesis, Institute of Numerical Anakysis. Technical University of Denmark, Lyngby (1985)

  33. Mahony R., Manton J.H.: The geometry of the Newton method on non-compact Lie groups. J. Global Optim. 23(3–4), 309–327 (2002)

    Article  Google Scholar 

  34. Nishimori Y., Akaho S.: Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold. Neurocomputing 67, 106–135 (2005)

    Article  Google Scholar 

  35. Ostrowski A.M.: Solutions of Equations in Euclidean and Banach Spaces. Academic Press, New York (1973)

    Google Scholar 

  36. Rapcsák T.: Smooth Nonlinear Optimization in \({\mathbb R^n}\) . Nonconvex Optimization and Its Applications, vol. 19. Kluwer, Dordrecht (1997)

    Google Scholar 

  37. Rapcsák T.: Sectional curvatures in nonlinear optimization. J. Global Optim. 40, 375–388 (2008)

    Article  Google Scholar 

  38. Robinson S.M.: Stability theory for systems of inequalities, Part I: Linear systems. SIAM J. Numer. Anal. 12, 754–769 (1975)

    Article  Google Scholar 

  39. Robinson S.M.: Stability theory for systems of inequalities, Part II: Differentiable nonlinear systems. SIAM J. Numer. Anal. 13, 479–513 (1976)

    Article  Google Scholar 

  40. Robinson S.M.: Normed convex process. Trans. Am. Math. Soc. 174, 127–140 (1972)

    Article  Google Scholar 

  41. Robinson S.M.: Extension of Newton’s method to nonlinear functions with values in a cone. Numer. Math. 19, 341–347 (1972)

    Article  Google Scholar 

  42. Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton, NJ (1970)

    Google Scholar 

  43. Rockafellar, R.T.: Monotone Processes of Convex and Concave Type. Mem. American Mathematical Society 77. AMS, Providence, RI (1967)

  44. Rockafellar R.T.: First and second order epi-differentiability in nonlinear programming. Trans. Am. Math. Soc. 307, 75–108 (1988)

    Article  Google Scholar 

  45. Smith S.T.: Covariance, subspace, and intrinsic Cramér-Rao bounds. IEEE Trans. Signal Process. 53, 1610–1630 (2005)

    Article  Google Scholar 

  46. Smith, S.T.: Optimization techniques on Riemannian manifolds. In: Fields Institute Communications, vol. 3, pp. 113–146. American Mathematical Society, Providence, RI (1994)

  47. Udriste C.: Convex Functions and Optimization Methods on Riemannian Manifolds. Mathematics and Its Applications, vol. 297. Kluwer, Dordrecht (1994)

    Google Scholar 

  48. Wang J.H., Huang S., Li C.: Extended Newton’s method for mappings on Riemannian manifolds with values in a cone. Taiwanese J. Math. 13, 633–656 (2009)

    Google Scholar 

  49. Wang J.H., Li C.: Uniqueness of the singular points of vector fields on Riemannian manifolds under the γ-condition. J. Complex. 22, 533–548 (2006)

    Article  Google Scholar 

  50. Wang X.H.: Convergence of an iteration process. Kexue Tongbao 20, 558–559 (1975)

    Google Scholar 

  51. Wang X.H.: Convergence of Newton’s method and inverse function theorem in Banach space. Math. Comput. 225, 169–186 (1999)

    Google Scholar 

  52. Wang X.H.: Convergence on the iteration of Halley family in weak conditions. Chin. Sci. Bull. 42(7), 552–555 (1997)

    Article  Google Scholar 

  53. Wang X.H., Han D.F.: Criterion α and Newton’s method. Chin. J. Numer. Appl. Math. 19(2), 96–105 (1997)

    Google Scholar 

  54. Wang X.H., Li C.: Local and global behaviors for algorithms of solving equations. Chin. Sci. Bull. 46, 441–447 (2001)

    Article  Google Scholar 

  55. Womersley R.S.: Local properties of algorithms for minimizing nonsmooth composite function. Math. Program. 32, 69–89 (1985)

    Article  Google Scholar 

  56. Xavier, J., Barroso, V.: Intrinsic variance lower bound (IVLB): An extension of the Cramer-Rao bound to Riemannian manifolds. In: Proceedings of 2005 IEEE international conference on acoustics, speech, and signal processing (ICASSP 2005), Philadelphia, PA (2005)

  57. Yan W.Y., Lam J.: An approximate approach to \({{\mathcal H}_2}\) optimal model reduction. IEEE Trans. Automat. Control. 44(7), 1341–1358 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jen-Chih Yao.

Additional information

Jin-Hua Wang was supported in part by the National Natural Science Foundation of China (grant 11001241).

Jen-Chih Yao was supported in part by the Grant NSC 99-2115-M-110-004-MY3.

Chong Li was supported in part by the National Natural Science Foundation of China (grant 10731060).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, JH., Yao, JC. & Li, C. Gauss–Newton method for convex composite optimizations on Riemannian manifolds. J Glob Optim 53, 5–28 (2012). https://doi.org/10.1007/s10898-010-9638-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-010-9638-1

Keywords

Mathematics Subject Classification (2000)

Navigation