Skip to main content
Log in

A hybrid global optimization algorithm for non-linear least squares regression

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

A hybrid global optimization algorithm is proposed aimed at the class of objective functions with properties typical of the problems of non-linear least squares regression. Three components of hybridization are considered: simplicial partition of the feasible region, indicating and excluding vicinities of the main local minimizers from global search, and computing the indicated local minima by means of an efficient local descent algorithm. The performance of the algorithm is tested using a collection of non-linear least squares problems evaluated by other authors as difficult global optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bjórck A.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)

    Book  Google Scholar 

  2. Demidenko E.: Criteria for global minimum of sum of squares in nonlinear regression. Comput. Stat. Data Anal. 51(3), 1739–1753 (2006)

    Article  Google Scholar 

  3. Dorsey R.E., Mayer W.J.: Genetic algorithms for estimation problems with multiple optima, nondifferentiability, and other irregular features. J. Bus. Econ. Stat. 13(1), 53–66 (1995)

    Google Scholar 

  4. Gasimov R.: Augmented lagrangian duality and nondifferentiable optimization methods in nonconvex programming. J. Glob. Optim. 24, 187–203 (2002)

    Article  Google Scholar 

  5. Goffe W., Ferrier G., Rogers J.: Global optimization of statistical functions with simulated annealing. J. Econ. 60, 65–99 (1994)

    Google Scholar 

  6. Griffits J.D., Hunt J.G.: Vehicle headways in urban areas. Traffic Eng. Control 32, 458–462 (1991)

    Google Scholar 

  7. Hansen E.R.: Global Optimization Using Interval Analysis. Marcel Dekker, New York (1992)

    Google Scholar 

  8. Horst R., Pardalos P., Thoai N.: Introduction to Global Optimization. Kluwer, New York (1995)

    Google Scholar 

  9. Křivý I., Tvrdík J., Krepec R.: Stochastic algorithms in nonlinear regression. Comput. Stat. Data Anal. 33, 277–290 (2000)

    Article  Google Scholar 

  10. Křivý I., Tvrdík J., Misik L.: Adaptive population-based search: application to estimation of nonlinear regression parameters. Comput. Stat. Data Anal. 52(2), 713–724 (2007)

    Article  Google Scholar 

  11. Mathar R., Žilinskas A.: A class of test functions for global optimization. J. Glob. Optim. 5, 195–199 (1994)

    Article  Google Scholar 

  12. Mishra, S.: Performance of differential evolution method in least squares fitting of some typical nonlinear curves. http://mpra.ub.uni-muenchen.de/4656/

  13. Nelles O.: Nonlinear System Identification From Classical Approaches to Neural Networks and Fuzzy Models. Springer, New York (2001)

    Google Scholar 

  14. Paulavičius R., Žilinskas J., Grothey A.: Investigation of selection strategies in branch and bound algorithm with simplicial partitions and combination of Lipschitz bounds. Optim. Lett. 4(2), 173–183 (2010)

    Article  Google Scholar 

  15. Pinter J.: Global Optimization in Action, Continuous and Lipshitz Optimization: Algorithms, Implementations and Applications. Kluwer, New York (1996)

    Google Scholar 

  16. Schittkowski K.: Data Fitting in Dynamical Systems. Kluwer, New York (2002)

    Book  Google Scholar 

  17. Sergeyev Y.: An information global optimization algorithm with local tuning. SIAM J. Optim. 5(4), 858–870 (1995)

    Article  Google Scholar 

  18. Sergeyev Y.: Efficient partitions of n-dimensional intervals in the framework of diagonal algorithms. J. Optim. Theory Appl. 124, 503–510 (2005)

    Article  Google Scholar 

  19. Sergeyev Y., Kvasov D.: Global search based on efficient diagonal partitions and a set of Lipschitz costants. SIAM J. Optim. 16, 910–937 (2006)

    Article  Google Scholar 

  20. Sergeyev Y., Pugliese P., Famularo D.: Index information algorithm with local tuning for solving multidimensional global optimization problems with multiextremal constraints. Math. Program. 96(3), 489–512 (2003)

    Article  Google Scholar 

  21. Strongin R., Sergeyev Y.: Global Optimization with Non-convex Constraints: Sequential and Parallel Algorithms. Kluwer, New York (2000)

    Google Scholar 

  22. Törn A., Žilinskas A.: Global optimization. Lect. Notes Comput. Sci. 350, 1–255 (1989)

    Article  Google Scholar 

  23. Tvrdík, J.: Global optimization, evolutionary algorithms and their application to computational statistics. http://albert.osu.cz/tvrdik/down/global_optimization.html

  24. Velzquez L., Phillips G.N., Tapia R.A., Zhang Y.: Selective search for global optimization of zero or small residual least-squares problems: a numerical study. Comput. Optim. Appl. 20(3), 299–315 (1989)

    Article  Google Scholar 

  25. Žilinskas A.: Optimization of one-dimensional multimodal functions, Algorithm 133. J. R. Stat. Soc. Ser. C 23, 367–385 (1978)

    Google Scholar 

  26. Žilinskas A., Baronas D.: Optimization-based evaluation of concentrations in modeling the biosensor-aided measurement. Informatica 22(4), 589–600 (2011)

    Google Scholar 

  27. Žilinskas A., Žilinskas J.: Global optimization based on a statistical model and simplicial partitioning. Comput. Math. Appl. 44(7), 957–967 (2002). doi:10.1016/S0898-1221(02)00206-7

    Article  Google Scholar 

  28. Žilinskas A., Žilinskas J.: Interval arithmetic based optimization in nonlinear regression. Informatica 21(1), 149–158 (2010)

    Google Scholar 

  29. Žilinskas A., Žilinskas J.: P-algorithm based on a simplicial statistical model of multimodal functions. TOP 18(2), 396–412 (2010)

    Article  Google Scholar 

  30. Žilinskas J.: Branch and bound with simplicial partitions for global optimization. Math. Model. Anal. 13(1), 145–159 (2008). doi:10.3846/1392-6292.2008.13.145-159

    Article  Google Scholar 

  31. Žilinskas J., Bogle I.D.L.: Balanced random interval arithmetic in market model estimation. Eur. J. Oper. Res. 175(3), 1367–1378 (2006). doi:10.1016/j.ejor.2005.02.013

    Article  Google Scholar 

  32. Zhou W., Chen X.: Global convergence of a new hybrid gauss-newton structured BFGS method for nonlinear least squares problems. SIAM J. Optim. 20(5), 2422–2441 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antanas Žilinskas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Žilinskas, A., Žilinskas, J. A hybrid global optimization algorithm for non-linear least squares regression. J Glob Optim 56, 265–277 (2013). https://doi.org/10.1007/s10898-011-9840-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-011-9840-9

Keywords

Navigation