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Abstract We consider semidefinite, copositive, and more general, set-semidefinite pro-
gramming relaxations of general nonconvex quadratic problems. For the semidefinite case
a comparison between the feasible set of the original program and the feasible set of the
relaxation has been given by Kojima and Tunçel (SIAM J Optim 10(3):750–778, 2000). In
this paper the comparison is presented for set-positive relaxations which contain copositive
relaxations as a special case.
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1 Introduction

A constraint xi ∈ {0, 1} can equivalently be written as a quadratic constraint x2
i − xi = 0

(or −x2
i + xi ≤ 0, 0 ≤ xi ≤ 1). By using this relation a standard lifting procedure leads

to the well-known semidefinite (SDP) and copositive (COP) programming relaxations for
programs with 0-1 constraints or with general quadratic constraints. So, our original problem
is the global minimization problem for programs (QP) with general (nonconvex) objective
and constraints. In this note we wish to analyse how sharp SDP and COP relaxations of
such programs (QP) are. For the SDP relaxation this has been answered by [12]. In this note
we give the corresponding result for the COP relaxations of QP and more generally for
K -semidefinite (K-SD) relaxations. The results obtained are somewhat negative. They
roughly speaking say that without adding extra restrictions into the relaxation we cannot
expect the COP or K-SD relaxation of (nonconvex) quadratic programs to be sharp.
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To obtain sharper relaxations one has to consider additional restrictions, e.g., by adding
new (quadratic) constraints which are redundant in the original QP. Recent research has
revealed that for several special classes of 0–1 programs such a sharpening leads to exact
COP representations (see e.g., [2–6,9,10,13–16]). The results in [6] have been extended to
K-SD programs by [8]. In [7] also the exactness of an (extended) K-SD relaxation has been
shown for a special class of (nonconvex) quadratic programs.

Future research should show which other classes of (non-convex) quadratic programs
allow similar sharp COP (or K-SD) relaxations. Note, that exact K-SD relaxations of
NP-hard problems evidently are NP-hard. However the K-SD relaxations are convex prob-
lems and one may hope that this extra structure leads to new insight and better algorithms
for solving hard (non-convex) problems.

2 Notation and known results

Let in the following, Sn denote the set of symmetric (real-valued) n ×n-matrices. For a given
closed cone K ⊂ R

n we define the set Cn(K ) of K-semidefinite n × n-matrices and its dual
cone C∗

n (K ) of K-positive n × n-matrices (see Appendix, Lemma 2 for a proof of duality).

Cn(K ) =
{

A ∈ Sn | zT Az ≥ 0 ∀z ∈ K
}

, C∗
n (K ) =

⎧⎨
⎩Y =

∑
j

y j z j z
T
j | y j ≥ 0, z j ∈ K

⎫⎬
⎭ .

For K = R
n we obtain the (self-dual) cone S+

n of positive semidefinite matrices and for
K = R

n+ the cones of copositive respectively completely positive matrices.
We consider quadratic problems of the form:

Q P0 : min cT
0 x s.t. q j (x) ≤ 0, j ∈ J

with also: x ∈ K in K-SD case

with quadratic functions q j (x) = γ j +2cT
j x + xT C j x , C j ∈ Sn, j ∈ J , and J , a finite index

set. By introducing the inner product A•B = ∑
i j ai j bi j for A = (ai j ), B = (bi j ) ∈ Sn , we

can write q j (x) = γ j + 2cT
j x + xT C j x in the form

q j (x) = Q j•
(

1 xT

x xxT

)
where Q j =

(
γ j cT

j
c j C j

)
.

Note that the relation X = xxT is equivalent to

(
1 xT

x X

)
=

(
1
x

)(
1
x

)T

. In this setting

the original program Q P0 takes the equivalent lifted form:

Q P : min cT
0 x s.t. Q j•

(
1 xT

x X

)
≤ 0, j ∈ J

(
1 xT

x X

)
=

(
1
x

) (
1
x

)T

with also: x ∈ K in K-SD case

By replacing the (nonconvex) relation

(
1 xT

x X

)
=

(
1
x

) (
1
x

)T

by the SDP relaxation,
(

1 xT

x X

)
∈ S+

n+1, or the K-SD relaxation,

(
1 xT

x X

)
∈ C∗

n+1(R+ × K ), we are led to the

relaxations of Q P:
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SDP: min cT
0 x s.t. Q j•

(
1 xT

x X

)
≤ 0, j ∈ J, and

(
1 xT

x X

)
∈ S+

n+1

K-SD: min cT
0 x s.t. Q j•

(
1 xT

x X

)
≤ 0, j ∈ J, and

(
1 xT

x X

)
∈ C∗

n+1(R+ × K )

In case of a K-SD relaxation of QP we always tacitly assume that the original program
Q P0 and thus Q P contains the constraint x ∈ K (explicitly or implicitly). For optimality
conditions and more details on K-SD programs and their dual we refer to [11]. We introduce
some notation. Let S denote the set of quadratic functions defining the feasible set of QP0

and QP:

S = {Q j | j ∈ J } ≡ {q j (x) | j ∈ J } .

