Skip to main content
Log in

Decomposition strategy for the stochastic pooling problem

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The stochastic pooling problem is a type of stochastic mixed-integer bilinear program arising in the integrated design and operation of various important industrial networks, such as gasoline blending, natural gas production and transportation, water treatment, etc. This paper presents a rigorous decomposition method for the stochastic pooling problem, which guarantees finding an \({\epsilon}\) -optimal solution with a finite number of iterations. By convexification of the bilinear terms, the stochastic pooling problem is relaxed into a lower bounding problem that is a potentially large-scale mixed-integer linear program (MILP). Solution of this lower bounding problem is then decomposed into a sequence of relaxed master problems, which are MILPs with much smaller sizes, and primal bounding problems, which are linear programs. The solutions of the relaxed master problems yield a sequence of nondecreasing lower bounds on the optimal objective value, and they also generate a sequence of integer realizations defining the primal problems which yield a sequence of nonincreasing upper bounds on the optimal objective value. The decomposition algorithm terminates finitely when the lower and upper bounds coincide (or are close enough), or infeasibility of the problem is indicated. Case studies involving two example problems and two industrial problems demonstrate the dramatic computational advantage of the proposed decomposition method over both a state-of-the-art branch-and-reduce global optimization method and explicit enumeration of integer realizations, particularly for large-scale problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adhya N., Tawarmalani M., Sahinidis N.V.: A Lagrangian approach to the pooling problem. Ind. Eng. Chem. Res. 38, 1956–1972 (1999)

    Article  Google Scholar 

  2. Adjiman C.S., Androulakis I.P., Floudas C.A.: Global optimization of mixed-integer nonlinear problems. AIChE J. 46(9), 1769–1797 (2000)

    Article  Google Scholar 

  3. Adjiman C.S., Dallwig S., Floudas C.A., Neumaier A.: A global optimization method, α-BB, for general twice-differentiable constrained NLPs—I. Theoretical advances. Comput. Chem. Eng. 22(9), 1137–1158 (1998)

    Article  Google Scholar 

  4. Audet C., Brimberg J., Hansen P., Digabel S.L., Mladenović N.: Pooling problem: alternative formulations and solution methods. Manag. Sci. 50(6), 761–776 (2004)

    Article  Google Scholar 

  5. Audet C., Hansen P., Jaumard B., Savard G.: A branch and cut algorithm for nonconvex quadratically constrained quadratic programming. Math. Program. 87(1), 131–152 (2000)

    Google Scholar 

  6. Balas E., Jeroslow R.: Canonical cuts on the unit hypercube. SIAM J. Appl. Math. 23(1), 61–69 (1972)

    Article  Google Scholar 

  7. Benders J.F.: Partitioning procedures for solving mixed-variables programming problems. Numer. Math. 4, 238–252 (1962)

    Article  Google Scholar 

  8. Bertsekas D.P.: Nonlinear Programming. 2nd edn. Athena Scientific, Cambridge, MA (1999)

    Google Scholar 

  9. Birge J.R.: Decomposition and partitioning methods for multistage stochastic linear programs. Oper. Res. 33(5), 989–1007 (1985)

    Article  Google Scholar 

  10. Birge J.R., Louveaux F.: Introduction to Stochastic Programming. Springer, New York (1997)

    Google Scholar 

  11. Birge J.R., Louveaux F.V.: A multicut algorithm for two-stage stochastic linear programs. Eur. J. Oper. Res. 34(3), 384–392 (1988)

    Article  Google Scholar 

  12. Birge J.R., Rosa C.H.: Parallel decomposition of large-scale stochastic nonlinear programs. Ann. Oper. Res. 64(1), 39–65 (1996)

    Article  Google Scholar 

  13. Dentcheva D., Römisch W.: Duality gaps in nonconvex stochastic optimization. Math. Program. 101(3), 515–535 (2004)

    Article  Google Scholar 

  14. Duran M., Grossmann I.E.: An outer-approximation algorithm for a class of mixed nonlinear programs. Math. Program. 66, 327–349 (1986)

