Skip to main content
Log in

Seeking global edges for traveling salesman problem in multi-start search

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This study investigates the properties of the edges in a set of locally optimal tours found by multi-start search algorithm for the traveling salesman problem (TSP). A matrix data structure is used to collect global information about edges from the set of locally optimal tours and to identify globally superior edges for the problem. The properties of these edges are analyzed. Based on these globally superior edges, a solution attractor is formed in the data matrix. The solution attractor is a small region of the solution space, which contains the most promising solutions. Then an exhausted enumeration process searches the solution attractor and outputs all solutions in the attractor, including the globally optimal solution. Using this strategy, this study develops a procedure to tackler a multi-objective TSP. This procedure not only generates a set of Pareto-optimal solutions, but also be able to provide the structural information about each of the solutions that will allow a decision-maker to choose the best compromise solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aarts E., Lenstra J.K.: Local Search in Combinatorial Optimization. Princeton University Press, Princeton, New Jersey (2003)

    Google Scholar 

  2. Applegate D.L., Bixby R.E., Chvátal V., Cook W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2006)

    Google Scholar 

  3. Baum, E.B.: Towards practical ‘neural’ computation for combinatorial optimization problems. In: AIP Conference Proceedings 151 on Neural Networks for Computing, pp. 53–58. American Institute of Physics (1986)

  4. Boese K.D., Kahng A.B., Muddu S.: A new adaptive multi-start technique for combinatorial global optimization. Oper. Res. Lett. 16, 101–113 (1994)

    Article  Google Scholar 

  5. Cook W., Seymour P.D.: Tour merging via branch decomposition. INFORMS J. Comput. 15, 233–248 (2003)

    Article  Google Scholar 

  6. Dorigo, M.: Optimization, Learning and Natural Algorithms. Ph.D. Thesis. Dip Elettronica e Informazione, Politecnico di Milano, Italy (1992)

  7. Dorigo M., Di Caro G.: The ant colony optimization meta-heuristic. In: Corne, D., Dorigo, M., Glover, F. (eds) New Ideas in Optimization, pp. 11–32. McGraw-Hill, Boston (1999)

    Google Scholar 

  8. Dorigo M., Gambardella L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)

    Article  Google Scholar 

  9. Ehrgott E.: Multicriteria Optimization. Springer, Berlin (2000)

    Google Scholar 

  10. Feo T.A., Resende M.G.C.: Greedy randomized adaptive search procedure. J. Glob. Optim. 6(2), 109–133 (1995)

    Article  Google Scholar 

  11. Fleurent C., Glover F.: Improved constructive multi-start strategies for the quadratic assignment problem using adaptive memory. INFORMS J. Comput. 11(2), 198–204 (1999)

    Article  Google Scholar 

  12. Glover F., Laguna M.: Tabu Search. Kluwer, Boston (1997)

    Book  Google Scholar 

  13. Glover F.: Multi-start and strategic oscillation methods—principles to exploit adaptive memory. In: Laguna, M., Gonzales-Velards, J.L. (eds) Computing Tools for Modeling Optimization and Simulation, pp. 1–25. Kluwer, Boston (2000)

    Chapter  Google Scholar 

  14. Glover F., Laguna M., Marti R.: Scatter search. In: Ghosh, A., Tsutsui, S. (eds) Advances in Evolutionary Computing: Theory and Applications, pp. 519–537. Springer, Berlin (2003)

    Google Scholar 

  15. Guntsch, M., Middendorf, M.: A population based approach for ACO. Applications of Evolutionary Computing, Lecture Notes in Computer Science, No2279, pp. 165–180. Springer, Berlin (2002)

  16. Hagen L.W., Kahng A.B.: Combining problem reduction and adaptive multi-start: a new technique for superior iterative partitioning. IEEE Trans. CAD 16(7), 709–717 (1997)

    Google Scholar 

  17. Hu, X., Shonkwiler, R., Spruill, M.C.: Random Restarts in Global Optimization. Research Report, The School of Mathematics, Georgia Institute of Technology, Atlanta (1994)

  18. Johnson, D.S.: Local optimization and the traveling salesman problem. In: Proceedings of the 17th International Colloquium on Automata, Languages and Programming, pp. 446–460 (1990)

  19. Johnson D.S., McGeoch L.A.: The traveling salesman problem: a case study. In: Aarts, E., Lenstra, J.K. (eds) Local Search in Combinatorial Optimization, pp. 215–310. John Wiley & Sons, Chichester (1997)

    Google Scholar 

  20. Kauffman S., Levin S.: Toward a general theory of adaptive walks on rugged landscapes. J. Theor. Biol. 128, 11–45 (1987)

    Article  Google Scholar 

  21. Kennel M.B., Brown R., Abarbanel H.D.I.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45(6), 3403–3411 (1992)

    Article  Google Scholar 

  22. Kirkpatrick S., Toulouse G.: Configuration space analysis of traveling salesman problems. J. Phys. 46, 1277–1292 (1985)

    Article  Google Scholar 

  23. Korte B., Vygen J.: Combinatorial Optimization: Theory and Algorithms. Springer, New York (2007)

    Google Scholar 

  24. Laguna M., Martí R.: GRASP and path relinking for a 2-layer straight line crossing minimization. INFORMS J. Comput. 11(1), 44–52 (1999)

