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Abstract

We study optimal solutions to an abstract optimization problem for measures, which
is a generalization of classical variational problems in information theory and statistical
physics. In the classical problems, information and relative entropy are defined using
the Kullback-Leibler divergence, and for this reason optimal measures belong to a one-
parameter exponential family. Measures within such a family have the property of mutual
absolute continuity. Here we show that this property characterizes other families of opti-
mal positive measures if a functional representing information has a strictly convex dual.
Mutual absolute continuity of optimal probability measures allows us to strictly separate
deterministic and non-deterministic Markov transition kernels, which play an important
role in theories of decisions, estimation, control, communication and computation. We
show that deterministic transitions are strictly sub-optimal, unless information resource
with a strictly convex dual is unconstrained. For illustration, we construct an example
where, unlike non-deterministic, any deterministic kernel either has negatively infinite
expected utility (unbounded expected error) or communicates infinite information.

1 Introduction

This work was motivated by the fact that probability measures within an exponential family,
which are solutions to variational problems of informationtheory and statistical physics, are
mutually absolutely continuous. Thus, we begin by clarifying and discussing this property in
the simplest setting. LetΩ be a finite set, and letx : Ω → R be a real function. Consider the
family {yβ}x of real functionsyβ : Ω → R, indexed byβ ≥ 0:

yβ (ω) = eβx(ω) y0(ω) , y0(ω)≥ 0 (1)

The elements of{yβ}x represent one-parameter exponential measuresyβ (E) = ∑ω∈E yβ (ω)
on Ω, and normalized elementsPβ (ω) = yβ (ω)/yβ (Ω) are the corresponding exponential
probability measures. Of course, exponential measures canbe defined on an infinite set, for
example, as elements of the Banach spaceY := M (Ω,R,‖ · ‖1) of real Radon measures on
a locally compact spaceΩ [11]. In this case,x andex are elements of the normed algebra
X :=Cc(Ω,R,‖ · ‖∞) of continuous functions with compact support inΩ. As will be clarified
later,Y can be considered not only as the dual ofX, but also as a module over algebraX, which
explains the definition of an exponential family (1) as multiplication of y0 ∈ Y by elements
of X. Furthermore, for somey0, exponential measures are finite even if functionx is not
continuous, has non-compact support and unbounded. A similar construction can be made in
the case whenX is a non-commutative∗-algebra, such as the algebra of compact Hermitian
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operators on a separable Hilbert space used in quantum probability theory. However, quantum
exponential measures can be defined in different ways, such asyβ := exp(βx+ lny0) or yβ :=

y1/2
0 exp(βx)y1/2

0 , which are not equivalent.
One property that characterizes all these exponential measures is that elements within a

family are mutually absolutely continuous. We remind that measurey is absolutely continuous
with respect to measurez, if z(E) = 0 impliesy(E) = 0 for all E in the σ -ring of subsets of
Ω. Mutual absolute continuity is the case when the implication holds in both directions. It
is easy to see from equation (1) that exponential measures within one family have exactly the
same support and are mutually absolutely continuous. This property is particularly important,
when measures are considered on a composite system, such as adirect product of two sets
Ω = A×B. Normalized measures on suchΩ are joint probability measuresP(A×B) uniquely
defining conditional probabilitiesP(A | B) (i.e. Markov transition kernels). Observe now that
if P(A×B) andP(A)P(B) (product of marginals) are mutually absolutely continuous, then
P(a | b)> 0 for all a∈A such thatP(a)> 0. Conditional probability with this property is non-
deterministic, because several elementsa∈ A can be in the ‘image’ ofb∈ B. Clearly, all joint
probability measures within an exponential family define such non-deterministic transition
kernels.

Another, perhaps the most important, property of exponential families is that they are, in
a certain sense, optimal. It is well-known in mathematical statistics that the lower bound for
the variance of the unbiased estimator of an unknown parameter, defined by the Rao-Cramer
inequality, is attained if and only if the probability distribution is a member of an exponential
family [13, 31]. In statistical physics, it is known that exponential distributions (i.e. Boltzmann
or Gibbs distributions) maximize entropy of a thermodynamical system under a constraint on
energy [17]. In information theory, exponential transition kernels are known to maximize a
channel capacity [33, 34, 35], and they are used in some randomized optimization techniques
(e.g. [20]) as well as various machine learning algorithms [39]. A one-parameter exponential
family has been studied in information geometry, and it was shown to be a Banach space
with an Orlicz norm [30]. Similar constructions have been considered in quantum probability
[10, 36].

Optimality of exponential families of measures on one hand and their mutual absolute
continuity on the other is a particularly interesting combination, because it seems that for the
first time we have an optimality criterion, with respect to which all deterministic transitions
between elements of a composite system are strictly sub-optimal. This appears to have impor-
tance not only for information and communication theories,but also for theories of computa-
tional and algorithmic complexity, because Markov transition kernels can be used to represent
various input-output systems, including computational systems and algorithms. Thus, under-
standing the relation between mutual absolute continuity within some families of measures
and their optimality was the main motivation for this work.

It is well-known, and will be reminded later in this paper, that a one-parameter expo-
nential family of probability measures is the solution to a variational problem of minimizing
Kullback-Leibler (KL) divergence [23] of one probability measure from another subject to a
constraint on the expected value. In fact, the logarithmic function, which appears in the defini-
tion of the KL-divergence, is precisely the reason why the exponential function appears in the
solutions. However, mutual absolute continuity, which forcomposite systems implies the non-
deterministic property of conditional probabilities, is not exclusive to families of exponential
measures. Indeed, geometrically, this property simply means that measures are in the inte-
rior of the same positive cone, defined by their common support. Thus, our method is based
on a generalization of the above mentioned variational problem by relaxing the definition of
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information and then employing geometric analysis of its solutions.
In the next section, we introduce the notation, define the generalized optimization problem

and recall some basic relevant facts. An abstract information resource will be represented by
a closed functionalF : Y → R∪{∞}, defined on the spaceY of measures, and such that its
valuesF(y) can be associated with valuesI(y,y0) of some information distance (e.g. the KL-
divergence). In Section 3 we establish several properties of optimal solutions. In particular,
we prove in Proposition 3 that the optimal value function is order isomorphism putting infor-
mation in duality with expected utility of an optimal system. These results are then used in
Section 4 to prove a theorem relating mutual absolute continuity of optimal positive measures
to strict convexity of functionalF∗, the Legendre-Fenchel dual ofF representing information
resource. We show that strict convexity ofF∗ is necessary to separate different variational
problems by optimal measures, and for this reason it appearsto be a natural minimal require-
ment on information, generalizing the additivity axiom. Because proof of mutual absolute
continuity does not depend on commutativity of algebraX, pre-dual ofY, these results apply
to a general, non-commutative setting used in quantum probability and information theories.
In Section 5, we discuss optimal Markov transition kernels (conditional probabilities) in the
classical (commutative) setting, which is done for simplicity reasons. We shall recall several
facts about transition kernels, information capacity of memoryless channels they represent and
the corresponding variational problems. The main result ofthis section is a theorem separat-
ing deterministic and non-deterministic kernels. We show how mutual absolute continuity of
optimal Markov transition kernels implies that optimal transitions are non-deterministic; de-
terministic transitions are strictly suboptimal if information, understood broadly here, is con-
strained. This result will be illustrated by an example, where any deterministic kernel either
has a negatively infinite expected utility (unbounded expected error) or communicates infinite
information; a non-deterministic kernel, on the other hand, can have both finite expected util-
ity and finite information. In the end of the section we shall consider applications of this work
to theories of algorithms and computational complexity. Weshall discuss how deterministic
and non-deterministic algorithms can be represented by Markov transition kernels between the
space of inputs and the space of output sequences, and how constraints on the expected utility
or complexity of the algorithms are related to variational problems studied in this work. The
paper concludes by a summary and discussion of the results.

2 Preliminaries

This work is based on a generalization of classical variational problems of information theory
and statistical physics, which can be formulated as follows. Let(Ω,R) be a measurable set and
letP(Ω) be the set of all Radon probability measures onΩ. We denote byEp{x} the expected
value of random variablex : Ω → R with respect top ∈ P(Ω). An information distance is
a function I : P ×P → R∪{∞} that is closed (lower semicontinuous) in each argument.
An important example is the Kullback-Leibler divergenceIKL(p,q) := Ep{ln(p/q)} [23]. We
remind thatEp{x} is linear inp, andIKL(p,q) is convex. The variational problem is formulated
as follows:

maximize (minimize) Ep{x} subject to Ep{ln(p/q)} ≤ λ (2)

where optimization is over probability measuresp∈ P. This problem can be considered as
linear programming with an infinite number of linear constraints, and it can be formulated as
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the following convex programming problem:

minimize Ep{ln(p/q)} subject to Ep{x} ≥ υ
(

Ep{x} ≤ υ
)

(3)

Figure 1 illustrates these variational problems on a 2-simplex of probability measures over a
set of three elements with the uniform distributionq(ω) = 1/3 as the reference measure.

q

pβ

Ep{x} ≥ υ

Ep{ln(p/q)} ≤ λ

Figure 1: 2-SimplexP of probability measures over setΩ = {ω1,ω2,ω3} with level sets of
expected utilityEp{x} = υ and the Kullback-Leibler divergenceEp{ln(p/q)} = λ . Proba-
bility measurepβ is the solution to variational problems (2) and (3). The family {pβ}x of
solutions, shown by dashed curve, belongs to the interior ofP.

