Skip to main content
Log in

Optimal switching control of a fed-batch fermentation process

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Considering the hybrid nature in fed-batch culture of glycerol biconversion to 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae, we propose a state-based switching dynamical system to describe the fermentation process. To maximize the concentration of 1,3-PD at the terminal time, an optimal switching control model subject to our proposed switching system and constraints of continuous state inequality and control function is presented. Because the number of the switchings is not known a priori, we reformulate the above optimal control problem as a two-level optimization problem. An optimization algorithm is developed to seek the optimal solution on the basis of a heuristic approach and control parametrization technique. Numerical results show that, by employing the obtained optimal control strategy, 1,3-PD concentration at the terminal time can be increased considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. McNeil B., Harvey L.M.: Fermentation, A Practical Approach. IRL Press, Tokyo (1990)

    Google Scholar 

  2. Mészáros A., Bales V.: A contribution to optimal control of fed-batch biochemical processes. Bioproc. Eng. 7, 363–367 (1992)

    Article  Google Scholar 

  3. Oberle H.J., Sothmann B.: Numerical computation of optimal feed rates for a fed-batch fermentation model. J. Optim. Theor. Appl. 100, 1–13 (1999)

    Article  Google Scholar 

  4. Shin H.S., Lim H.C.: Maximization of metabolite in fed-batch cultures sufficient conditions for singular arc and optimal feed rate profiles. Biochem. Eng. J. 37, 62–74 (2007)

    Article  Google Scholar 

  5. Sarkar D., Modak J.M.: Optimization of fed-batch bioreactors using genetic algorithm: multiple control variables. Comput. Chem. Eng. 28, 789–798 (2004)

    Article  Google Scholar 

  6. Korytowski, A., Szymkat, M., Maurer, H., Vossen, G.: Optimal control of a fedbatch fermentation process: numerical methods, sufficient conditions and sensitivity analysis. In: Proceedings of the 47th IEEE CDC, Cancun, Mexico, pp, 1551–1556 (2008)

  7. Ashoori A., Moshiri B., Khaki-Sedigh A., Bakhtiari M.R.: Optimal control of a nonlinear fed-batch fermentation process using model predictive approach. J. Process Control 19, 1162–1173 (2009)

    Article  Google Scholar 

  8. Biebl H., Menzel K., Zeng A.P.: Microbial production of 1,3-propanediol. Appl. Microbiol. Biotechnol. 52, 289–297 (1999)

    Article  Google Scholar 

  9. Menzel K., Zeng A.P., Deckwer W.D.: High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzyme Microb. Technol. 20, 82–86 (1997)

    Article  Google Scholar 

  10. Zeng A.P.: Pathway and kinetic analysis of 1,3-propanediol production from glycerol fermentation by Clostridium butyricum. Bioproc. Eng. 14, 169–175 (1996)

    Article  Google Scholar 

  11. Xiu Z.L., Zeng A.P., An L.J.: Mathematical modelling of kinetics and research on multiplicity of glyceroll bioconversion to 1,3-propanediol. J. Dalian Univ. Technol. 4, 428–433 (2000)

    Google Scholar 

  12. Zeng A.P., Rose A., Biebl H., Tag C., Guenzel B., Deckwer W.D.: Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation. Biotechnol. Bioeng. 44, 902–911 (1994)

    Article  Google Scholar 

  13. Seidman, T.I.: Switching systems: thermostats and periodicity. Math. Res. Report 83-07, UMBC, Baltimore (1983)

  14. Wang, L.Y., Beydoun, A., Cook, J., Sun, J., Kolmanovsky, I.: Optimal hybrid control with applications to automotive powertrain systems. In: Lecture Notes in Control and Information Sciences vol. 222, pp. 190–200. Springer, Berlin (1997)

  15. Lenhart S.M., Seidman T.I., Yong J.M.: Optimal control of a bioreactor with modal switching. Math. Mod. Meth. Appl. S. 6, 933–949 (2001)

    Article  Google Scholar 

  16. Seidman, T.I.: Optimal control for switching systems. In: Proceedings of 21st Annual Conference on Inf. Sci. and Syst., Baltimore, MD, USA, pp. 485–489 (1987)

  17. Branicky M.S., Borkar V.S., Mitter S.K.: A unified framework for hybrid control: model and optimal control theory. IEEE Trans. Aut. Control 43(1), 31–45 (1998)

    Article  Google Scholar 

  18. Xu, X.P., Antsaklis, P.J.: Results and perspectives on computational methods for optimal control of switched systems. In: Hybrid Systems: Computation and Control, Lecture Notes in Computer Science, vol. 2623, pp. 540–555. Springer, Berlin (2003)

  19. Luus R., Chen Y.Q.: Optimal switching control via direct search optimization. Asian J. Contr. 6, 302–306 (2004)

    Article  Google Scholar 

  20. Xu X.P., Antsaklis P.J.: Optimal control of switched systems based on parametrization of the switching instants. IEEE Trans. Aut. Contr. 49, 2–16 (2004)

