Skip to main content
Log in

Antiplane shear deformation of piezoelectric bodies in contact with a conductive support

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We consider a mathematical model which describes the frictional contact between a piezoelectric body and an electrically conductive support. We model the material’s behavior with an electro-elastic constitutive law; the frictional contact is described with a boundary condition involving Clarke’s generalized gradient and the electrical condition on the contact surface is modelled using the subdifferential of a proper, convex and lower semicontinuous function. We derive a variational formulation of the model and then, using a fixed point theorem for set valued mappings, we prove the existence of at least one weak solution. Finally, the uniqueness of the solution is discussed; the investigation is based on arguments in the theory of variational-hemivariational inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrei I., Costea N.: Nonlinear hemivariational inequalities and applications to nonsmooth mechanics. Adv. Nonlinear Var. Inequal. 13(1), 1–17 (2010)

    Google Scholar 

  2. Barboteu M., Sofonea M.: Modeling and analysis of the unilateral contact of a piezoelectric body with a conductive support. J. Math. Anal. Appl. 358, 110–124 (2009)

    Article  Google Scholar 

  3. Batra R.C., Yang J.S.: Saint-Vernant’s principle in linear piezoelectricity. J. Elasticity 38, 209–218 (1995)

    Article  Google Scholar 

  4. Borrelli A., Horgan C.O., Patria M.C.: Saint-Vernant’s principle for antiplane shear deformations of linear piezoelectric materials. SIAM J. Appl. Math. 62, 2027–2044 (2002)

    Article  Google Scholar 

  5. Boureanu M., Matei A.: Weak solutions for antiplane models involving elastic materials with degeneracies. Z. Angew. Math. Phys. 61, 73–85 (2010)

    Article  Google Scholar 

  6. Brezis H.: Analyse Fonctionnelle: Théorie et Applications. Masson, Paris (1992)

    Google Scholar 

  7. Chan Y.-S., Paulino G.H., Fannjiang A.C.: The crack problem for nonhomogenuous materials under antiplane shear loading—a displacement based formulation. Int. J. Solids Struct. 38, 2989–3005 (2001)

    Article  Google Scholar 

  8. Clarke F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    Google Scholar 

  9. Costea N.: Existence and uniquenes results for a class of quasi-hemivariational inequalities. J. Math. Anal. Appl. 373, 305–315 (2011)

    Article  Google Scholar 

  10. Costea N., Matei A.: Weak solutions for nonlinear antiplane problems leading to hemivariational inequalities. Nonlinear Anal. T.M.A. 72, 3669–3680 (2010)

    Article  Google Scholar 

  11. Costea N., Matei A.: Contact models leading to variational-hemivariational inequalities. J. Math. Anal. Appl. 386, 647–660 (2012)

    Article  Google Scholar 

  12. Costea N., Rădulescu V.: Existence results for hemivariational inequalities involving relaxed η− α monotone mappings. Commun. Appl. Anal. 13, 293–304 (2009)

    Google Scholar 

  13. Costea N., Rădulescu V.: Hartman-Stampacchia results for stably pseudomonotone operators and nonlinear hemivariational inequalities. Appl. Anal. 89(2), 175–188 (2010)

    Article  Google Scholar 

  14. Costea, N., Rădulescu, V.: Inequality problems of quasi-hemivariational type involving set-valued operators and a nonlinear term. J. Global Optim. (2011). doi:10.1007/s10898-011-9706-1

  15. Gilbert R.P., Panagiotopoulos P.D., Pardalos P.M.: From Convexity to Nonconvexity, Nonconvex Optimization Applications, Vol. 55. Kluwer, Dordrecht (2001)

    Book  Google Scholar 

  16. Hayes M.A., Saccomandi G.: Anti-plane shear motivations for viscoelastic Mooney-Rivlin materials. Quart. J. Mech. Appl. Math. 57, 379–392 (2004)

    Article  Google Scholar 

  17. Horgan C.O.: Anti-plane shear deformation in linear and nonlinear solid mechanics. SIAM Rev. 37, 53–81 (1995)

    Article  Google Scholar 

  18. Ikeda T.: Fundamentals of Piezoelectricity. Oxford University Press, Oxford (1990)

    Google Scholar 

  19. Lerguet Z., Shillor M., Sofonea M.: A frictional contact problem for an electro-viscoelastic body. Electron. J. Differ. Equ. 170, 1–16 (2007)

