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Abstract A subset B of a closed convex set A is recession-compatible with respect to A
if A can be expressed as the Minkowski sum of B and the recession cone of A. We show that
if A contains no line, then there exists a recession-compatible subset of A that is minimal
with respect to set inclusion. The proof only uses basic facts of convex analysis and does
not depend on Zorn’s Lemma. An application of this result to the error bound theory in
optimization is presented.
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1 Introduction

Let A be a nonempty closed convex set in R
n . We assume that A is full-dimensional. Otherwise

we may equivalently discuss the problem in the subspace that is parallel to the affine hull
of A. Denote by A∞ the recession cone of A. That is,

A∞ = {d ∈ R
n : x + td ∈ A for every x ∈ A and all t ≥ 0}.

Some interesting results could be established by using recession cones, see [1,7,17]. It can be
seen from the definition of the recession cone that the closed convex set A is the (Minkowski)
sum of A itself and its recession cone A∞ [19]. That is

A = A + A∞ = {x + d : x ∈ A, d ∈ A∞}.
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In general, if for some subset B of A, A is the sum of B and A∞, i.e.,

A = B + A∞, (1)

then the subset B is said to be recession-compatible with respect to A. A recession-compat-
ible subset is minimal with respect to set inclusion if it is contained in all other recession-
compatible subsets. To be concise, here and below, we simply use the word “minimal” and
omit “with respect to set inclusion”. One can then ask the following question:

– Question. Does there exist a minimal recession-compatible subset of A? If yes, can such
a subset be characterized?

We define Ap to be the Pareto optimum of A with respect to −A∞ (not A∞). That is ([14]),

Ap := {x ∈ A : A ∩ (x − A∞) = {x}}. (2)

The main purpose of this paper is to show by constructive argument that if A contains no
line, then the Pareto optimum Ap is the minimal recession-compatible subset with respect
to A. As its application, we establish a result of error bound, which is a field having been
extensively studied; see [4–6,9–11,16,21].

The organization of this paper is as follows. In the next section, we present some basic
notations and facts in convex analysis, which are related to the subsequent analysis. Section 3
contains the main results of this paper. We show that if a closed convex set A contains no
line, then the minimal recession-compatible subset with respect to A exists. We develop an
explicit expression for this set. We present examples to show that, if A contains lines, then
the minimal recession-compatible subset with respect to A may not exist. Section 4 provides
an application of our result to error bound theory of convex multivalued functions.

2 Some facts and notations

We denote 〈·, ·〉 the Euclidean inner product in R
n . For a nonempty set A of R

n, int(A), cl(A),

bd(A), ri(A) and rbd(A) denote the interior, closure, boundary, relative interior, and relative
boundary [19] of A, respectively. If x, y ∈ A, then [x, y] and (x, y) denote, respectively, the
closed and open line segment between x and y.

A boundary ray of a closed convex set is a half line contained in the boundary of this
convex set. We write br(A) for the set

{x ∈ A : ∃d ∈ A∞, d 	= 0, x + td ∈ bd(A) ∀t > 0}.
We present two examples to help understand the concept of the boundary rays.

Example 1 Let A be the epigraph of the proper convex function f defined by f (x) = x−1

for x ∈ [1,∞). Then the set of boundary rays br(A) of A is the set {1} × [1,∞), a proper
subset of the boundary bd(A).

Example 2 Let A be the closed convex set {(x, y, z) : y ≥ |x |, 1 ≤ z ≤ 2} in R
3. Then

br(A) is just the boundary of A.

For a linear subspace L in R
n, L⊥ denotes the orthogonal complement of L . ΠL(·) denotes

the orthogonal projector onto the linear subspace L . It is well known that (L⊥)⊥ = L and
every x ∈ R

n can be decomposed uniquely in the form of x = ΠL(x) + ΠL⊥(x).

Lemma 1 ([8]) If A is a convex set in R
n with int(A) being nonempty, then t cl(A) + (1 −

t) int(A) ⊂ int(A) for all t ∈ (0, 1).
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Lemma 2 ([20]) Let K be a nonempty open convex subset of R
n. Suppose that x ∈ K and

y 	∈ cl(K ). Then there exists a point z in [x, y] such that z ∈ bd(K ).