Recall that we identify a quadratic function q(x) = γ + 2cT x + xT Cx with the coefficient

matrix Q =
(

γ cT

c C

)
. The sets FQP0 , FQP = FQP(S), FSDP(S) and FK-SD(S) are the fea-

sible sets of QP0, QP, the SDP- and the K-SD relaxation, respectively. By FQP
x (S), FSDP

x (S)

and FK-SD
x (S) we denote the projections onto the x-space R

n . Notice that all these feasible
sets defined by a set S of quadratic inequalities coincide with the feasible sets given by the
conic combinations cone (S), i.e., FQP

x (S) = FQP
x ( cone (S)) etc. From these definitions

we find

F Q P0 = F Q P
x (S) = F Q P

x ( cone (S)) ⊂ conv F Q P
x (S) .

Since the objective of Q P is linear, the minimum value on F Q P
x (S) and on conv F Q P

x (S)

coincide. By relaxation properties we have:

conv F Q P
x (S) ⊂ FSDP

x (S), conv F Q P
x (S) ⊂ FK-SD

x (S)

and also FK-SD
x (S) ⊂ FSDP

x (S) in case Q P contains the constraint x ∈ K .
We wish to know how sharp these inclusions are. Defining the set of convex quadratic

functions Q+ :=
{

Q =
(

γ cT

c C

)
| C ∈ S+

n

}
, for the SDP relaxation this question has been

answered by Kojima and Tunçel in [12].

Theorem 1 ([12]) conv [F Q P
x (S)] ⊂ F Q P

x (cone (S) ∩ Q+) = F SD P
x (S).

We emphasize that in general the set F Q P
x (cone (S) ∩ Q+) is strictly smaller than the set

F Q P
x (S ∩ Q+).

Remark 1 In [12], based on the theorem above a conceptual algorithm is analysed which
generates a sequence of sets F SD P

x (Sk) converging to the set conv [F Q P
x (S)]. Starting

with S0 = S, in each step, by solving an SDP, a “cutting” convex, quadratic constraint

Qk •
(

1 xT

x X

)
= γ k + 2(ck)T x + xT Ck x ≤ 0 with Qk ∈ Q+ is constructed in such a

way that for Sk+1 := Sk ∪ {Qk} we still have conv [F Q P
x (S)] ⊂ F SD P

x (Sk+1) but the set
F SD P

x (Sk+1) is strictly smaller than F SD P
x (Sk). Note that in the context of our generalization

such a procedure seems no more useful. In the case of K = R
n+ for example, in each step,

instead of an SDP, we would have to solve a (NP-hard) “completely positive program”.
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3 K-SD relaxation

In this section we are interested in a comparison between the feasible set FQP(S) of the
original program QP and the feasible set FK-SD(S) of the K-SD relaxation. The set Q+ in the
SDP relaxation has now to be replaced by the set of “K-semidefinite quadratic functions”:

QK-SD :=
{

Q =
(

γ cT

c C

)
| C ∈ Cn(K )

}
.

The following (Schur complement lemma) is well-known: For X ∈ Sn, x ∈ R
n it holds,

(
1 xT

x X

)
∈ S+

n+1 ⇔ X − xxT ∈ S+
n .

Unfortunately (since C∗
n (K ) is not self-dual) this is no more true for C∗

n (K ). We only have

Lemma 1 Let X ∈ Sn, x ∈ K be such that X − xxT ∈ C∗
n (K ). Then,

(
1 xT

x X

)
∈ C∗

n+1

(R+ × K ) .

Proof By definition, the matrix X − xxT ∈ C∗
n (K ) can be written in the form

X − xxT =
k∑

j=1

λ j z j z
T
j with λ j ≥ 0, z j ∈ K , j = 1, . . . , k.

So, the decomposition

(
1 xT

x X

)
=

(
1 xT

x xxT

)
+

(
0 0T

0 X −xxT

)
=

(
1
x

)(
1
x

)T

+
k∑

j=1

λ j

(
0
z j

) (
0
z j

)T

holds, and recalling x ∈ K , this matrix is an element of C∗
n+1(R+ × K ). �

The converse of Lemma 1 is not true in general (if K �= R
n). As an example we take the

copositive case, i.e., K = R
n+, and chose X =

(
2 0
0 2

)
, x = (1, 1)T , n = 2. Then

(
1 xT

x X

)
= 1

2

⎛
⎝

1
0
2

⎞
⎠
⎛
⎝

1
0
2

⎞
⎠

T

+ 1

2

⎛
⎝

1
2
0

⎞
⎠
⎛
⎝

1
2
0

⎞
⎠

T

∈ C∗
n+1(R+ × R

n+) but X −xxT

=
(

1 − 1
−1 1

)
/∈ C∗

n (Rn+).