    Google Scholar 

  20. Matei A., Motreanu V.V., Sofonea M.: A quasistatic antiplane contact problem with slip dependent friction. Adv. Nonlinear Var. Inequal. 2, 1–21 (2001)

    Google Scholar 

  21. Migórski S.: Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity. Discrete Cont. Dyn. Syst. Ser. B 6, 1339–1356 (2006)

    Article  Google Scholar 

  22. Migórski S., Ochal A., Sofonea M.: Weak solvability of antiplane frictional contact problems for elastic cylinders. Nonlinear Anal. R.W.A. 11(1), 172–183 (2010)

    Article  Google Scholar 

  23. Migórski S., Ochal A., Sofonea M.: Solvability of dynamic antiplane frictional contact problems for viscoelastic cylinders. Nonlinear Anal. T.M.A. 70(10), 3738–3748 (2009)

    Article  Google Scholar 

  24. Motreanu D., Panagiotopoulos P.D.: Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities and Applications, Nonconvex Optimization and its Applications, Vol. 29. Kluwer, Dordrecht (1999)

    Google Scholar 

  25. Motreanu D., Rădulescu V.: Variational and Non-variational Methods in Nonlinear Analysis and Boundary Value Problems. Kluwer, Dordrecht (2003)

    Google Scholar 

  26. Naniewicz Z., Panagiotopoulos P.D.: Mathematical Theory of Hemivariational Inequalities and Applications. Marcel Dekker, New York (1995)

    Google Scholar 

  27. Noor M.A., Noor K.I.: Iterative schemes for trifunction hemivariational inequalities. Optim. Lett. 5(2), 273–282 (2011)

    Article  Google Scholar 

  28. Panagiotopoulos P.D.: Hemivariational Inequalities: Applications to Mechanics and Engineering. Springer, Berlin (1993)

    Book  Google Scholar 

  29. Panagiotopoulos P.D.: Noconvex energy functions. Hemivariational inequalities and substationarity principles. Acta Mech. 42, 160–183 (1983)

    Google Scholar 

  30. Pardalos P.M., Rassias T.M., Khan A.A.: Nonlinear Analysis and Variational Problems, Springer Optimization and Its Applications, Vol. 35. Springer, Berlin (2010)

    Book  Google Scholar 

  31. Patron V.Z., Kudryavtsev B.A.: Electromagnetoelasticity, Piezoelectrics and Electrically Conductive Solids. Gordon & Breach, London (1988)

    Google Scholar 

  32. Sofonea M., Essoufi El H.: A piezoelectric contact problem with slip dependent coefficient of friction. Math. Model. Anal. 9, 229–242 (2004)

    Google Scholar 

  33. Sofonea M., Essoufi El H.: Quasistatic frictional contact of a viscoelastic piezoelectric body. Adv. Math. Sci. Appl. 14, 613–631 (2004)

    Google Scholar 

  34. Sofonea M., Niculescu C., Matei A.: An antiplane contact problem for viscoelastic materials with long-term memory. Math. Model. Anal. 11, 212–228 (2006)

    Google Scholar 

  35. Sofonea M., Matei A.: Variational Inequalities with Applications. A study of Antiplane Frictional Contact Problems, Advances in Mechanics and Mathematics, Vol. 18. Springer, New York (2009)

    Google Scholar 

  36. Tarafdar E.: A fixed point theorem equivalent to the Fan–Knaster–Kuratowski–Mazurkiewicz theorem. J. Math. Anal. Appl. 128(2), 475–479 (1987)

    Article  Google Scholar 

  37. Yang J., Yang J.S.: An Introduction to the Theory of Piezoelectricity. Springer, New York (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicuşor Costea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrei, I., Costea, N. & Matei, A. Antiplane shear deformation of piezoelectric bodies in contact with a conductive support. J Glob Optim 56, 103–119 (2013). https://doi.org/10.1007/s10898-011-9815-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-011-9815-x

Keywords

Mathematics Subject Classification (2000)

Navigation