Lemma 3 Let A be a nonempty unbounded closed convex set. Suppose that x ∈ bd(A) but
x 	∈ br(A). Then for any d ∈ A∞\{0} and any t > 0, x − td 	∈ A. In particular, if A contains
no boundary ray, then bd(A) − (A∞\{0}) contains no point of A.

Proof If the conclusion does not hold, then there exist d ∈ A∞\{0} and t0 > 0 such that
x − t0d ∈ A. Since d ∈ A∞, x + td ∈ A for every t ≥ 0. If x + t1d ∈ int(A) for some t1 > 0,
then x ∈ (x − t0d, x + t1d) ⊂ int(A), contradicting x ∈ bd(A). Hence x + td ∈ bd(A) for
t ≥ 0 which means that x ∈ br(A), contradicting x 	∈ br(A). ��
Lemma 4 Let A ⊂ R

n be a nonempty closed convex set. If the recession cone A∞ of A
contains a linear subspace of which the linear subspace L is the orthogonal complement,
then A ∩ L is nonempty, and

rbd(A ∩ L) = rbd(A) ∩ L .

In particular, the relative boundary of A ∩ L is contained in the relative boundary of A.

Proof By Corollary 6.5.1 of [19], it suffices to prove that the set ri(A) ∩ L is nonempty. It
can be seen that A = L⊥ + (A ∩ L) (Page 65 in [19]). Therefore ri(A) = L⊥ + ri(A ∩ L)

by [19, Corollary 6.6.2]. Since ri(A ∩ L) ⊂ L as L is a subspace, it follows that ri(A) ∩ L =
ri(A ∩ L) 	= ∅. ��

3 Minimal recession-compatible subset

Throughout this section, we assume that A is unbounded (If A is bounded, then A∞ = {0}.
Thus A itself is the only recession-compatible subset of A).

To state the main results, we need to introduce some notations. For x ∈ bd(A), let

D(x) := {d ∈ A∞\{0} : x + td ∈ bd(A) for all t ≥ 0}.
It is easy to see that D(x) 	= ∅ if and only if x ∈ br(A). A point x in br(A) is said to be a
spine point if for every d ∈ D(x), x − td 	∈ bd(A) for any t > 0. We denote As the set of
spine points of A; that is,

As = {x ∈ br(A) : x − td 	∈ bd(A),∀d ∈ D(x),∀t > 0}. (3)

It can be seen that for the closed convex sets A in Examples 1 and 2, the sets As are respectively
{(1, 1)} and {(0, 0, z) : 1 ≤ z ≤ 2}.

Recall that Ap is the Pareto optimum set of A with respect to −A∞.

Proposition 1 Let A be a nonempty unbounded closed convex set in R
n. Then

Ap = (bd(A)\ br(A)) ∪ As . (4)

Proof Note that Ap = {x : A ∩ (x − A∞) = {x}}. Let x ∈ As . If x 	∈ Ap , then there exists
d∗ ∈ A∞\{0} such that x − d∗ ∈ A. Since x is in bd(A), it follows that x − d∗ ∈ bd(A) and
x + td∗ ∈ bd(A) for all t ≥ 0. Thus d∗ ∈ D(x) and x − d∗ ∈ bd(A), contradicting x ∈ As .
Therefore As ⊂ Ap , which together with Lemma 3 implies that (bd(A)\ br(A))∪ As ⊂ Ap .

Conversely, if x ∈ Ap but x is not in bd(A)\ br(A), then since Ap ⊂ bd(A), we have
x ∈ br(A). It remains to prove that x ∈ As . If not, then there exists d ∈ A∞ with d 	= 0 such
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that x + td ∈ bd(A) for all t ≥ 0 and x − t∗d ∈ bd(A) for some t∗ > 0, a contradiction to
the assumption of x ∈ Ap . ��

Now we are in a position to state our main results.

Theorem 1 Let A be a nonempty unbounded closed convex set containing no line. Then the
Pareto optima set Ap is the minimal recession-compatible subset of A.