    Google Scholar 

  15. Fletcher R., Leyffer S.: Solving mixed integer nonlinear programs by outer approximation. Math. Program. 66, 327–349 (1994)

    Article  Google Scholar 

  16. Floudas C.A., Visweswaran V.: A global optimization algorithm (GOP) for certain classes of nonconvex NLPs—I. Theory. Comput. Chem. Eng. 14(12), 1397–1417 (1990)

    Article  Google Scholar 

  17. Floudas C.A., Visweswaran V.: Primal-relaxed dual global optimization approach. J. Optim. Theory Appl. 78, 187–225 (1993)

    Article  Google Scholar 

  18. Foulds L.R., Haugland D., Jornsten K.: A bilinear approach to the pooling problem. Optimization 24, 165–180 (1992)

    Article  Google Scholar 

  19. GAMS: General Algebraic and Modeling System. http://www.gams.com/

  20. Geoffrion A.M.: Elements of large-scale mathematical programming: part I: concepts. Manag. Sci. 16(11), 652–675 (1970)

    Article  Google Scholar 

  21. Geoffrion A.M.: Elements of large-scale mathematical programming: part II: synthesis of algorithms and bibliography. Manag. Sci. 16(11), 652–675 (1970)

    Article  Google Scholar 

  22. Geoffrion A.M.: Generalized benders decomposition. J. Optim. Theory Appl. 10(4), 237–260 (1972)

    Article  Google Scholar 

  23. Gill P.E., Murray W., Saunders M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev. 47, 99–131 (2005)

    Article  Google Scholar 

  24. Gounaris C.E., Misener R., Floudas C.: Computational comparison of piecewise-linear relaxations for pooling problems. Ind. Eng. Chem. Res. 48, 5742–5766 (2009)

    Article  Google Scholar 

  25. Guignard M., Kim S.: Lagrangean decomposition: a model yielding stronger Lagrangean bounds. Math. Program. 39(2), 215–228 (1987)

    Article  Google Scholar 

  26. Haverly C.A.: Studies of the behaviour of recursion for the pooling problem. ACM SIGMAP Bull. 25, 29–32 (1978)

    Google Scholar 

  27. Haverly C.A.: Behaviour of recursion model—more studies. ACM SIGMAP Bull. 26, 22–28 (1979)

    Article  Google Scholar 

  28. IBM: IBM ILOG CPLEX: High-performance mathematical programming engine. http://www-01.ibm.com/software/integration/optimization/cplex/

  29. Karuppiah R., Grossmann I.E.: Global optimization for the synthesis of integrated water systems in chemical processes. Comput. Chem. Eng. 30, 650–673 (2006)

    Article  Google Scholar 

  30. Karuppiah R., Grossmann I.E.: Global optimization of multiscenario mixed integer nonlinear programming models arising in the synthesis of integrated water networks under uncertainty. Comput. Chem. Eng. 32, 145–160 (2008)

    Article  Google Scholar 

  31. Kesavan P., Allgor R.J., Gatzke E.P., Barton P.I.: Outer approximation algorithms for separable nonconvex mixed-integer nonlinear programs. Math. Program. Ser. A 100, 517–535 (2004)

    Article  Google Scholar 

  32. Kesavan P., Barton P.I.: Decomposition algorithms for nonconvex mixed-integer nonlinear programs. AIChE Symp. Ser. 96(323), 458–461 (2000)

    Google Scholar 

  33. Lee S., Grossmann I.E.: Global optimization of nonlinear generalized disjunctive programming with bilinear equality constraints: applications to process networks. Comput. Chem. Eng. 27, 1557–1575 (2003)

    Article  Google Scholar 

  34. Li, X., Armagan, E., Tomasgard, A., Barton, P.I.: Long-term planning of natural gas production systems via a stochastic pooling problem. In: Proceedings of the 2010 American Control Conference, pp. 429–435 (2010)