In optimization and information theories,Ep{x} represents expected utility to be maxi-
mized or expected cost to be minimized. In physics, it represents internal energy. Information
distanceIKL(p,q) is also called relative entropy, and the inequalityIKL(p,q)≤ λ represents an
information constraint. Depending on the domain of definition of the probability measures,
the information constraint may have different meanings, such as a lower bound on entropy (i.e.
irreducible uncertainty), partial observability of a random variable, a constraint on the amount
of statistical information (i.e. a number of independent tests, questions or bits of information),
on communication capacity of a channel, on memory of a computational device and so on [35].
These variational problems can also be formulated in quantum physics, wherex is an element
of a non-commutative algebra of observables, andp, q are quantum probabilities (states).

As is well-known, solutions to problems (2) and (3) are elements of an exponential family
of probability distributions. Before we define an appropriate generalization of these problems,
we remind some axiomatic principles underpinning the choice of functionals.

2.1 Axioms behind the choice of functionals

The choice of linear objective functionalEp{x} has axiomatic foundation in game theory [27],
whereΩ is equipped with total pre-order., called thepreference relation, and functionx :
Ω→R is itsutility representation: ω1 . ω2 if and only if x(ω1)≤ x(ω2). Because the quotient
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setΩ/∼ of a pre-ordered set with a utility function is isomorphic toa subset of the real line,
it is separable and metrizable byρ([a], [b]) = |x(a)− x(b)|, and therefore every probability
measure on the completion ofΩ/∼ is Radon (e.g. by Ulam’s theorem for probability measures
on Polish spaces).

The setP(Ω) of all classical probability measures onΩ is a simplex with Dirac measures
δω comprising the set extP of its extreme points [29]. The question that has been discussed
extensively is: How to extend pre-order., which was defined onΩ ≡ extP, to the whole
P? It was shown in [27] that linear (or affine) functionalEp{x} is the only functional that
makes the extended pre-order(P,.) compatible with the vector space structure ofY ⊃ P

and Archimedian. We remind that for the corresponding pre-order (Y,.) ⊃ (P,.) this is
defined by the axioms:

1. q. p impliesq+ r . p+ r andαq. α p for all r ∈Y andα ≥ 0.

2. nq. p for all n∈ N impliesq. 0.

In this paper we shall follow this formalism assuming that the objective functional is linear.
We note that non-linearity may arise in certain dynamical systems, wherex may change with
time, but this will not be considered in this work, because our focus is on optimization prob-
lems with respect to some fixed preference relation. or utility x on Ω. A non-commutative
(quantum) analogue of a utility function was given in [7] by aHermitian operatorx on a sepa-
rable Hilbert space (an observable) with its real spectrum representing a total pre-order on its
eigen states. The principal difference with the classical theory is the existence of incompatible
(non-commutative) utility operators.

As mentioned earlier, information constraints may be related to different phenomena (e.g.
uncertainty, observability, statistical data, communication capacity, memory, etc). However,
in information theory they often have been represented by functionals, such as relative entropy
or Shannon information, which are defined using the Kullback-Leibler divergenceIKL. Its
choice is also based on a number of axioms [14, 19, 33], such asadditivity: IKL(p1p2,q1q2) =
IKL(p1,q1)+ IKL(p2,q2). In fact, this axiom is precisely the reason why the logarithm function
appears in its definition (i.e. as homomorphism between multiplicative and additive groups of
R). There is, however, an abundance of other information distances and metrics, such as the
Hellinger distance, total variation and the Fisher metrics. Although they often fail to have
a proper statistical interpretation [12], there has been a renewed interest in using different
information distances and contrast functions in applications to compare distributions (e.g. see
[4, 6, 26]).

For reasons outlined above, we shall generalize problems (2) and (3) by considering an
abstract information distance or resource, which will be used to define a subset of feasible
solutions. In addition, we shall not restrict the problems to normalized measures, which makes
the exposition a lot simpler. Normalization can be performed at a later stage. We now define
an appropriate algebraic structure.

2.2 Dual algebraic structures

Let X andY be complex linear spaces put in duality via bilinear form〈·, ·〉 : X×Y → C:

〈x,y〉 = 0, ∀x∈ X ⇒ y= 0, 〈x,y〉 = 0, ∀y∈Y ⇒ x= 0

We denote byX♯ the algebraic dual ofX, by X′ the continuous dual of a locally convex space
X and byX∗ the complete normed dual space of(X,‖ · ‖). The same notation applies to
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dual spaces ofY. The results will be derived using only the facts thatX andY are ordered
linear spaces in duality. These spaces, however, can have richer algebraic structures, which we
briefly outline here.

SpaceX is closed under an associative, but generally non-commutative binary operation
· : X×X → X (e.g. pointwise multiplication or matrix multiplication)and involution as a self-
inverse, antilinear map∗ : X → X reversing the multiplication order:(x∗z)∗ = z∗x. Thus,X
is a∗-algebra. The set of all Hermitian elementsx= x∗ is a real subspace ofX, and if every
x∗x has positive real spectrum, thenX is called atotal ∗-algebra, in which the spectrum of all
Hermitian elements is real. In this case, Hermitian elements x∗x form a pointed convex cone
X+, generatingX = X+−X+.

The dual spaceY is closed under the transposed involution∗ : Y →Y, defined by〈x,y∗〉=
〈x∗,y〉∗. It is ordered by a positive coneY+ := {y : 〈x∗x,y〉 ≥ 0, ∀x ∈ X}, dual of X+, and
it has order unity0 ∈ Y+ (also called a reference measure), which is a strictly positive linear
functional: 〈x∗x,y0〉 > 0 for all x 6= 0. If the pairing〈·, ·〉 has the property that for eachz∈
X there exists a transposed elementz′ ∈ Y such that〈zx,y〉 = 〈x,z′y〉, thenY ⊃ X is a left
(right) module overX with respect to the transposed left (right) actiony 7→ z′y (y 7→ yz∗′∗)
of X on Y such that(xz)′ = z′x′ and 〈x,yz∗′∗〉 = 〈x∗,z∗′y∗〉∗ = 〈z∗x∗,y∗〉∗ = 〈xz,y〉 (see [9],
Appendix). In many practical cases, the pairing〈·, ·〉 is central (or tracial), so that the left and
right transpositions act identically ony0: z∗′y0 = y0z′∗ for all z∈ X. In this case, the element
z∗′y0 = y0z′∗ ∈Y can be identified with a complex conjugation ofz∈ X.

Two primary examples of a total∗-algebraX, which are important in this work, are the
commutative algebraCc(Ω,C,‖·‖∞) of continuous functions with compact support in a locally
compact topological spaceΩ and the non-commutative algebraCc(H ,C,‖ · ‖∞) of compact
Hermitian operators on a separable Hilbert spaceH . The corresponding examples of dual
spaceY = X∗ are the Banach spaceM (Ω,C,‖ · ‖1) of complex signed Radon measures onΩ
and its non-commutative generalizationM (H ,C,‖·‖1). Note that these examples of algebra
X are generally incomplete and contain only an approximate identity. However, byX we shall
understand here an extended algebra that contains additional elements. In particular,X will
contain the unit element 1∈ X such that〈1,y〉 = ‖y‖1 if y ≥ 0 (i.e. 1∈ X coincides onY+
with the norm‖ · ‖1, which is additive onY+). Furthermore, because constraints in variational
problems (2) or (3), or their generalizations, define a proper subset of spaceY, we can consider
random variables represented by elementsx∈Y♯ that are outside of the Banach spaceY∗ (e.g.
unbounded functions or operators).