We now are able to extend (partially) the result of Theorem 1 to the K-SD relaxation of QP.
Let us first present an instructive example. Let FQP

x ({Q}) be the feasible set defined by only

one inequality q(x) = Q•
(

1 xT

x xxT

)
≤ 0, Q =

(
γ cT

c C

)
( and x ∈ K ) then:

if C /∈ Cn(K ) (i.e., q is not “K-semidefinite”) ⇒ FK-SD
x ({Q}) = K .

To see this, note that for C /∈ Cn(K ) there exists a vector d ∈ K such that dT Cd < 0. So,
for any fixed x ∈ K with X := λddT + xxT it holds

(
1 xT

x X

)
•Q = γ + 2cT x + λdT Cd + xT Cx < 0 for 0 < λ, λ large .
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Since X − xxT = λddT ∈ C∗
n (K ), Lemma 1 implies x ∈ FK-SD

x ({Q}). So, the K-SD
relaxation does not provide any restriction apart from x ∈ K . Generally, the following holds.

Theorem 2 conv [FQP
x (S)] ⊂ conv [FQP

x ( cone (S) ∩ QK-SD)] ⊂ FK-SD
x (S) .

Proof The first inclusion holds trivially. To prove the second, we begin by showing

Q∗
K-SD =

{(
0 0T

0 B

)
| B ∈ C∗

n (K )

}
. (1)

In fact, Z =
(

β bT

b B

)
∈ Q∗

K-SD holds if and only if for all Q =
(

γ cT

c C

)
∈ QK-SD, i.e.,

for all γ ∈ R, c ∈ R
n, C ∈ Cn(K ) we have

Z•Q = βγ + 2cT b + C•B ≥ 0 .

This obviously implies β = 0, b = 0 and B ∈ C∗
n (K ). On the other hand for any Z =(

0 0T

0 B

)
, B ∈ C∗

n (K ) it follows Z•Q = B•C ≥ 0 since C ∈ Cn(K ). Now, to compare the

feasible sets we can write

FK-SD
x (S) =

{
x | ∃X such that

(
1 xT

x X

)
∈ −S∗ ∩ C∗

n+1(R+ × K )

}

and by using the relations ( cone (S))∗ = S∗, (K1 ∩ K2)
∗ = K ∗

1 + K ∗
2 (for closed convex

cones) and (1) we obtain

FQP
x ( cone (S) ∩ QK-SD) =

{
x |

(
1 xT

x xxT

)
•Q ≤ 0 ∀Q ∈ cone (S) ∩ QK-SD

}

=
{

x |
(

1 xT

x xxT

)
∈ −( cone (S) ∩ QK-SD)∗

}

=
{

x |
(

1 xT

x xxT

)
∈ −(S∗ + Q∗

K-SD)

}

=
{

x |
(

1 xT

x xxT

)
∈ −S∗ −

(
0 0T

0 C∗
n (K )

)}

Consequently, x ∈ FQP
x ( cone (S) ∩ QK-SD) holds if and only if with some H ∈ C∗

n (K )

we have

(
1 xT

x xxT

)
+

(
0 0T

0 H

)
∈ −S∗. But since xxT + H − xxT ∈ C∗

n (K ), x ∈ K , by

Lemma 1 it follows
(

1 xT

x H + xxT

)
∈ −S∗ ∩ C∗

n+1(R+ × K ).

So (with X = H + xxT ), the vector x is contained in the set FK-SD
x (S), and since this set is

convex the second inclusion follows.

To see the difference with the SDP case (in Theorem 1) let us chose x ∈ FK-SD
x (S), i.e.,

with some X ∈ Sn the relation
(

1 xT

x X

)
•Q ≤ 0 for all Q =

(
γ cT

c C

)
∈ S
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Fig. 1 a Sets for ρ = 0. b Sets for ρ = 0.2

must hold. Then we also obtain(
1 xT

x xxT

)
•Q =

(
1 xT

x X

)
•Q +

(
0 0T

0 xxT − X

)
•Q ≤ C•(xxT − X) .

Unfortunately, the converse of Lemma 1 is not generally true. So here, even with Q ∈
cone (S) ∩ Q K-SD, i.e., with C ∈ Cn(K ), the relation C•(xxT − X) ≤ 0 need not hold

and x need not satisfy the corresponding original constraint C•xxT + 2cT x + γ ≤ 0. We
give some examples to illustrate the statement of Theorem 2 and to show that in general (for
K �= R

n) the situation is more complicated than in the SDP case (for K = R
n).