Proof First, we prove that if B is a recession-compatible subset of A, then Ap is contained
in B. Indeed, if for some x ∈ Ap, x 	∈ B; then since B is recession-compatible, there exist
d ∈ A∞ with d 	= 0 and y ∈ B such that x = y + d . Thus x − d = y ∈ A. Clearly
x − d ∈ x − A∞, hence x − d ∈ A ∩ (x − A∞), contradicting x ∈ Ap .

Second, we prove that the set Ap is recession-compatible with respect to A. It suffices to
prove that

A\Ap ⊂ Ap + A∞. (5)

Suppose on the contrary, (5) does not hold; i.e.,

there exists x0 ∈ A\Ap, but x0 	∈ Ap + A∞. (6)

Since x0 ∈ A and A contains no line, there exist x1 ∈ bd(A) and d0 ∈ A∞\{0} such that
x0 = x1 + d0. We have x1 ∈ br(A)\As . (If x1 	∈ br(A)\As , then Proposition 1 yields that
x1 ∈ Ap , and hence x0 ∈ Ap + A∞, which contradicts (6).) Therefore, the definition (3) of
As yields the existence of d1 ∈ D(x1) and t > 0 such that x1 − td1 ∈ bd(A). Set

t1 := sup{t > 0 : x1 − td1 ∈ bd(A)}.
Since A contains no line, we have t1 ∈ (0,∞). (If t1 = ∞, then it can be easily seen that
−d1 ∈ A∞. Note that d1 ∈ D(x1) ⊂ A∞\{0}, thus the set A contains a line with d1 as its
direction, contradicting the assumption that A contains no line.) It follows that

x1 + rd1 ∈ bd(A) if and only if r ∈ [−t1,∞). (7)

Let x2 := x1 − t1d1. By this inductive procedure, we construct an infinite sequence of vectors
xm, m = 1, 2, . . . , such that

xm+1 := xm − tmdm, xm ∈ br(A)\As, and
xm + rdm ∈ bd(A) if and only if r ∈ [−tm,∞), for m = 1, 2, . . . ,

(8)

where tm := sup{t > 0 : xm − tdm ∈ bd(A)} and dm ∈ D(xm). Suppose that we have
generated such x2, . . . , x j from x1. Then we have

xi+1 := xi − ti di , xi ∈ br(A)\As, and
xi + rdi ∈ bd(A) if and only if r ∈ [−ti ,∞), for i = 1, 2, . . . , j − 1.

(9)

We claim that x j ∈ br(A)\As . Indeed, if x j 	∈ br(A)\As , then (9) and Proposition 1 imply
that x j ∈ Ap . Noting that

x0 = x1 + d0 = x2 + t1d1 + d0 = · · · = x j +
j−1∑
i=1

ti di + d0 ∈ Ap + A∞,

we obtain a contradiction to (6). Since x j ∈ br(A)\As , by the definition (3) of As , for some
d j ∈ D(x j ) and some t > 0, x j − td j ∈ bd(A). Set

t j := sup{t > 0 : x j − td j ∈ bd(A)}.
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Since A contains no line, we have t j ∈ (0,∞). It follows that

x j + rd j ∈ bd(A) if and only if r ∈ [−t j ,∞).

Let x j+1 := x j − t j d j . Thus the induction step is complete.
On the other hand, it holds that

for each m ≤ n, the nonzero vectors d1, d2, . . . , dm are linearly independent. (10)

We prove (10) by induction. Since d1 	= 0, d1 itself is linearly independent. Assume that
d1, d2, . . . , dm−1 are linearly independent, we aim to prove that d1, d2, . . . , dm are linearly
independent. If, on the contrary, d1, d2, . . . , dm are linearly dependent, then there exist real
scalars λ1, λ2, . . . , λm−1 such that

dm = λ1d1 + λ2d2 + · · · + λm−1dm−1.

Without loss of generality, assume that λ1 	= 0.

Case I If λ1 > 0, then take positive scalars r2, r3, . . . , rm−1 and take negative scalar rm ∈
(−tm, 0) such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

tm−1 − rmλm−1 > 0,

tm−2 − rmλm−2 > 0,
...

t2 − rmλ2 > 0.