Below are three main examples of pairingX andY by a sum, an integral or trace:

〈x,y〉 := ∑
Ω

x(ω)y(ω) , 〈x,y〉 :=
∫

Ω
x(ω)dy(ω) , 〈x,y〉 := tr{xy} (4)

Although the linear functionalsx(y) = 〈x,y〉 are generally complex-valued, we shall assume,
without further mentioning, that〈·, ·〉 is evaluated on Hermitian elementsx= x∗ andy= y∗ so
that〈x,y〉 ∈R. In particular, the expected valueEp{x}= 〈x, p〉 ∈R, wherex is Hermitian and
p is positive. Thus, the expressions ‘maximize (minimize)x(y) = 〈x,y〉’ should be understood
accordingly as maximization or minimization of a real functional.

2.3 Generalized variational problems for measures

Normalized non-negative measures (i.e. probability measures) are elements of the set:

P := {y∈Y : y≥ 0, 〈1,y〉 = 1}
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This is a weakly compact convex set, and thereforeP = clcoextP by the Krein-Milman the-
orem. In the commutative case,P is a simplex, because eachp∈ P is uniquely represented
by extreme pointsδ ∈ extP [29]. In information geometryP is referred to asstatistical
manifold, and its topological properties have been studied by defining different information
distancesI : P×P →R+∪{∞} [3, 12, 30]. We can generalize this by considering informa-
tion resource as a functional, defined for all positive or Hermitian elements.

υ

υ0

υ0

υ

λ0 λ λ
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pt

im
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,υ
=

〈x
,y
〉

Constraint values,λ ≥ F(y)

x(λ ) := sup{〈x,y〉 : F(y)≤ λ}

x(λ ) := inf{〈x,y〉 : F(y)≤ λ}

Figure 2: Optimal value functionsυ = x(λ ) andυ = x(λ ). The valueλ0 = inf F corresponds
to υ ∈ [υ0,υ0]. Special valuesλ , λ of the constraintλ ≥ F(y) correspond respectively to
optimal valuesυ andυ .

Let F : Y →R∪{∞} be a closed functional, so thatF is finite at somey∈Y, and sublevel
sets{y : F(y) ≤ λ} are closed in the weak topologyσ(Y,X) for eachλ . Because−∞ is not
included in the definition of closedF, it is also lower-semicontinuous [32]. We shall assume
without further mentioning that the effective domain domF := {y : F(y)< ∞} has non-empty
algebraic interior. In addition, ifY is defined over the field of complex numbers, we shall also
assume that domF contains only Hermitian elementsy= y∗ (e.g. domF ⊆Y+).

Variational problems (2) and (3) are generalized by considering all, not necessarily posi-
tive or normalized measures, and by using any closed functional F to define an information
resource. The optimal values achieved by solutions to theseproblems are defined by the fol-
lowing optimal value functions:

x(λ ) := sup{〈x,y〉 : F(y)≤ λ} (5)

x(λ ) := inf{〈x,y〉 : F(y)≤ λ} (6)

x−1(υ) := inf{F(y) : 〈x,y〉 ≥ υ} (7)

x−1(υ) := inf{F(y) : 〈x,y〉 ≤ υ} (8)

We definex(λ ) := −∞, if λ < inf F , andx(∞) := lim x(λ ) asλ → ∞. Observe thatx(λ ) =
−(−x)(λ ) andx−1(υ) = (−x)

−1
(−υ). Thus, it is sufficient to study only the properties of

x(λ ). Figure 2 depicts schematically the optimal value functions x(λ ) andx(λ ). It is clear
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from the definition thatx(λ ) is a non-decreasing extended real function, andx(λ ) is non-
increasing. It will be shown also in the next section thatx(λ ) is concave, andx(λ ) is convex
(Proposition 3). Because sets{y : F(y)≤ λ} may be unbalanced and unbounded, the functions
may not be reflections of each other in the sense thatx(λ )−υ0 6= υ0−x(λ ) for all υ0, and one
or both functions can be empty. The definition of the optimal value functions (5)–(8) in terms
of functionalF(y) of one variable, unlike information distanceI(y,y0), allows for considering
the case when infF is not achieved at anyy0 ∈Y.

In addition toλ0 := inf F, we define two special valuesλ andλ of functionalF as follows:

x(λ ) := sup{〈x,y〉 : y∈ domF} , x(λ ) := inf{〈x,y〉 : y∈ domF} (9)

Thus, problems of maximization or minimization ofx(y) = 〈x,y〉 subject to constraintsF(y)≤
λ or F(y) ≤ λ respectively are equivalent to unconstrained problems on domF. The corre-
sponding optimal values are denotedυ = x(λ ) and υ = x(λ ), as shown on Figure 2. The
reason for defining these values is that generallyλ ≤ ∞, λ ≤ ∞ andλ 6= λ (see Figure 2).
Solutions to unconstrained problems may correspond to large, possibly infinite valuesλ or λ ,
and therefore they can be considered unfeasible. Subsets offeasible solutions will be defined
by constraintsF(y)≤ λ < λ or F(y)≤ λ < λ .

In addition, we define the following special values:

υ0 := lim
λ↓inf F

sup{〈x,y〉 : F(y)≤ λ} , υ0 := lim
λ↓inf F

inf{〈x,y〉 : F(y)≤ λ} (10)

If there exists a set∂F∗(0) ⊂ domF such that infF = F(y0) for all y0 ∈ ∂F∗(0), thenυ0 =
sup{〈x,y0〉 : y0 ∈ ∂F∗(0)} andυ0 = inf{〈x,y0〉 : y0 ∈ ∂F∗(0)}. If y0 is unique, thenυ0 = υ0;
otherwiseυ0 ≥ υ0 (see Figure 2). Elementsy0 ∈ ∂F∗(0) represent trivial solutions, because
they correspond to constraintλ0 := inf F in functionsx(λ ) andx(λ ). Constraints〈x,y〉 ≥ υ >
υ0 and〈x,y〉 ≤ υ < υ0 in the inverse functionsx−1(υ) andx−1(υ) ensure thatF(y)> λ0, and
the solutions are non-trivial.

2.4 Some facts about subdifferentials of dual convex functions

In the next section, we show that solutions to the generalized variational problems with optimal
values (5)–(8), if exist, are elements of a subdifferentialof functionalF∗, dual ofF. We remind
thatF∗ : X → R∪{∞} is the Legendre-Fenchel transform ofF:

F∗(x) := sup{〈x,y〉−F(y)}

and it is aways closed and convex (e.g. see [32, 38]). Condition F∗∗ = F impliesF is closed
and convex. Otherwise, the epigraph ofF∗∗ is a convex closure of the epigraph ofF in Y×R.
Closed and convex functionals are continuous on the (algebraic) interior of their effective
domains (e.g. see [25] or [32], Theorem 8), and they have the property

x∈ ∂F(y) ⇐⇒ ∂F∗(x) ∋ y (11)

where set∂F(y) := {x : 〈x,z− y〉 ≤ F(z)−F(y) , ∀z∈ Y} is subdifferentialof F at y, and
its elements are calledsubgradients. In particular, 0∈ ∂F(y0) implies F(y0) ≤ F(y) for all
y (i.e. infF = F(y0)). We point out that the notions of subgradient and subdifferential make
sense even ifF is not convex or finite aty, but non-empty∂F(y) impliesF(y)< ∞ andF(y) =
F∗∗(y), ∂F(y) = ∂F∗∗(y) ([32], Theorem 12).1 FunctionalF∗ is strictly convex if and only if
∂F∗(x) ∋ y is injective, so that the inverse mapping∂F(y) = {x} is single-valued.

1It is possible, however, thatF(y)< ∞, but∂F(y) =∅ (e.g. see [38], Chapter 1, Section 2.4, Example 6d).
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Recall also that subdifferential∂F∗ : X → 2Y of a convex function is an example of mono-
tone operator [18]:

〈x1−x2,y1−y2〉 ≥ 0, ∀yi ∈ ∂F∗(xi) (12)

The inequality is strict for allx1 6= x2 if and only if ∂F∗(x) ∋ y is injective (i.e.∂F∗ is strictly
monotone).

We remind also thatH : Y → R∪{−∞} is concaveif F(y) =−H(y) is convex. The dual
of H in concave sense isH∗(x) := inf{〈x,y〉 −H(y)}. By analogy, one definessupgradient
andsupdifferentialof a concave function [32].

3 General properties of optimal solutions and the optimal value
functions

In this section, we apply the standard method of Lagrange multipliers to derive solutionsyβ
achieving the optimal valuex(λ ) = 〈x,yβ 〉. Then we shall study existence of solutions and
monotonic properties of the optimal value functions (5)–(8).

3.1 Optimality conditions

Proposition 1 (Necessary and sufficient optimality conditions). Element yβ ∈ Y maximizes
linear functional x(y) = 〈x,y〉 on sublevel set{y : F(y) ≤ λ} of a closed functional F: Y →
R∪{∞} if and only if the following conditions hold

yβ ∈ ∂F∗(βx) , F(yβ ) = λ

where parameterβ−1 > 0 is related toλ via β−1 ∈ ∂x(λ ).