  35. Li, X., Armagan, E., Tomasgard, A., Barton, P.I.: Stochastic pooling problem for natural gas production network design and operation under uncertainty. AIChE J. (2010). doi:10.1002/aic.12419

  36. Liberti L., Pantelides C.C.: An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms. J. Glob. Optim. 36, 161–189 (2006)

    Article  Google Scholar 

  37. McCormick G.P.: Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems. Math. Program. 10, 147–175 (1976)

    Article  Google Scholar 

  38. Meyer C.A., Floudas C.A.: Global optimization of a combinatorially complex generalized pooling problem. AIChE J. 52(3), 1027–1037 (2006)

    Article  Google Scholar 

  39. Misener R., Floudas C.A.: Advances for the pooling problem: Modeling, global optimization, and computational studies. Appl. Comput. Math. 8(1), 3–22 (2009)

    Google Scholar 

  40. Misener R., Floudas C.A.: Global optimization of large-scale generalized pooling problems: quadratically constrained minlp models. Ind. Eng. Chem. Res. 49, 5424–5438 (2010)

    Article  Google Scholar 

  41. Misener R., Thompson J.P., Floudas C.A.: Apogee: Global optimization of standard, generalized, and extended pooling problems via linear and logarithmic partitioning schemes. Comput. Chem. Eng. 35, 876–892 (2011)

    Article  Google Scholar 

  42. Quesada I., Grossmann I.E.: Global optimization of bilinear process networks with multicomponent flows. Comput. Chem. Eng. 19, 1219–1242 (1995)

    Article  Google Scholar 

  43. Ryoo H.S., Sahinidis N.V.: A branch-and-reduce approach to global optimization. J. Glob. Optim. 8, 107–138 (1996)

    Article  Google Scholar 

  44. Sahinidis N., Grossmann I.: Convergence properties of generalized Benders decomposition. Comput. Chem. Eng. 15(7), 481–491 (1991)

    Article  Google Scholar 

  45. Selot A., Kuok L.K., Robinson M., Mason T.L., Barton P.I.: A short-term operational planning model for natural gas production systems. AIChE J. 54(2), 495–515 (2008)

    Article  Google Scholar 

  46. Sherali H.D., Alameddine A.: A new reformulation-linearization technique for bilinear programming problems. J. Glob. Optim. 2, 379–410 (1992)

    Article  Google Scholar 

  47. Slyke R.M.V., Wets R.: L-shaped linear programs with applications to optimal control and stochastic programming. SIAM J. Appl. Math. 17(4), 638–663 (1969)

    Article  Google Scholar 

  48. Tawarmalani M., Sahinidis N.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming. Kluwer, Dordrecht (2002)

    Google Scholar 

  49. Tawarmalani M., Sahinidis N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. Ser. B 103, 225–249 (2005)

    Article  Google Scholar 

  50. Visweswaran V., Floudas C.: New properties and computational improvement of the GOP algorithm for problems with quadratic objective functions and constraints. J. Glob. Optim. 3, 439–462 (1993)

    Article  Google Scholar 

  51. Visweswaran V., Floudas C.A.: A global optimization algorithm (GOP) for certain classes of nonconvex NLPs—II. Aplications of theory and test problems. Comput. Chem. Eng. 14(12), 1419–1434 (1990)

    Article  Google Scholar 

  52. Wicaksono D.S., Karimi I.A.: Piecewise MILP under- and overestimators for global optimization of bilinear programs. AIChE J. 54(4), 991–1008 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul I. Barton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Tomasgard, A. & Barton, P.I. Decomposition strategy for the stochastic pooling problem. J Glob Optim 54, 765–790 (2012). https://doi.org/10.1007/s10898-011-9792-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-011-9792-0

Keywords

Mathematics Subject Classification (2000)

Navigation