Skip to main content
Log in

Semi-infinite programming method for optimal power flow with transient stability and variable clearing time of faults

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper presents a new nonlinear programming problem arising in the control of power systems, called optimal power flow with transient stability constraint and variable clearing time of faults and abbreviated as OTS-VT. The OTS-VT model is converted into a implicit generalized semi-infinite programming (GSIP) problem. According to the special box structure of the reformulated GSIP, a solution method based on bi-level optimization is proposed. The research in this paper has two contributions. Firstly, it generalizes the OTS study to general optimal power flow with transient stability problems. From the viewpoint of practical applications, the proposed research can improve the decision-making ability in power system operations. Secondly, the reformulation of OTS-VT also provides a new background and a type of GSIP in the research of mathematical problems. Numerical results for two chosen power systems show that the methodology presented in this paper is effective and promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen L., Tada Y., Okamoto H., Tanabe R., Ono A.: Optimal operation solutions of power systems with transient stability constraints. IEEE Trans. Circuits Syst.-I Fundam. Theory Appl. 48, 327–339 (2001)

    Article  Google Scholar 

  2. Clarke F.H.: Optimization and Nonsmooth Analysis. John Wiley, New York (1983)

    Google Scholar 

  3. Coleman T.F., Li Y.: An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6, 418–445 (1996)

    Article  Google Scholar 

  4. Drici Z., Lakshmikantham V., Walter W.: Convex dependence of solution of differential equations in a Banach space relative to initial time. Nonlinear Anal. 34, 629–635 (1998)

    Article  Google Scholar 

  5. El-Hawary, M.E. (ed.): Optimal Power Flow: Solution Techniques, Requirement and Challenges. IEEE Tutorial Course, IEEE Service Center, Piscataway (1996)

  6. Gan D., Thomas R.J, Zimmerman R.D: Stability constrained optimal power flow. IEEE Trans. Power Syst. 15, 535–540 (2000)

    Article  Google Scholar 

  7. Gauvin J., Dubeau F.: Differential properties of the marginal function in mathematical programming. Math. Program. 19, 101–119 (1982)

    Google Scholar 

  8. Laufenberg M.J., Pai M.A.: A new approach to dynamic security assessment using trajectory sensitivities. IEEE Trans. Power Syst. 13, 953–958 (1998)

    Article  Google Scholar 

  9. Li D., Qi L., Tam J., Wu S.Y.: A smoothing Newton method for semi-infinite programming. J. Glob. Optim. 30, 169–194 (2004)

    Article  Google Scholar 

  10. Loxton R.C., Teo K.L., Rehbock V.: Computational method for a class of switched system optimal control problems. IEEE Trans. Autom. Control 54(10), 2455–2460 (2009)

    Article  Google Scholar 

  11. Loxton R.C., Teo K.L., Rehbock V., Ling W.K.: Optimal switching instants for a switched-capacitor DC/DC power converter. Automatica 45, 973–980 (2009)

    Article  Google Scholar 

  12. Mangasarian O.L., Fromovitz S.: The Fritz John necessary optimality conditions in the presence of equality and inequality constraints. J. Math. Anal. Appl. 17, 37–47 (1967)

    Article  Google Scholar 

  13. Momoh J.A., Koessier R.J., Bond M.S., Stott B., Sun D., Papalexopoulos A., Ristanovie P.: Challenges to optimal power flow. IEEE Trans. Power Syst. 12(1), 444–447 (1997)

    Article  Google Scholar 

  14. Ralph, D.: Nonlinear programming advances in mathematical programming with complementarity constraints, 2007, http://www.eng.cam.ac.uk/~dr241/Papers/

  15. Stein O., Still G.: Solving semi-infinite optimization programs with interior point techniques. SIAM J. Control Optim. 24(3), 769–788 (2003)

    Article  Google Scholar 

  16. Teo K.L, Goh G.J, Wong K.H.: A Unified Computational Approach to Optimal Control Problems, vol. 55, Pitman Monographs and Surveys in Pure and Applied Mathematics. Longman Scientific and Technical, England (1991)

    Google Scholar 

  17. Sumida Y., Iwamoto S.: Transient stability preventive control for stable operating condition with desired CCT. IEEE Trans. Power Syst. 17(4), 1154–1161 (2002)

    Article  Google Scholar 

  18. Teo K.L, Jennings L.S., Rehbock V.: The control parameterization enhancing transform for constrained optimal control problems. J. Aust. Math. Soc. Ser. B 40, 314–335 (1999)

    Article  Google Scholar 

  19. Tong X.J., Ling C., Qi L.: A semi-infinite programming algorithm for solving optimal power flow with transient stability constraints. J. Comput. Appl. Math. 217, 432–447 (2008)

    Article  Google Scholar 

  20. Tong X.J., Wu F.F., Qi L.: On the convergence of decoupled optimal power flow method. Numer. Funct. Anal. Optim. 28(3–4), 1–19 (2007)

    Google Scholar 

  21. Tong X.J., Wu F.F., Zhang Y., Yan Z., Ni Y.: A semismooth Newton method for solving optimal power flow. J. Ind. Manage. Optim. 3(3), 553–567 (2007)

    Article  Google Scholar 

  22. Tong X.J., Wu S.Y., Zhou R.: New approach for the nonlinear programming with transient stability constraints arising from power systems. Comput. Optim. Appl. 45(3), 495–520 (2010)

    Article  Google Scholar 

  23. Xue A.C., Mei S.W., Ni Y.X., Wu F.F., Lu Q.: Critical clearing time estimation of power system based on quadratic approximation of stability region (in chinese). Autom. Electr. Power Syst. 29(19), 19–24 (2005)

    Google Scholar 

  24. Ye J.J., Wu S.Y.: First order optimality conditions for generalized semi-infinite programming problems. J. Optim. Theory Appl. 137, 419–434 (2008). doi:10.1007/s 10957-008-9352-Z

    Article  Google Scholar 

  25. Yuan Y., Kubokawa J., Sasaki H.: A solution of optimal power flow with multicontingency transient stability constraints. IEEE Trans. Power Syst. 18(3), 1094–1102 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Yi Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, X., Ling, C., Wu, SY. et al. Semi-infinite programming method for optimal power flow with transient stability and variable clearing time of faults. J Glob Optim 55, 813–830 (2013). https://doi.org/10.1007/s10898-011-9812-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-011-9812-0

Keywords

Navigation