Proof. If yβ maximizes〈x,y〉 on sublevel setC(λ ) := {y : F(y) ≤ λ}, then it belongs to the
boundary ofC(λ ) (because〈x, ·〉 is linear andC(λ ) is closed). Moreover,yβ belongs also to the
boundary of a convex closure ofC(λ ), because it is the intersection of all closed half-spaces
{y : 〈x,y〉 ≤ 〈x,yβ 〉} containingC(λ ). Observe also that

clco{y : F(y)≤ λ}= {y : F∗∗(y)≤ λ}

and therefore solutions satisfy conditionF(yβ ) = F∗∗(yβ ) and∂F(yβ ) = ∂F∗∗(yβ ) (e.g. see
[32], Theorem 12). Thus, the Lagrange function for the conditional extremum in (5) can be
written in terms ofF∗∗ as follows

K(y,β−1) = 〈x,y〉+β−1[λ −F∗∗(y)] ,

whereβ−1 is the Lagrange multiplier for the constraintλ ≥ F∗∗(y). This Lagrange function is
concave forβ−1 ≥ 0, and therefore condition∂K(yβ ,β−1) ∋ 0 is both necessary and sufficient
for yβ andβ−1 to define its least upper bound, which gives

∂yK(yβ ,β−1) = x−β−1∂F∗∗(yβ ) ∋ 0, ⇒ yβ ∈ ∂F∗(βx)

∂β−1K(yβ ,β−1) = λ −F∗∗(yβ ) = 0, ⇒ F∗∗(yβ ) = λ

Note that if F 6= F∗∗, then generallyF∗∗(y) ≤ F(y), and conditionF∗∗(yβ ) = λ must be
replaced by a stronger conditionF(yβ ) = λ .

Noting thatx(λ )= 〈x,yβ 〉+β−1[λ −F(yβ )], the Lagrange multiplier is defined by∂x(λ )∋
β−1. Note that∂x(λ ) ≥ 0, becausex(λ ) is non-decreasing, andβ−1 = 0 if and only if
F(y)≥ λ .
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Remark1. The inverse optimal valuex−1(υ), defined by equation (7), is achieved by solutions
yβ given by similar conditions. Indeed, the corresponding Lagrange function is

K(y,β ) = F∗∗(y)+β [υ −〈x,y〉]

and the necessary and sufficient conditions are

yβ ∈ ∂F∗(βx) , 〈x,yβ 〉= υ

whereβ > 0 is related toυ via β ∈ ∂x−1(υ). We note also that conditions for optimal values

x(λ ) =−(−x)(λ ) andx−1(υ) = (−x)
−1
(−υ), defined by equations (6) and (8), are identical

to those in Proposition 1 and above with the exceptions thatβ−1 < 0 andβ < 0.

3.2 Existence of solutions

The existence of optimal solutions in Proposition 1 is equivalent to finiteness ofx(λ ), which
depends on the properties of sublevel setC(λ ) := {y : F(y)≤ λ} and linear functionalx(y) =
〈x,y〉. Clearly, the existence of solutions is guaranteed ifC(λ ) is bounded in(Y,‖ · ‖) and
x∈Y∗. This setting, however, appears to be too restrictive. First, the restriction ofx to Banach
spaceY∗ is not desirable in many applications. Indeed, measures areoften considered as ele-
ments of a Banach space with norm‖·‖1 of absolute convergence, and thereforeY∗ is complete
with respect to the Chebyshev (supremum) norm‖ · ‖∞. Many objective functions, however,
such as utility or cost functions, are expressed using unbounded forms, such as polynomials,
logarithms and exponentials. Second, the sublevel setsC(λ ) are generally unbalanced (i.e. if
I(y,y0) 6= I(y0,y) or F(y0+[y− y0]) 6= F(y0− [y− y0])), which means thatx(λ ) 6= (−x)(λ ),
and thereforex(λ ) ∈R does not imply(−x)(λ ) ∈R. In addition, setsC(λ ) can be unbounded
in (Y,‖·‖) if we allow for measures that are not necessarily normalized. In this case, finiteness
of x(λ ) is no longer guaranteed, even ifx∈Y∗. These considerations motivate us to define the
most general class of linear functionalsx∈Y♯ (elements of algebraic dual) that admit optimal
solutions to the generalized variational problems for measures and achieving finite optimal
values for all constraints.

Definition 1 (F-bounded linear functional). An elementx ∈ Y♯ is bounded above (below)
relative to a closed functionalF : Y → R∪{∞} or F-bounded above(below) if it is bounded
above (below) on sets{y : F(y) ≤ λ} for eachλ ∈ (λ0,λ ) (λ ∈ (λ0,λ )). We call x ∈ Y♯

F-boundedif it is F-bounded above and below.

Thus, bounded linear functionalsx ∈ Y∗ are‖ · ‖-bounded. IfF(y) = I(y,y0) is under-
stood as information, then we speak of information-boundedfunctionals. Although we do
not address topological questions in this paper, we point out that the valuesx(λ ) coincide
with the values of support functionsC(λ)(x) := sup{〈x,y〉 : y∈C(λ )} of setC(λ ), and it gen-
eralizes a seminorm onY′. In fact, a seminorm can be defined forF-bounded elements as
sup{−x(λ ),x(λ )} = sup{sC(λ)(−x),sC(λ)(x)}, which means they form a topological vector
space. There are, however, elementsx∈Y♯ that are onlyF-bounded above or below, as will
be illustrated in the next example.

Example 1. Let Ω = N and letX, Y be the spaces of real sequences{x(n)} and{y(n)} with
pairing 〈·, ·〉 defined by the sum (4). LetF(y) = 〈lny− 1,y〉 for y > 0, so that the gradient
∇F(y) = lny, andF is minimized at the counting measurey0(n) = 1. The optimal solutions
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have the formyβ = eβx, and the values of functionsx(λ ) andx(λ ) = −(−x)(λ ) are respec-
tively

〈x,yβ 〉=
∞

∑
n=1

x(n)eβx(n) and 〈x,yβ 〉=
∞

∑
n=1

x(n)e−βx(n) , β−1 > 0

In particular, forx(n) = −n, the first series converges to−eβ (eβ − 1)−2, but the second di-
verges for anyβ−1 > 0. Thus,x(n) = −n is F-bounded above, but not below. Observe also
thatx(n) =−n is unbounded, because‖x‖∞ := sup{|〈x,y〉| : ‖y‖1 ≤ 1} is infinite. On the other
hand, any constant sequencex(n) = α ∈ R is bounded (‖x‖∞ = |α |), but it is notF-bounded
above or below.

The criterion for elementx∈Y♯ to beF-bounded above follows from the optimality con-
ditions, obtained in Proposition 1.

Proposition 2 (Existence of solutions). Solutions yβ ∈ Y maximizing x(y) = 〈x,y〉 on sets

{y : F(y)≤ λ} exist for all valuesλ ∈ (λ0,λ ) of a closed functional F: Y →R∪{∞}, if there
exists at least one numberβ−1 > 0 such that subdifferential∂F∗(βx) is non-empty.

Proof. The elementyβ ∈ ∂F∗(βx) maximizesx(y) = 〈x,y〉 on{y : F(y)≤ λ} by Proposition 1,

and if β−1 > 0 andx 6= 0, thenF(yβ ) = λ ∈ (λ0,λ ). The optimal valuex(λ ) ∈ R is equal to

〈x,yβ 〉= β−1[F∗(βx)+F(yβ )
]

Note also thatF∗(βx) ∈ (inf F∗,supF∗). Because sets{y : F(y) ≤ λ} are closed for allλ (F
is closed), the existence of a solution for oneλ implies the existence of solutions for allλ , and
they areyβ ∈ ∂F∗(βx) enumerated by different valuesβ−1 > 0.

Thus, elementx∈Y♯ is F-bounded above if∂F∗(βx) is non-empty at least for oneβ−1 >
0. Geometrically, this means thatxcan be absorbed into the convex setC∗(λ ∗) := {w : F∗(w)≤
λ ∗} for someλ ∗ ∈ (inf F∗,supF∗). If x∈Y♯ is alsoF-bounded below, then−xcan be absorbed
into C∗(λ ∗). Therefore, ifx ∈ Y♯ is F-bounded only above or below, then the origin of a
one-dimensional subspaceRx := {βx : β ∈ R} is not on the interior of domF∗. In fact, it
is well-known that if setsC(λ ) := {y : F(y) ≤ λ} are bounded, then 0∈ Int(domF∗) (see
[5, 25]).

