Skip to main content
Log in

Maximal perimeter, diameter and area of equilateral unit-width convex polygons

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The paper answers the three distinct questions of maximizing the perimeter, diameter and area of equilateral unit-width convex polygons. The solution to each of these problems is trivially unbounded when the number of sides is even. We show that when this number is odd, the optimal solution to these three problems is identical, and arbitrarily close to a trapezoid. The paper also considers the maximization of the sum of distances between all pairs of vertices of equilateral unit-width convex polygons. Based on numerical experiments on the three first open cases, it is conjectured that the optimal solution to this fourth problem is the same trapezoid as for the three other problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Audet C., Hansen P., Messine F.: Extremal problems for convex polygons. J Glob. Optim. 38(2), 163–179 (2007)

    Article  Google Scholar 

  2. Audet C., Hansen P., Messine F.: The small octagon with longest perimeter. J. Comb. Theory Appl. Ser. A 114(1), 135–150 (2007)

    Article  Google Scholar 

  3. Audet, C., Hansen, P., Messine, F.: Extremal problems for convex polygons–an update. In: Lectures on global optimization, Fields institute communications, pp 1–16 American Mathematical Society (2009)

  4. Audet C., Hansen P., Messine F.: Isoperimetric polygons of maximum width. Discrete Comput. Geom. 41(1), 45–60 (2009)

    Article  Google Scholar 

  5. Audet C., Hansen P., Messine F., Perron S.: The minimum diameter octagon with unit-length sides: Vincze’s wife’s octagon is suboptimal. J. Comb. Theory Ser. A 108(1), 63–75 (2004)

    Article  Google Scholar 

  6. Benhamou F.: Interval constraints. In: Floudas, C.A., Pardalos, P.M. (eds) Encyclopedia of Optimization, pp. 1733–1736. Springer, Boston (2009)

    Chapter  Google Scholar 

  7. Bezdek A., Fodor F.: On convex polygons of maximal width. Arch. Math. 74, 75–80 (2000)

    Article  Google Scholar 

  8. Datta B.: A discrete isoperimetric problem. Geome. Dedicata 64(1), 55–68 (1997)

    Article  Google Scholar 

  9. Gashkov, S.: Inequalities for the area and perimeter of a convex polygon. Kwant 10:15–19, 1985. In Russian: 10:15–19 (1985)

    Google Scholar 

  10. Griffiths D., Culpin D.: Pi-optimal polygons. Math. Gaz. 59(409), 165–175 (1975)

    Article  Google Scholar 

  11. Kearfott R. B.: Interval analysis unconstrained and constrained optimization. In: Floudas, C. A., Pardalos, P. M. (eds) Encyclopedia of Optimization, pp. 1727–1730. Springer, Boston (2009)

    Chapter  Google Scholar 

  12. Messine, F.: Méthode d’optimisation globale basée sur l’analyse d’intervalles pour la résolution de problèmes avec contraintes. PhD thesis, Institut National Polytechnique de Toulouse (1997)

  13. Messine F.: Deterministic global optimization using interval constraint propagation techniques. RAIRO-Oper. Res. 38(4), 277–293 (2004)

    Article  Google Scholar 

  14. Moore R.E.: Interval Analysis. Prentice-Hall Inc., Englewood Cliffs (1966)

    Google Scholar 

  15. Mossinghoff M.J.: Isodiametric problems for polygons. Discrete Comput. Geom. 36, 363–379 (2006)

    Article  Google Scholar 

  16. Mossinghoff, M.J.: An isodiametric problem for equilateral polygons. Tapas in Experimental Mathematics, Amdeberham T., Moll, V. (eds.) Contemporary Mathematics, American Mathematical Society, 457:237–252 (2008)

  17. Mossinghoff M.J.: Enumerating isodiametric and isoperimetric polygons. J. Comb. Theory Ser. A 118(6), 1801–1815 (2011)

    Article  Google Scholar 

  18. Ninin, J.: Optimisation globale basée sur l’analyse d’intervalles: relaxation affine et limitation de la mémoire. PhD thesis, Institut National Polytechnique de Toulouse (2010)

  19. Ninin, J., Messine, F., Hansen, P.: A reliable affine relaxation method for global optimization. Technical report, IRIT (2010)

  20. Pál J.: Ein minimumproblem für ovale. Mathematische Annalen 83, 311–319 (1921)

    Article  Google Scholar 

  21. Ratschek H., Rokne J.: New Computer Methods for Global Optimization. Ellis Horwood Ltd, Chichester (1988)

    Google Scholar 

  22. Ratschek H., Rokne J.: Interval global optimization. In: Floudas, C. A., Pardalos, P. M. (eds) Encyclopedia of Optimization, pp. 1739–1757. Springer, Boston (2009)

    Chapter  Google Scholar 

  23. Reinhardt K.: Extremale polygone gegebenen durchmessers. Jahresber. Deutsch. Math. Verein 31, 251–270 (1922)

    Google Scholar 

  24. Reuleaux F.: The Kinematics of Machinery. Dover, New York (1963)

    Google Scholar 

  25. Vincze S.: On a geometrical extremum problem. Acta Sci. Math. Szeged 12, 136–142 (1950)

    Google Scholar 

  26. Yaglom, I.M., Boltyanskii, V.G.: Convex figures. Holt, Rinehart and Winston. Translated from Russian by P.J. Kelly and L.F. Walton. New York (1961)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordan Ninin.

Additional information

Article dedicated to Pierre Hansen, pillar of the Octagon Club.

Charles Audet work was supported by NSERC grant 239436-01.

Jordan Ninin’s work was supported by the Polytechnic National Institute of Toulouse (INPT) and the French National Research Agency (ANR) through COSINUS program (project ID4CS nANR-09-COSI-005).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Audet, C., Ninin, J. Maximal perimeter, diameter and area of equilateral unit-width convex polygons. J Glob Optim 56, 1007–1016 (2013). https://doi.org/10.1007/s10898-011-9780-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-011-9780-4

Keywords

Navigation