    Article  Google Scholar 

  21. Teo K.L., Goh C.J., Wong K.H.: A Unified Computational Approach to Optimal Control Problems. Long Scientific Technical, Essex (1991)

    Google Scholar 

  22. Esposito W.R., Floudas C.A.: Deterministic global optimization in nonlinear optimal control problems. J. Glob. Optim. 17, 97–126 (2000)

    Article  Google Scholar 

  23. Papamichail I., Adjiman C.S.: A rigorous global optimization algorithm for problems with ordinary differential equations. J. Glob. Optim. 24, 1–33 (2002)

    Article  Google Scholar 

  24. Pardalos P.M., Yatsenko V.: Optimzation and Control of Bilinear Systems. Springer-Verlag, New York (2009)

    Google Scholar 

  25. Esposito W.R.: Dynamic programming: continuous-time optimal control. In: Floudas, C.A., Pardalos, P.M. (eds) Encyclopedia of Optimization, 2nd edn., pp. 844–846. Springer, (2008)

  26. Luus R.: Control vector iteration CVI. In: Floudas, C.A., Pardalos, P.M. (eds) Encyclopedia of Optimization 2nd edn., pp. 509–513. Springer, (2008)

  27. Jennings L.S., Teo K.L., Goh C.J.: MISER3.3, Optimal control software:theory and user manual. Department of Mathematics, The University of Western Australia, Australia (2000)

    Google Scholar 

  28. Teo K.L., Jennings L.S., Lee H.W.J., Rehbock V.: The control parameterization enhancing transform for constrained optimal control problems. J. Aust. Math. Soc. Series B 40, 314–335 (1999)

    Article  Google Scholar 

  29. Li R., Teo K.L., Wong K.H., Duan G.R.: Control parametrization enhancing transform for optimal control of switched systems. Math. Comput. Modelling 43, 1393–1403 (2006)

    Article  Google Scholar 

  30. Li R., Feng Z.G., Teo K.L., Duan G.R.: Optimal piecewise state feedback control for impulsive switched systems. Math. Comput. Modelling 48, 468–479 (2008)

    Article  Google Scholar 

  31. Wu C.Z., Teo K.L.: Global impulsive optimal control computation. J. Ind. Manag. Optim. 2, 435–450 (2007)

    Google Scholar 

  32. Loxton R.C., Teo K.L, Rehbock V.: Optimal control problems with multiple characteristic time points in the objective and constraints. Automatica 44, 2923–2929 (2008)

    Article  Google Scholar 

  33. Caccetta, L., van Loosen, I., Rehbock, V.: Effective algorithms for a class of discrete valued optimal control problems. In: Hichael, M.J., Commander, C.W., Pardalos, P.M., Murphey, R. (eds.) Optimization and Cooperative Control Strategies, Lecture Notes in Control and Information Science, vol. 381., pp. 1–30. Springer, (2009)

  34. Farhadinia B., Teo K.L., Loxton R.C.: A computational method for a class of non-standard time optimal control problems involving multiple time horizons. Math. Comput. Modelling 49, 1682–1691 (2009)

    Article  Google Scholar 

  35. Loxton R.C., Teo K.L., Rehbock V., Ling W.K.: Optimal switching instants for a switched capacitor DC/DC power converter. Automatica 45, 973–980 (2009)

    Article  Google Scholar 

  36. Loxton R.C., Teo K.L., Rehbock V., Yiu K.F.C.: Optimal control problems with a continous inequality constraint on the state and the control. Automatica 45(10), 2250–2257 (2009)

    Article  Google Scholar 

  37. Liu C.Y.: Optimal control for nonlinear dynamical system of microbial fed-batch culture. J. Comput. and Appl. Math. 232, 252–261 (2009)

    Article  Google Scholar 

  38. Liu C.Y., Feng E.M., Yin H.C.: Optimal switching control for microbial fed-batch culture. Nonlinear Anal. Hybrid Syst. 2, 1168–1174 (2008)

    Article  Google Scholar 

  39. Liu C.Y., Gong Z.H., Feng E.M., Yin H.C.: Modelling and optimal control for nonlinear multistage dynamical system of microbial fed-batch culture. J. Ind. Manag. Optim. 5(4), 835–850 (2009)

    Article  Google Scholar 

  40. Bryson A., Ho Y.C.: Applied Optimal Control. Halsted Press, New York (1975)

    Google Scholar 

  41. Chen X., Zhang D.J., Qi W.T., Gao S.J., Xiu Z.L., Xu P.: Microbial fed-batch production of 1,3- propanediol by Klebsiella pneumoniae under microaerobic conditions. Appl. Microbiol Biotechnol. 63, 143–146 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongyang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Gong, Z., Feng, E. et al. Optimal switching control of a fed-batch fermentation process. J Glob Optim 52, 265–280 (2012). https://doi.org/10.1007/s10898-011-9663-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-011-9663-8

Keywords

Navigation