    Article  Google Scholar 

  25. Lan G., De Puy G.W.: On the effectiveness of incorporating randomness and memory into a multi-start metaheuristic with application to the set covering problem. Comput. Ind. Eng. 51, 362–374 (2006)

    Article  Google Scholar 

  26. Li W.: Dynamics of local search trajectory in traveling salesman problem. J. Heuristics 11(5/6), 507–542 (2005)

    Article  Google Scholar 

  27. Lin S.: Computer solution of the traveling salesman problem. Bell Syst. Tech. J. 44, 2245–2269 (1965)

    Google Scholar 

  28. Lin S., Kernighan B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21, 498–516 (1973)

    Article  Google Scholar 

  29. Martí R., Laguna M., Glover F., Campos V.: Reducing the bandwidth of a sparse matrix with tabu search. Eur. J. Oper. Res. 135(2), 450–459 (2001)

    Article  Google Scholar 

  30. Martí R.: Multi-start methods. In: Glover, F., Kochenberger, G. (eds) Handbook of Metaheuristics, pp. 355–368. Springer, Berlin (2003)

    Google Scholar 

  31. Martí R., Moreno-Vega J.M., Duarte A.: Advanced multi-start methods. In: Gendreau, M, Potvin J.Y., (eds) Handbook of Metaheuristics, pp. 265–281. Springer, Berlin (2010)

    Chapter  Google Scholar 

  32. Merz P., Freisleben B.: Memetic algorithms and the fitness landscape of the graph bi-partitioning problem. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.P. (eds) Parallel Problem Solving from Nature - PPSN V, LNCS 1498, pp. 765–774. Springer, Berlin (1998)

    Chapter  Google Scholar 

  33. Mezard M., Parisi G.: A replica analysis of the traveling salesman problem. J. Phys. 47, 1285–1296 (1986)

    Article  Google Scholar 

  34. Mezmaz, M., Melab, N., Talbi, E.-G.: Using the multi-start and island models for parallel multi-objective optimization on the computational grid. In: Proceedings of the Second IEEE International Conference on e-science and Grid Computing, p. 112 (2006)

  35. Miettinen K.M.: Nonlinear Multiobjective Optimization. Kluwer, Dordrecht, Netherlands (1999)

    Google Scholar 

  36. Moscato P.: Memetic algorithms. In: Corne, D., Dorigo, M., Glover, F. (eds) New Ideas in Optimization, pp. 219–235. McGraw Hill, New York (1999)

    Google Scholar 

  37. Padberg M., Rinaldi G.: A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAM Rev. 33, 60–100 (1991)

    Article  Google Scholar 

  38. Papadimitriou C.H., Steiglitz K.: Combinatorial Optimization: Algorithms and Complexity. Dover Publications, New York (1998)

    Google Scholar 

  39. Patterson R., Pirkul H., Rolland E.: Adaptive reasoning technique for the capacitated minimum spanning tree problem. J. Heuristics 5, 159–180 (1999)

    Article  Google Scholar 

  40. Raidl G.R., Kogydek G., Julstrom B.A.: On weight-biased mutation for graph problems. In: Merelo-Guervós, J.J., Adamidis, P., Beyer, H.G., Fernáandez-Villacaňas, J.L., Schwefel, H.P. (eds) Parallel Problem Solving from Nature - PPSN VII, LNCS2439, pp. 204–213. Springer, Berlin (2002)

    Chapter  Google Scholar 

  41. Reinelt, G.: TSPLIB, a traveling salesman problem library. ORSA J. Comput. 3, 376–384 (1991) The library of TSP problem instances is accessible on the Web at. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

  42. Reeves C.R.: Landscapes, operators and heuristic search. Ann. Oper. Res. 86, 473–490 (1998)

    Article  Google Scholar 

  43. Resende, M.G.C., Mart, R., Gallego, M., Duarte, A.: GRASP and path relinking for the max- min diversity problem. Comput. Oper. Res. (To Appear) (2009)

  44. Solis F., Wets R.: Minimization by random search techniques. Math. Oper. Res. 6, 19–30 (1981)

    Article  Google Scholar 

  45. Sourlas N.: Statistical mechanics and the traveling salesman problem. Europhys. Lett. 2, 919–923 (1986)

    Article  Google Scholar 

  46. Tu W., Mayne R.W.: An approach to multi-start clustering for global optimization with non-linear constraints. Int. J. Numer. Methods Eng. 53(9), 2253–2269 (2002)

    Article  Google Scholar 

  47. Ulder N.L.J., Aarts E.H.L., Bandelt H.J., Van Laarhoven P.J.M., Pesch E.: Genetic local search algorithms for the traveling salesman problem. In: Schwefel, H.-P., Männer, R. (eds) Parallel Problem Solving from Nature, pp. 109–116. Springer, Berlin (1990)

    Google Scholar 

  48. Vander Poort E.S., Libura M., Sierksma G., van der Veen J.A.A.: Solving the k-best traveling salesman problem. Comput. Oper. Res. 26(4), 409–425 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqi Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W. Seeking global edges for traveling salesman problem in multi-start search. J Glob Optim 51, 515–540 (2011). https://doi.org/10.1007/s10898-010-9643-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-010-9643-4

Keywords

Navigation