Example 1 We chose K = R
n+, i.e., the completely positive relaxation. Let us take the special

case S ⊂ Q K-SD. In contrast to the SDP relaxation the set FQP
x (S) need not be convex. So,

an inclusion FK-SD
x (S) ⊂ FQP

x (S) is not true in general. Even FK-SD
x (S) ⊂ conv [FQP

x (S)]
need not to hold as we shall show. Theorem 2 only assures the converse conv [FQP

x (S)] ⊂
FK-SD

x (S). Even in the case S = {Q} with Q =
(

γ cT

c C

)
∈ Q K-SD the latter inclusion can

be strict. Take for example

C =
( 1

2 1
1 1

2

)
, c = (−2.5, −2 + ρ), γ = 8.

The feasibility conditions read:

for FQP
x ({Q}) : 1

2
(x2

1 + x2
2 ) + 2x1x2 − 5x1 − (2 − ρ)x2 + 8 ≤ 0, and x ≥ 0

for FK-SD
x ({Q}) : 1

2
(X11 + X22) + 2X12 − 5x1 − (2 − ρ)x2 + 8 ≤ 0,

(
1 xT

x X

)
∈C∗

3 (R3+)

We have computed the feasible sets. For ρ = 0 the set FQP
x ({Q}) consists of the point

(0, 4) together with the convex (black) set (see Fig. 1a). The set FK-SD
x ({Q}) equals the

(grey) triangle conv [FQP
x ({Q})]. For ρ > 0 (small) the point (0, 4) is no more feasible for

FQP
x ({Q}) (black) and the (convex) set FK-SD

x ({Q}) (grey) (depending continuously on ρ) is
as sketched in Fig. 1b (for ρ = 0.2). Obviously in this example ρ = 0.2 we have

FQP
x ({Q}) = conv [FQP

x ({Q})] � FK-SD
x ({Q}) .

For the special case S ∩ Q K-SD = ∅ we have:

conv [FQP
x ( cone (S) ∩ Q K-SD] ⊂ FK-SD

x (S) ⊂ conv [FQP
x (S ∩ Q K-SD] = R

n+ .
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The equality on the right-hand side follows by the assumption S ∩ Q K-SD = ∅, so that the
feasibility condition for FQP

x (S ∩ Q K-SD) reduces to x ∈ K = R
n+. It is not difficult to

construct examples where both inclusions are strict.

Acknowledgment We would like to thank the referee’s for their valuable comments.

Appendix

For completeness we provide the explicit description of C∗
n (K ) and a generalization of a

Schur complement result.

Lemma 2 For any closed set K ⊂ R
n the dual of Cn(K ) = {A ∈ Sn | zT Az ≥ 0 ∀z ∈ K }

is: C∗
n (K ) = {Y = ∑

j y j z j zT
j | y j ≥ 0, z j ∈ K } .

Proof We show that with C := {Y = ∑
j y j z j zT

j | y j ≥ 0, z j ∈ K } we have Cn(K ) = C∗.
By using C∗∗ = C (for closed convex cones C) we find the identity claimed in the lemma.
”⊂”: If A ∈ Cn(K ) then for all Y ∈ C we obviously have A•Y = ∑

j y j A•z j zT
j ≥ 0, i.e.,

A ∈ C∗.
”⊃”: Suppose A /∈ Cn(K ), i.e., zT Az < 0 for some z ∈ K . Then for Y = zzT ∈ C it follows
Y•A < 0, so that A /∈ C∗. �
Lemma 3 [generalized Schur complement lemma, see e.g., [1] for the case K = R

n+ ] It
holds(

γ cT

c C

)
∈ Cn+1(R+ × K ) ⇔ γ ≥ 0, C ∈ Cn(K ) and

xT (γ C − ccT )x ≥ 0 ∀x ∈ K with cT x ≤ 0 .

Proof The left-hand side means: (α x)T
(

γ cT

c C

) (
α

x

)
= γα2 + 2αcT x + xT Cx ≥

0 ∀α ≥ 0, x ∈ K . “⇒”: The above inequality implies γ ≥ 0, xT Cx ≥ 0∀x ∈ K and in
the case cT x ≥ 0 we are done. In the case cT x ≤ 0, γ = 0 we also obtain cT x = 0. For the
remaining case cT x ≤ 0, γ > 0 we write

0 ≤ γα2 + 2αcT x + xT Cx = 1

γ
(γ α + cT x)2 + 1

γ
xT (γ C − ccT )x .

Then the assumption xT (γ C −ccT )x < 0 for some x ∈ K , cT x ≤ 0 leads to a contradiction
(with a choice α = −cT x ≥ 0). The direction “⇐” is easy. �
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