(11)

The scalar rm satisfying the inequalities (11) does exist because for i = 2, . . . , m − 1,
when r is less than and converges to zero, ti − rλi tends to the positive scalar ti . Since
di ∈ D(xi ) ⊂ A∞\{0} and ri > 0 for i = 2, . . . , m, we have

xi + ri di ∈ A for i = 2, . . . , m. (12)

Now we want to find nonnegative scalars μ2, μ3, . . . , μm with μ2 + μ3 + · · · + μm = 1,
and find t with t > t1 such that

x1 − td1 = μ2(x2 + r2d2) + μ3(x3 + r3d3) + · · ·
+μm−1(xm−1 + rm−1dm−1) + μm(xm + rmdm). (13)

If the solution of (13) exists, then the relation (12), together with the fact that the set A is
convex, implies that x1 − td1 ∈ A. From Lemma 1, x1 − td1 must belong to the boundary
of A as x1 ∈ bd(A), d1 ∈ D(x1) ⊂ A∞\{0} and t > t1 > 0. This contradicts (7). Thus we
obtain that d1, d2, . . . , dm−1, dm are linearly independent.

Now it remains to prove that (13) is solvable. Let cm−1 = (tm−1 − rmλm−1)/rm−1 and

ci = [(ci+1 + · · · + cm−1)ti + (ti − rmλi )]/ri , for i = 2, . . . , m − 2.

Since each ri and each ti is positive, by use of the inequalities (11), it follows that c2, . . . , cm−1

are all positive. Let μm = (1+c2 +· · ·+cm−1)
−1 and μi = ciμm for i = 2, . . . , m −1, and

let t = t1 − μmrmλ1. Then μ2, μ3, . . . , μm are positive scalars satisfying that μ2 + μ3 +
· · ·+μm = 1, and t > t1. Now we only need to prove that μ2, μ3, . . . , μm and t constructed
in this way solve (13).
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Note that xi+1 = xi −ti di for i = 1, 2, . . . , m−1, and dm = λ1d1+λ2d2+· · ·+λm−1dm−1.
It follows that (13) can be reformulated into

x1 − td1 = μ2(x1 − t1d1 + r2d2) + μ3(x1 − t1d1 − t2d2 + r3d3) + · · ·
+μm−1(x1 − t1d1 − · · · − tm−2dm−2 + rm−1dm−1)

+μm(x1 − t1d1 − · · · − tm−1dm−1)

+μmrm(λ1d1 + · · · + λm−1dm−1).

Since μ2 + · · · + μm = 1, the above expression can be simplified (by cancelling the item
x1) into

β1d1 + β2d2 + · · · + βm−1dm−1 = 0,

where ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

β1 = t − t1 + μmrmλ1,

β2 = μm(rmλ2 − t2) − (μ3 + · · · + μm−1)t2 + μ2r2,
...

βm−2 = μm(rmλm−2 − tm−2) − μm−1tm−2 + μm−2rm−2,

βm−1 = μm(rmλm−1 − tm−1) + μm−1rm−1.

It can be seen from the constructions of μi and t that

β1 = β2 = · · · = βm−1 = 0.

Therefore μ2, μ3, . . . , μm and t constructed in this way do solve (13). Thus the claim (iv) is
true for Case I.

Case II If λ1 < 0, then take sufficiently small rm > 0 such that (11) is satisfied, and take
positive scalars r2, . . . , rm−1. The remaining proof is similar to Case I and hence we omit it.

Up to this point we have shown that (10) is true. This implies that {xm} generated as in
(8) would not be an infinite sequence, since the space is n dimensional and since the con-
struction of xn+1 needs a vector dn having the properties as shown in (8). Thus, we obtain
a contradiction, which shows that (6) should not be true, and hence the proof is complete.1

��
In what follows, we allow the closed convex set A to contain lines. In this case, A may

have no minimal recession-compatible subset as shown by the following example. However,
some similar results to Theorem 1 can be obtained.