3.3 Monotonic properties

Proposition 3 (Monotonicity). Optimal value functionsx(λ ), x(λ ), x−1(υ) and x−1(υ), de-
fined by equations (5), (6), (7) and (8) for a closed F: Y → R∪ {∞} and x 6= 0, have the
following properties:

1. The mappingλ 7→ β−1 ∈ ∂x(λ ) is non-increasing, andυ 7→ β ∈ ∂x−1(υ) is non-
decreasing.

2. If in addition F∗ is strictly convex, then these mappings are differentiableso thatβ−1 =
dx(λ )/dλ andβ = dx−1(υ)/dυ .

3. x(λ ) is concave and strictly increasing forλ ∈ [λ0,λ ].

4. x(λ ) is convex and strictly decreasing forλ ∈ [λ0,λ ].

5. x−1(υ) is convex and strictly increasing forυ ∈ [υ0,υ ].
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6. x−1(υ) is convex and strictly decreasing forυ ∈ [υ ,υ0].

whereλ , λ are defined by equations (9), andυ0, υ0 by equations (10).

Proof. 1. Let yβ1
, yβ2

be maximizers of linear functionalx(y) = 〈x,y〉 on sublevel sets
{y : F(y)≤ λ} with constraintsλ1, λ2 respectively, and letυ1 = 〈x,yβ1

〉 andυ2 = 〈x,yβ2
〉

denote the corresponding optimal values. Clearly,λ1 ≤ λ2 impliesυ1 ≤ υ2 by the inclu-
sion{y : F(y)≤ λ1} ⊆ {y : F(y)≤ λ2}, so that the optimal value functionx(λ ) = 〈x,yβ 〉
is non-decreasing. Using conditionyβ ∈ ∂F∗(βx) of Proposition 1 and monotonicity
condition (12) for convexF∗, we have

〈β2x−β1x,yβ2
−yβ1

〉= (β2−β1)〈x,yβ2
−yβ1

〉 ≥ 0

Therefore,υ1 ≤ υ2 implies β1 ≤ β2. This proves thatλ 7→ β−1 is non-increasing, and
υ 7→ β is non-decreasing.

2. Optimality conditionyβ ∈ ∂F∗(βx) is equivalent toβx ∈ ∂F(yβ ) by property (11),
and together with conditionF(yβ ) = λ or 〈x,yβ 〉 = υ it implies that differentβ1 < β2

can correspond to the sameλ or υ if and only if ∂F(yβ ) includes bothβ1x andβ2x.
This implies thatF∗ is not strictly convex on[β1x,β2x] ⊆ ∂F(yβ ). Dually, if F∗ is
strictly convex, thenβ1 6= β2 impliesλ1 6= λ2 andυ1 6= υ2, so that{β−1}= ∂x(λ ) and
{β}= ∂x−1(υ). In this case, monotone functionsx(λ ) andx−1(υ) are differentiable.

3. Functionx(λ ) is strictly increasing onλ ∈ [λ0,λ ], because∂x(λ )∋ β−1 ≥ 0 andβ−1 =
0 if and only ifλ ≥ λ (Proposition 1). The mappingλ 7→ β−1∈ ∂x(λ ) is non-increasing,
and thereforex(λ ) is concave.

4. By the same reasoning as above, function(−x)(λ ) is concave and strictly increasing for
λ ∈ [λ0,λ ]. Thus,x(λ ) =−(−x)(λ ) is convex and strictly decreasing.

5. Functionx−1(υ) is strictly increasing for allυ ∈ [υ0,υ ], because∂x−1(υ) ∋ β ≥ 0,
andβ = 0 if and only if υ = 〈x,y0〉 ≤ υ0 for any y0 ∈ ∂F∗(0) (λ0 := inf F = F(y0)).
Moreover, the mappingυ 7→ β ∈ ∂x−1(υ) is non-decreasing, and thereforex−1(υ) is
convex.

6. Functionx−1(υ) is the inverse of convex and strictly decreasing functionx(λ ). Thus,
x−1(υ) is also convex and strictly decreasing forυ ∈ [υ ,υ0].

We now use the facts thatX is ordered by a pointed convex coneX+, generatingX =
X+−X+, and thatY is ordered by the dual cone:Y+ := {y ∈ Y : 〈x,y〉 ≥ 0, ∀x ≥ 0}. For
example, this is the case whenX is a function space with the pointwise order, or ifX is the
space of operators on a Hilbert space withx∗x∈ X+.

Proposition 4 (Zero solution). Let X be ordered by a generating pointed cone X+, and let
{yβ}x be the family of all elements maximizing linear functional x(y) = 〈x,y〉 on sets{y :
F(y) ≤ λ} for all valuesλ of a closed functional F: Y → R∪{∞}. If all yβ ∈ {yβ}x are
non-negative and yβ = 0 for someλ , then

x= 0 or F(0) = λ0 or F(0) = λ

whereλ0 := inf F, andλ is such thatx(λ ) = sup{〈x,y〉 : y∈ domF}
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Proof. Assume the opposite:x 6= 0 andλ0 <F(0)< λ . Then functionx(λ ) = 〈x,yβ 〉 is strictly
increasing (Proposition 3), and sets{y : F(y) < F(0)} and{y : F(0) < F(y)} are non-empty
(F is closed). Thus, there exist solutionsy1 andy2 such that

F(y1)< F(0) < F(y2) and 〈x,y1〉< 0< 〈x,y2〉

Using decompositionx= x+−x−, x+, x− ∈ X+ andy1, y2 ∈Y+, we conclude that

〈x+−x−,y1〉< 0< 〈x+−x−,y2〉 ⇒ x+ > x− and x+ < x−

This impliesx= 0, which is a contradiction.

4 Optimal measures

Our interest is in the support set of optimal positive measures maximizing linear functional
x(y) = 〈x,y〉 on closed sets{y : F(y) ≤ λ}. First, we shall prove the main theorem about
mutual absolute continuity within families of optimal measures. Then we shall discuss the
underlying property of an information functional. In the end of this section, we formulate a
corollary stating that support of a utility function or operator is contained in the support of
optimal measures.

4.1 Mutual absolute continuity of optimal measures

LetX be a∗-algebra with a unit element 1∈X. Recall thatX can be associated with the algebra
R(Ω) of subsets ofΩ in the classical (commutative) setting, or with the algebraR(H ) of
operators on a Hilbert spaceH in the non-classical (non-commutative) setting. A subalgebra
R(E) of subsetE ⊂ Ω or subspaceE ⊂ H corresponds in each case to a subalgebraM ⊂ X,
and we shall use notationy(M) = 0 to denote measures that are zero on subset or subspace
E. The dual of subalgebraM ⊂ X is the factor spaceY/M⊥ of equivalence classes[y] := {z∈
Y : y− z∈ M⊥} generated by the annihilatorM⊥ := {y∈Y : 〈x,y〉 = 0, ∀x∈ M}. Thus, the
elements ofY/M⊥ correspond to measures that are equivalent onM, andM⊥ = [0] ∈Y/M⊥

is the subspace of measuresy(M) = 0.
We shall define the restriction of functions or operatorsx to subset or subspaceE as their

localizationΠMx, whereΠM : X → M is a positive ‘super’ operator (i.e. a linear operator
acting on the algebra of functions or operators) such thatΠM(X) = M andΠM(x∗x)≥ 0. Note
that whenX is a commutative algebra, one can always defineΠM with the projection property
Π2

M = ΠM, leavingM invariant. In the non-commutative case, a projection ofX ontoM exists
if and only if M is invariant under the action of a modular automorphism group (see [37] for
details). More specifically, the positive operatorΠM satisfies in this case conditionΠM(wx) =
wΠM(x) for all w∈M and allx∈X. If in additionΠM(1) = 1, thenΠM is the non-commutative
generalization of conditional expectation (e.g. see [28]). Clearly, only subalgebrasM ⊂ X
with projections have statistical or physical meaning. Note that one can always construct a
completely positive linear operatorΠM, which becomes a projection ontoM, if M has the
above mentioned property of modular automorphism invariance [1]. We shall refer to such
ΠM aslocalizationonto subalgebraM. The restriction ofF∗ : X → R∪{∞} to M is given by
F∗(ΠMx), and the dual ofF∗(ΠMx) is defined onY/M⊥ asF∗∗([y]) := inf{F∗∗(y) : y∈ [y]}.

Theorem 1(Mutual absolute continuity). Let X be ordered by a generating pointed cone X+,
and let{yβ}x be the family of all elements maximizing linear functional x(y) = 〈x,y〉 on sets
{y : F(y) ≤ λ} for all valuesλ of a closed functional F: Y → R∪{∞}. If all yβ ∈ {yβ}x are
non-negative and F∗(x) := sup{〈x,y〉−F(y)} is strictly convex, then:
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1. There is a subfamily{y◦β}x ⊆ {yβ}x containing y◦β for eachλ ∈ (λ0,λ ), and y◦β corre-
spond to mutually absolutely continuous positive measures.