Example 3 Let A be the closed convex set {(x, y) ∈ R
2 : y ≥ 1}, and let B1 = {(1, 1)} and

B2 = {(2, 1)}. Then A∞ = {(x, y) : x ∈ R, y ≥ 0}. We have A = B1 + A∞ = B2 + A∞,
i.e., B1 and B2 are recession-compatible subsets of A, and B1 ∩ B2 = ∅.

The singletons B1 and B2 are recession-compatible with respect to A, if A has a minimal
recession-compatible subset, then this minimal subset should be contained in B1 and B2 by
definition. Thus, B1 ∩ B2 should be nonempty. However, B1 ∩ B2 is actually an empty set.
This contradiction shows that the minimal recession-compatible subset of this set does not
exist.

1 After this paper was finished, we noticed that there are other proofs for Theorem 1 such as by Zorn’s lemma
and by separation theorem of convex sets. Different from these arguments, our proof is constructive.
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Theorem 2 Let A ⊂ R
n be a nonempty closed convex subset. If the recession cone A∞

of A is a linear subspace, then A ∩ (A∞)⊥ is a recession-compatible subset of A. If B is
recession-compatible with respect to A, then A ∩ (A∞)⊥ is contained in the projection of B
onto (A∞)⊥.

Proof Set L = (A∞)⊥. Since A∞ is a linear subspace, it follows from [19, p. 65.] that A∩ L
is recession-compatible subset of A.

Let B be any recession-compatible subset of A. Given x ∈ A ∩ L , since B is recession-
compatible with respect to A, there exist y ∈ B and z ∈ A∞ such that x = y + z. Applying
orthogonal decomposition, we have x = ΠL (y) + ΠL⊥(y) + z, and hence

x − ΠL(y) = ΠL⊥(y) + z. (14)

However, x −ΠL (y) ∈ L and ΠL⊥(y)+ z ∈ L⊥ as z ∈ A∞ = L⊥. It follows from (14) and
L ∩ L⊥ = {0} that x −ΠL(y) = 0. Thus x = ΠL (y) ∈ ΠL(B). Therefore A ∩ L ⊂ ΠL(B).

��
Theorem 3 Let A be a nonempty closed convex set. Suppose A∞ is not a linear subspace
and L is the orthogonal complement of the largest linear subspace contained in A∞. Then
A ∩ L is nonempty and (A ∩ L)p is a recession-compatible subset of A. Furthermore, if B
is any recession-compatible subset of A, then (A ∩ L)p ⊂ ΠL(B).

Proof By Lemma 4, A ∩ L is nonempty. Since L⊥ is the largest linear subspace contained
in A∞ and since A∞ is not a linear subspace, A ∩ L contains no line and is unbounded.
Applying Theorem 1, we have that the set (A ∩ L)p is recession-compatible with respect to
A ∩ L . Note that A = (A ∩ L) + L⊥ [19, p. 65]. Since (A ∩ L) ∩ L⊥ = {0}, it follows from
Corollary 9.1.2 of [19] that A∞ = ((A ∩ L) + L⊥)∞ = (A ∩ L)∞ + L⊥. Thus

A = (A ∩ L)p + A∞,

which implies that the set (A ∩ L)p is a recession-compatible subset of A.
Now it remains to prove the second assertion. Since A ∩ L is nonempty and contains no

line as verified above, it follows from Theorem 1 that if ΠL(B) is recession-compatible with
respect to A∩ L , then (A∩ L)p is actually contained in ΠL(B). Therefore it suffices to prove

A ∩ L = ΠL(B) + (A ∩ L)∞,

equivalently, to prove (B + A∞) ∩ L = ΠL(B) + (A∞ ∩ L). Let x ∈ (B + A∞) ∩ L . Then
there exist y ∈ B and z ∈ A∞ such that x = y + z. Since x ∈ L and since the orthogonal
projection operator is linear, it follows that

x = ΠL(y) + ΠL(z), (15)

0 = ΠL⊥(y) + ΠL⊥(z). (16)

Since z ∈ A∞, we have x + t z ∈ A for any t > 0, which, together with the fact that
z = ΠL(z) + ΠL⊥(z), implies that for any t > 0,

x + tΠL(z) ∈ −tΠL⊥(z) + A = tΠL⊥(y) + A

= ΠL⊥(t y) + A ⊂ A∞ + A = A,

in which the first equality follows from (16), and the inclusion relation holds as L⊥ is con-
tained in A∞. This shows that ΠL(z) ∈ A∞. By (15), it follows that

x ∈ ΠL(B) + (A∞ ∩ L).