2. If there exists element y0 (resp. δx) in {yβ}x such thatinf F = F(y0) (resp. sup{〈x,y〉 :
y∈ domF}= 〈x,δx〉), then y0 (resp.δx) is absolutely continuous w.r.t. all y◦β .

3. If in addition F∗∗ is strictly convex, then{y◦β}x = {yβ}x \{y0,δx}.

Proof. Let yβ be a solution for someλ ∈ (λ0,λ ). Thenyβ ∈ ∂F∗(βx), 0< β−1 < ∞ (Propo-
sition 1). LetΠM : X → M be a localization operator onto subalgebraM ⊂ X (i.e. a com-
pletely positive linear operator that acts as a projection onto some subalgebras [1]). Then
[yβ ] ∈ ∂F∗(βΠMx) ⊂ Y/M⊥. Assume that the corresponding measureyβ (M) = 0. Then
yβ ∈ [0]∈Y/M⊥, where[0] =M⊥, and because[yβ ]≥ 0 (yβ ≥ 0 andΠM is positive),[yβ ] = [0]
implies by Proposition 4

ΠMx= 0 or F∗∗([0]) = λ0 or F∗∗([0]) = λ M

whereλ0 := inf F , and λ M ≤ λ is such thatΠMx(λ M) = sup{〈ΠMx, [y]〉 : [y] ∈ domF∗∗}.
Observe that non-empty∂F∗∗([0]) is a singleton set, becauseF∗ (and henceF∗(ΠMx)) is
strictly convex. Therefore, the last two cases above are false, because otherwise∂F∗∗([0])
would contain the intervals[0,βΠMx] or [βΠMx,∞), 0< β < ∞. Thus,ΠMx= 0 is the only
true case. But thenβΠMx= 0 for all β , and therefore

[0] ∈ ∂F∗(βΠMx) , ∀β ∈ R

In other words, for eachλ ∈ (λ0,λ ), there is a solutionyβ ∈ [0], such that the corresponding
measureyβ (M) = 0.

These measures are not mutually absolutely continuous onlyif there exists solutiony◦β for

someλ ∈ (λ0,λ ) such that the corresponding measurey◦β (N) = 0 on some larger subalge-
braN ⊃ M. The subfamily{y◦β}x ⊆ {yβ}x corresponding to mutually absolutely continuous

measures for allλ ∈ (λ0,λ ) is constructed by taking

M = sup{N ⊂ X : ∃y◦β ∈ {yβ}x, y◦β (N) = 0}

where supremum is with respect to ordering by inclusion.
If λ0 := inf F (resp.υ := sup{〈x,y〉 : y∈ domF}) is attained at somey0 (resp.δx), then they

correspond to elements of{yβ}x with β = 0 (resp.β−1 = 0). The corresponding measuresy0

(resp.δx) are absolutely continuous with respect to ally◦β , becauseΠMx= 0 impliesβΠMx= 0
for all β .

If F∗∗ is strictly convex, then∂F∗(βx) contains a unique elementy◦β for eachβ−1 > 0,
and{y◦β}x = {yβ}x \{y0,δx}.

Remark2. The key condition in the proof of Theorem 1 is that the non-empty subdifferentials
∂F(yβ ) are singleton sets, which follows immediately from injectivity of ∂F∗ or strict convex-
ity of F∗. If yβ ∈ Int(domF∗∗), thenF∗∗ is continuous atyβ (e.g. see [25] or [32], Theorem 8),
and∂F∗∗(yβ ) is a singleton if and only ifF∗∗ is Gâteaux differentiable atyβ (e.g. see [38],
Chapter 2, Section 4.1). Injectivity of∂F∗ can also be based on its algebraic properties. In
particular, if∂F∗ is a group homomorphism, then it is injective if and only if its kernel is a
singleton set. This will be discussed in the end of Example 2 (see also [8]).
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Optimal probability measures are obtained by normalization pβ := yβ/‖yβ‖1 of optimal
positive measuresyβ . This corresponds to additional equality‖y‖1 = 〈1,y〉= 1 and inequality
y≥ 0 constraints in the optimal value functions (5)–(8) or simply to a restriction of functional
F to the statistical manifoldP := {y : y≥ 0, 〈1,y〉 = 1}, which is the base of positive cone
Y+. Optimal probability measures are solutions to generalized variational problems (2) or (3)
with constraints on information distanceI(p,q) or resourceF(p). All mutually absolutely
continuous measuresy◦β ∈ {yβ}x belong to the same subspaceM⊥ ⊂Y, and the corresponding

probability measuresp◦β belong to the interior of the baseP ∩M⊥ of subconeM⊥
+ ⊂Y+. In

the classical (commutative) case,P is a simplex, andP ∩M⊥ is its facet, which is itself a
simplex.

Remark3. If the effective domain domF ⊂ Y of functionalF : Y → R∪{∞} is the positive
coneY+, then propertyyβ (M) = 0 on subalgebraM ⊂ X implies yβ is on the boundary of
Y+ = domF. In this case, mutual absolute continuity of measuresyβ ∈ ∂F∗(βx) can be proved
using the fact that the image of injective subdifferential mapping∂F∗ : X → 2Y is interior of
domF (e.g. see [2], Lemma 4). Therefore, such subgradientsyβ ∈ ∂F∗(βx) cannot be on the
boundary ofY+ = domF.

The existence of optimal and mutually absolutely continuous probability measures for all
constraintsF(y)≤ λ on an information resource is used in the next section to study optimality
of deterministic and non-deterministic Markov transitionkernels. Theorem 1 shows that this
is related to strict convexity ofF∗ (or injectivity of ∂F∗), and therefore we now discuss this
property with some examples.

4.2 Information and separation of variational problems for measures

If F∗ is not strictly convex (or∂F∗ is not injective), then∂F(yβ ) may contain different ele-
mentsx, w∈Y♯. Recall that linear functionalsx∈Y♯ are understood in classical optimization
theory as objective (e.g. utility) functionsx : Ω → R representing a preference relation. on
Ω ≡ extP. Thus,yβ may maximize bothx(y) = 〈x,y〉 andw(y) = 〈w,y〉 on {y : F(y) ≤ λ},
which means thatyβ solves different optimization problems. Indeed, valueλ = F(yβ ) cor-
responds to equal optimal valuesx−1(υ) = w−1(υ), and valueυ = 〈x,yβ 〉 = 〈w,yβ 〉 to equal
optimal valuesx(λ ) = w(λ ). Therefore, ifF∗ is not strictly convex, then elementsyβ ∈Y may
not separate some optimization problems. Let us consider two examples.

Example 2(Relative information). Let us defineIKL : Y×Y → R∪{∞} as follows

IKL(y,y0) :=











〈

ln y
y0
,y
〉

−〈1,y−y0〉 if y> 0 andy0 > 0

〈1,y0〉 if y= 0 andy0 > 0
∞ otherwise

(13)

This functional is an extension of the Kullback-Leibler divergenceEp{ln(p/q)} to the whole
spaceY, because〈1,y−y0〉= 0 for positive measuresy, y0 with equal norms‖ · ‖1. The term
〈1,y− y0〉 makesIKL(y,y0) ≥ 0 for all elementsy andy0 not necessarily with equal norms.
If X is a commutative algebra, and the pairing〈·, ·〉 is defined by the sum or the integral (4),
then (13) reduces to the classical KL-divergence. In the non-commutative case, such asX
being an algebra of compact Hermitian operators and the trace pairing (4), functional (13) is
a generalization of some types of quantum information [9], which depend on the wayyy−1

0 is

defined, such as exp(lny− lny0) or y−1/2
0 yy−1/2

0 .
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The functionalFKL(y) := IKL(y,y0) is closed, strictly convex and Gâteaux differentiable on
Int(domFKL), and its gradient has the following convenient form:

∇FKL(y) = ln
y
y0

⇐⇒ y1/2
0 exy1/2

0 = ∇F∗
KL(x)

One can define the dual functionalF∗
KL : X → R∪{∞} as follows

F∗
KL(x) := 〈1,y1/2

0 exy1/2
0 〉

Clearly,F∗
KL is also closed, strictly convex and Gâteaux differentiable for allx∈ X, where it is

finite. Optimal measures maximizingx(y) = 〈x,y〉 on sets{y : FKL(y) ≤ λ} belong to a one-

parameter exponential familyyβ := y1/2
0 eβx y1/2

0 , which are mutually absolutely continuous.