Therefore (B + A∞) ∩ L ⊂ ΠL(B) + (A∞ ∩ L).
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Now we prove the converse inclusion. Let x ∈ ΠL(B) + (A∞ ∩ L). Then there exists
y ∈ B such that x − ΠL(y) ∈ A∞. It follows that

x − y = x − ΠL(y) − ΠL⊥(y) ∈ A∞ − ΠL⊥(y)

⊂ A∞ − L⊥ = A∞ + L⊥ ⊂ A∞.

Thereby x ∈ y + A∞ ⊂ B + A∞. Clearly x ∈ L , we have

ΠL(B) + (A∞ ∩ L) ⊂ (B + A∞) ∩ L .

This completes the proof. ��
Example 4 Assume the closed convex set A is defined by a convex quadratic function,
namely, A := {x ∈ R

n : 1
2 xT H x + bT x + c ≤ 0}, where H is a symmetric positive

semidefinite n × n matrix, b ∈ R
n , and c ∈ R. If H is nonsingular, then the boundary

ray of A does not exist, because of A∞ = {d : Hd = 0, bT d ≤ 0}. If H is singular and
{d : Hd = 0, bT d = 0} = {0}, then the boundary ray of A does not exist. In these two cases,
the minimal recession-compatible subset of A is the boundary of A.

If H is singular and {d : Hd = 0, bT d = 0} 	= {0}, then A∞ contains a linear subspace.
Thus Theorem 3 is applicable.

4 An application to error bound analysis

Let X be a Banach space and Γ : R
n → X be a convex multivalued function (multifunction

for short) with closed graph. A multifunction Γ is said to be convex if

λΓ (x) + (1 − λ)Γ (y) ⊂ Γ (λx + (1 − λ)y), for x, y ∈ R
n, λ ∈ (0, 1).

Given x0 ∈ X with Γ −1(x0) nonempty, we consider to find a positive scalar γ such that

d(x, Γ −1(x0)) ≤ γ d(x0, Γ (x)), for all x ∈ R
n, (17)

where d(·, ·) stands for the distance function. If the above expression holds only for every
point in some neighbourhood of the point x0, we say that local error bound holds around x0.
Error bound for convex multifunction has been discussed in the literature; see [13,15,18].
Actually, the concept of recession-compatible subset was firstly used in [15]. After that,
global error bound was analyzed in terms of the so-called recession core in [22].

We will assume throughout this section that Γ −1(x0) is unbounded because [13] presented
detailed discussion on the case when Γ −1(x0) is bounded.

Theorem 4 Let Γ : R
n → X be a convex multifunction with closed graph and Γ −1(x0) 	= ∅.

Suppose that Γ −1(x0) is unbounded and contains no line. If γ > 0 is a constant such that
local error bound holds around every point in the minimal recession-compatible subset of
Γ −1(x0), then global error bound (17) holds with the same constant γ .

Proof In view of Theorem 1, the minimal recession-compatible subset of Γ −1(x0) is non-
empty, denoted by M. Let x 	∈ Γ −1(x0). We divide the discussion into two cases:

(i) If the projection x̄ of x onto Γ −1(x0) belongs to M, then

d(x, Γ −1(x0)) ≤ ‖x − x̄ − λ(x − x̄)‖ + d(x̄ + λ(x − x̄), Γ −1(x0))

= (1 − λ) ‖x − x̄‖ + d(x̄ + λ(x − x̄), Γ −1(x0))

= (1 − λ)d(x, Γ −1(x0)) + d(x̄ + λ(x − x̄), Γ −1(x0)),
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which implies that

d(x, Γ −1(x0)) ≤ 1

λ
d(x̄ + λ(x − x̄), Γ −1(x0)).