Such maximizing measures exist for all valuesλ ∈ (λ0,λ ), if x ∈ Y♯ is FKL-bounded above,
and by Proposition 2 it is sufficient to show that∂F∗

KL(βx) 6= ∅ for someβ−1 > 0. We point
out that this property depends on the choice of elementy0 = ∇F∗

KL(0), minimizingFKL.
Recall also thatY can be considered as a module over algebraX ⊂Y (Section 2.2). The

exponential mapping exp :X → X ⊂ Y is the unique (up to the base constant) homomor-
phism between the additive and multiplicative groups of algebraX, and it is injective, be-
cause it has a singleton kernel{x : exp(x) = yy−1 = 1} = {0}. The property∇FKL(y) =
ln(yy−1

0 ) = (exp)−1(yy−1
0 ) ensures that information distanceIKL(y,y0) = FKL(y) is additive:

IKL(p1p2,q1q2) = IKL(p1,q1)+ IKL(p2,q2) for all p1p2, q1q2 ∈ P.

q

pβ

Ep{x} ≥ υ

‖p−q‖1 ≤ λ

Ep{w} ≥ υ

Figure 3: 2-SimplexP of probability measures over setΩ = {ω1,ω2,ω3} with level sets of
expected utilitiesEp{x}=Ep{w}= υ and the total variation metric‖p−q‖1 = λ . Probability
measurepβ maximizes bothEp{x} andEp{w} subject to constraint‖p−q‖1 ≤ λ . The family
{pβ}x of solutions, shown by dashed line, contains elements on theboundary ofP.

Example 3(Total variation). An example of information distance that does not have a strictly
convex dual is the total variation metric:

IV(y,y0) := ‖y−y0‖1
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FunctionalFV(y) := IV(y,y0) is not Gâteaux differentiable aty = y0, as well asy such that
y− y0 ∈ [0] ∈Y/M⊥, if subalgebraM ⊂ X boundsX+ (e.g. if M contains an extreme ray of
X+). Optimal solutionsyβ maximizingx(y) = 〈x,y〉 on setsC(λ ) := {y : ‖y− y0‖1 ≤ λ} are
extreme points ofC(λ ), and they maximize different, not necessarily proportional linear func-
tionals. Figure 3 illustrates the variational problems on a2-simplex of probability measures
over a set of three elements with the uniform distributionq(ω) = 1/3 as the reference measure
(compare with Figure 1). Distributionpβ maximizes bothEp{x}= 〈x, p〉 andEp{w}= 〈w, p〉
onC(λ ) := {p : ‖p−q‖1 ≤ λ}.

The dual ofFV is functionalF∗
V (x) = χC◦

0(λ)(x)−〈x,y0〉, whereχC◦
0(λ)(x) is the indicator

function of setC◦
0(λ ) = {βx : ‖βx‖∞ ≤ 1}, the polar of setC0(λ ) =C(λ )−y0. Clearly,F∗

V (x)
is not strictly convex. Therefore,∂FV(yβ ) may include multiple elements, and the family
{yβ}x may contain measures that are not mutually absolutely continuous. Figure 3 shows that
the family{pβ}x of optimal solutions contains elements on the boundary of 2-simplexP.

In the commutative case, elements of∂FV(yβ ) ⊂ X are understood as utility functions,
representing preference relations. on Ω ≡ extP. If ∂FV(yβ ) includes functionsx andw,
then they attain their suprema supx(ω) = x(⊤) = ‖x‖∞ and supw(ω) = w(⊤) = ‖w‖∞ on the
set of the same elements⊤ ∈ Ω. However, the utility functionsx(ω) andw(ω) may represent
different preference relations. onΩ. Note also that the supremax(⊤) or w(⊤) of utilities may
never be achieved or observed in problems with constraints on information, even ifx or w are
bounded functions. The values of utilities on elementsω 6=⊤ are important for maximization
of the expected utility.

As was discussed in Section 2.1, information is often required to satisfy the additivity
axiom, which is why information-theoretic definitions of entropy and mutual information are
based on the KL-divergenceIKL(y,y0), and it has a strictly convex dual. Strict convexity
of the dual functional is a weaker condition than the additivity axiom, but it ensures that
each probability measurep∈ P is an optimal solution to a unique variational problem with
an abstract information resourceF, generalizing problems (2) or (3). Note also that strict
convexity of F∗ ensures that information resourceF has directional derivative at eachy ∈
Int(domF) (e.g. p ∈ Int(P)), which facilitates convergence of measures in problems with
dynamic information. Thus, strict convexity of the dual functional appears to be a natural
requirement on the functional representing information.

4.3 Support of utility functions and operators

We now conclude this section by the following corollary about the support of utility functions
or operators. We remind that the support of functionx : Ω → R is the set supp(x) := {ω :
x(ω) 6= 0}. The support of an operatorx on a Hilbert space is defined as a projection onto
the orthogonal complement of its kernel (e.g. [15], Appendix III). When x is considered as
an element of algebraX, its restriction to a subsetE ⊂ Ω (subspaceE ⊂ H ) is given by
localizationΠMx of x onto subalgebraM ⊂ X corresponding toE. Thus, the support ofx can
be identified with the complement of the largest subalgebraM ⊂ X such thatΠMx= 0.

Corollary 1 (Support). Under the assumptions of Theorem 1, the support of element x∈ X is
a subset of the support of optimal measures yβ for all λ ∈ (λ0,λ ).

Proof. During the proof of Theorem 1, we established under its assumptions, that if solution
yβ (M)= 0 for someλ ∈ (λ0,λ ) andM ⊂X, then the localizationΠMx= 0. Dually, if ΠMx 6= 0
for someM ⊂ X, thenyβ (M) 6= 0 for all suchyβ .
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Because random variables or observables are considered with respect to normalized pos-
itive measures (i.e. probability measures), they can be treated not as elements of algebraX,
dual of Y, but as elements of the factor spaceX/R1, generated by subspaceR1 := {β1 :
β ∈ R, 1 ∈ X} of scalar vectors. Indeed, statistical manifoldP is a subset of the affine set
{y : 〈1,y〉 = 1} = {1}⊥ + q, where{1}⊥ is the annihilator of element 1∈ X, andq ∈ P.
Thus, every probability measurep ∈ P is equivalently represented by elementsy ∈ {1}⊥
as p = y+ q. The dual of subspace{1}⊥ is the factor spaceX/R1, and random variables
are affine sets[x] = R1+ x corresponding to equivalence classes[x] = {w : x−w ∈ R1} and
〈x−w, p−q〉 = 0 for any p, q∈ P. Observe now thatR1 is the zero element inX/R1, and
therefore the fact that localizationΠMx /∈ R1 implies pβ (M) > 0 for all optimal probability
measures (Corollary 1). Dually,pβ (M) = 0 implies thatΠMx∈ R1. In the language of clas-
sical probability this can be stated as follows: ifx(ω1) 6= x(ω2) for someω1, ω2 ∈ E ⊂ Ω,
thenpβ (E)> 0 for all probability measures maximizingEp{x} on sets{p : F(p)≤ λ} for all

λ ∈ (λ0,λ ). Dually, pβ (E) = 0 implies thatx(ω) = const for allω ∈ E.

5 Optimal Markov transition kernels

In this section, we consider a composite system, such as a direct productΩ=A×Bof two sets,
and the problem of optimization of transitions between the elements ofA andB. Such prob-
lems appear in theories of decisions, control, communication and computation, where compo-
nents of a system (represented by setsA, B, etc) may have different meanings, but the main
objective is to find transitions between the elements ofA andB that are optimal with respect
to a utility functionx : A×B→ R. In some cases, optimal transitions are deterministic corre-
sponding to some functionsa= f (b) or b∈ f−1(a). More generally, non-deterministic transi-
tions are represented by conditional probabilities or Markov transition kernels. For simplicity,
our exposition will be in the classical setting of commutative algebraX :=Cc(Ω,R,‖ · ‖∞) of
functions onΩ = A×B. This is because joint and conditional probabilities are well-defined
and understood in this setting. In the non-classical case, the analogue of a conditional proba-
bility operator can also be defined (e.g. [1, 28, 37]), and theresults of this section can then be
transferred to this setting. However, this leads to unnecessary complications, which we shall
avoid.

5.1 Markov transition kernels and information constraints

Let us remind the following definition (e.g. see [12], Sections 2 and 5).

Definition 2 (Markov transition kernel). Given two measurable sets(A,A ) and (B,B), a
Markov transition kernelis a conditional probability measureP(Ai | b) ∈ P(A) on (A,A ),
which isB-measurable for eachAi ∈ A .