On the other hand, since local error bound holds with γ > 0 around x̄ , there exists
λ ∈ (0, 1) such that x̄ + λ(x − x̄) belongs to the neighbourhood of x̄ on which the
local error bound around x̄ holds. It follows that

d(x̄ + λ(x − x̄), Γ −1(x0)) ≤ γ d(x0, Γ (x̄ + λ(x − x̄))) ≤ λγ d(x0, Γ (x)),

where the second inequality follows from the convexity of Γ .
The last two expressions yield that

d(x, Γ −1(x0)) ≤ γ d(x0, Γ (x)).

(ii) If the projection x̄ 	∈ M, then there is a ∈ M, c ∈ (Γ −1(x0))∞ with c 	= 0 such that
x̄ = a + c. We claim that for λ ∈ (0, 1),

d(a + λ(x − a), Γ −1(x0)) = λ ‖x − a − c‖.
Thus

d(x, Γ −1(x0)) = ‖x − x̄‖ = ‖x − a − c‖
= 1

λ
d(a + λ(x − a), Γ −1(x0))

≤ 1

λ
γ d(x0, Γ (a + λ(x − a)) for small enough λ ∈ (0, 1)

≤ γ d(x0, Γ (x)),

where the first inequality follows from the fact that local error bound holds around
a ∈ M ⊂ Γ −1(x0) while the second one from the convexity of Γ .

Now we prove the claim. Since x̄ = a + c is the projection of x onto Γ −1(x0), we have

〈x − (a + c), y − (a + c)〉 ≤ 0, for all y ∈ Γ −1(x0).

Noticing that c ∈ Γ −1(x0)∞, we have for any y ∈ Γ −1(x0) and λ ∈ (0, 1), y + (1 − λ)c
belongs to Γ −1(x0). It follows that

〈λ(x − (a + c)), y − (a + λc)〉 ≤ 0, for all y ∈ Γ −1(x0) and λ ∈ (0, 1).

This implies that a +λc is the projection of a +λ(x − a) onto Γ −1(x0), and hence the claim
follows. ��
Remark 1 Theorem 4 requires that the constant γ does not depend on the points in the
minimal recession-compatible subset of Γ −1(x0). If on the contrary γ is dependent on x ,
then the conclusion does not generally hold. We can see this point by letting x0 = 0 and
Γ (x) = g(x) + R

n+ with g : R
� → R

n and gi : R
� → R (i = 1, . . . , n) being differentiable

convex functions. That is, we consider convex differentiable inequalities system

g1(x) ≤ 0, . . . , gn(x) ≤ 0.

Li [12] proved that for the above differentiable convex inequalities system, the existence
of local error bounds at every feasible point x with γ dependent on x is equivalent to the
so-called basic constraint qualification. However, the basic constraint qualification is not
enough to ensure that global error bound exists; see Theorem 10 in [16].
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Remark 2 From the proof of Theorem 4, it can be seen that if B is any recession-compatible
subset of Γ −1(x0) and local error bound holds with the same constant γ around every point in
B, then global error bound (17) holds. It is therefore desirable that the recession-compatible
subset B is as small as possible with respect to set inclusion, which motivates the application
of the minimal recession-compatible subset.

Similar to Theorems 1 and 3, if Γ −1(x0) contains line, one can state a global error bound
result similar to Theorem 4 as well. For brevity we omit the discussion. The interested reader
may refer to [22, Section 5], which obtained global error bound by assuming local error
bound on a recession core. Note that we do not require the recession-compatible subset to be
convex.

An interesting topic of future research would be the case of A = {x : g(x) ≤ 0}, where g
is a certain function. In the specific case of g being a convex polynomial, some recession
properties have been derived in [2], for recent advances see [3,10,21]. Another interesting
question is whether a similar result is valid for the strong conical hull intersection property.
Namely, let C and B be two closed convex sets and let A be the minimal recession-compatible
set of C ∩ B. We would like to know whether

NC∩B(x) = NC (x) + NB(x) ∀ x ∈ A ⇒ NC∩B(x) = NC (x) + NB(x) ∀ x ∈ C ∩ B,

where NS(x) denotes the convex normal cone of S at x .
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