Markov transition kernel defines linear transformationΠ : P(B)→ P(A) between statis-
tical manifoldsP(A) andP(B) as follows:

P(Ai) = ΠP(B j) :=
∫

B j

P(Ai | b)dP(b)

Elementsp∈ P(A×B) are joint probability measuresP(Ai ×B j) = P(Ai | B j)P(B j), and for
P(B j)> 0, the conditional probability is defined by the Bayes formula:

P(Ai | B j) =
P(Ai ×B j)

P(B j)
,
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Eventa∈ A is statistically independent ofb∈ B if and only if P(Ai | b) = P(Ai) for eachb∈ B
and allAi ∈A . In this case,P(Ai ×B j) = P(Ai)P(B j). On the other hand, a functiona= f (b)
defines deterministic dependency ofa on b, and it corresponds to a deterministic transition
kernel

P(Ai | b) = δ f (b)(Ai) :=

{

1 if f (b) ∈ Ai

0 otherwise

One can see that each joint probability measurep∈ P(A×B) defines a pair of marginal
and conditional probability measuresP(B) andP(A | B) or P(A) andP(B | A). Thus, points
of P(A×B) define all possible transition kernels, including all possible measurable functions
betweenA andB. Hence the following classification.

Definition 3 (Deterministic composite state). A joint probability measurep ∈ P(A×B) is
deterministic, if and only if it defines a deterministic transition kernelδ f (b)(Ai) for some mea-
surable functionf : B→ A or f−1 : A→ B. Otherwise,p is non-deterministic.

Transition kernels are often understood as communication channels giving a more tradi-
tional meaning to the notion of information related to the process of sending messages between
A andB. The amount of information communicated byP(Ai | b) is measured by the Shannon
mutual information [33]:

IS{a,b} :=
∫

A×B

[

ln
dP(a,b)

dP(a)dP(b)

]

dP(a,b) =
∫

B
dP(b)

∫

A

[

ln
dP(a | b)

dP(a)

]

dP(a | b) (14)

One can see thatIS{a,b} is defined as information distanceIKL(p,q) := Ep{ln(p/q)} of joint
measurep :=P(Ai ×B j) from the product of marginalsq := P(Ai)P(B j), or as the expectation
of the information distanceIKL of the conditional probabilityP(Ai |b) from the marginalP(Ai),
taken with respect to a fixed marginalP(B j).

Variational problems (2) and (3) for composite systems and constraints on mutual informa-
tion have been studied in information theory (e.g. [33, 34, 35]). Note that when problems (2)
and (3) are considered on any measurable setΩ, they are referred to in information theory
as problems of the first kind [35]. For a composite systemΩ = A×B, one distinguishes
between problems of the second and third kind. Observe that the amount of mutual infor-
mation (14) communicated depends onP(B j), which we refer to as an the input or source
distribution, and transition probabilitiesP(Ai | b). In fact, IS{a,b} = H{b}−H{b | a}, where
H{b} := Ep{− lnP(b)} is the entropy ofP(B), andH{b | a} is the conditional entropy. Opti-
mization problems over input distributionsP(B) and with a fixed channelP(Ai | b) are prob-
lems of the second kind. Problems of the third kind are concerned with finding an optimal
channel for a fixed set of input distributions. The results ofprevious sections allow us to con-
sider a generalization of these problems when mutual information is defined by some other
information distanceI(p,q) between two joint statesp, q∈ P(A×B) or an information re-
sourceF(p). Note that problems of the third kind play important role notonly in information
theory, but also in other areas including optimal statistical decisions, estimation, control and
even in the theory of algorithms, as will be illustrated in Section 5.6.

5.2 Strict sub-optimality of deterministic kernels

Observe thatPf (Ai ×B j) = δ f (b)(Ai)P(B j) = 0 for all f (b) /∈Ai. Thus, deterministic transition
kernels can be defined only by joint states that are on the boundary of P(A×B); interior
points ofP(A×B) can define only non-deterministic transition kernels. The application of
Theorem 1 to the caseΩ = A×B yields the following result.
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Theorem 2(Separation of deterministic and non-deterministic kernels). Let{pβ}x ⊂ P(A×
B) be a family of joint probability measures maximizing expected valueEp{x} = 〈x, p〉 of
function x: A×B → R on sets{p : F(p) ≤ λ} for all valuesλ of a closed functional F:
P → R∪{∞}. If F ∗(x) := sup{〈x, p〉−F(p)} is strictly convex and F is minimized at p0 ∈
∂F∗(0)⊂ Int(P(A×B)), then

1. {pβ}x contains deterministic pf if and only if it is a solution to an unconstrained prob-

lem: λ ≥ λ or 〈x, pf 〉= υ := x(λ ) = sup{〈x, p〉 : p∈ P(A×B)}.

2. The inequality
〈x, pf 〉< 〈x, pβ 〉

holds for all deterministic pf ∈ P(A×B) such that F(pf ) = F(pβ ) ∈ (λ0,λ ).

3. Similarly, the inequality
F(pf )> F(pβ )

holds for all deterministic pf ∈ P(A×B) such that〈x, pf 〉= 〈x, pβ 〉 ∈ (υ0,υ).

Proof. 1. (⇒) Assume there existspf ∈ {pβ}x for λ < λ (and〈x, pf 〉< υ), and such that
the corresponding transition kernel is deterministic:Pf (Ai | B j) = 1 if Ai = f (B j) and
Pf (A\Ai | B j) = 0. In this case,pf := Pf (A×B) is not in the interior ofP(A×B),
becausePf ((A\ f (B j))×B j) = 0, and in particularpf does not minimizeF, because
∂F∗(0) ⊂ Int(P(A×B)) by our assumption. Thus,F(pf ) = λ ∈ (λ0,λ ). But then
Pf ((A\ f (B j))×B j) = 0 implies that there existp◦β ∈ {pβ}x for all λ ∈ [λ0,∞] such
that p◦β := P◦

β ((A\ f (B j))×B j) = 0 by Theorem 1. In particular, there existsp◦0 ∈

∂F∗(0) such thatP◦
0 ((A\ f (B j))×B j) = 0, and thereforep◦0 is also not in the interior

of P(A×B). Thus, by contradiction we have provenpf /∈ {pβ}x or λ ≥ λ (and hence
〈x, pf 〉= υ).

(⇐) If λ ≥ λ , then there exists solutionδx ∈ extP(A×B) such that〈x,δx〉 = υ :=
sup{〈x, p〉 : p ∈ P} (by linearity of 〈x, ·〉 and Krein-Milman theorem forP), andδx

corresponds to some functionf (b) = a.

2. For all x ∈ X and y ∈ Y, the Young-Fenchel inequality holds:〈x,y〉 ≤ F∗(x) +F(y).
Moreover, it holds with equality if and only ify ∈ ∂F∗(x) (e.g. see [38], Chapter 2,
Section 4.1, Lemma 3). Assumepβ ∈ ∂F∗(βx). Then〈x, pβ 〉= β−1[F∗(βx)+F(pβ )].

On the other hand, ifpf is deterministic andF(pf ) ≤ λ < λ , thenpf /∈ ∂F∗(βx) and
therefore

〈x, pf 〉< β−1[F∗(βx)+F(pf )] = β−1[F∗(βx)+F(pβ )] = 〈x, pβ 〉

3. By definition of the Legendre-Fenchel transform,F∗∗(y)≥ 〈x,y〉−F∗(x), and the equal-
ity holds if and only ifx∈ ∂F∗∗(y). Assumeβx∈ ∂F∗∗(pβ ). ThenF∗∗(pβ ) = F(pβ ) =
β 〈x, pβ 〉 − F∗(βx). On the other hand, ifpf is deterministic and〈x, pf 〉 < υ , then
βx /∈ ∂F∗∗(pf ), and therefore

F(pf )≥ F∗∗(pf )> β 〈x, pf 〉−F∗(βx) = β 〈x, pβ 〉−F∗(βx) = F(pβ )

Note thatβ > 0 andF(pβ ) = λ > λ0, if 〈x, pβ 〉= υ > υ0.
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The assumptions of Theorem 2 are quite general. The relationof strict convexity ofF∗

to separating property of information of variational problems for measures was discussed in
Section 4.2. The assumptionp0 ∈ Int(P(A×B)) is very natural. Indeed, each facet of the
simplexP(A×B) is also a simplex of some subset ofA×B. Therefore, the elementp0 is
always in the interior of some simplexP(Ai ×B j), unlessp0 = δ ∈ extP(A×B). In all prac-
tical cases, information is minimized atp0 /∈ extP(A×B). In particular, one often chooses
p0 := P(Ai)P(B j), so thata and b are independent, and supports of marginal probabilities
P(Ai) andP(B j) include more than one element.

To understand better the result of Theorem 2, we now recall some facts about mutual in-
formation for deterministic kernels and then for exponential kernels, which are an important
example of non-deterministic kernels. These facts will be used in a qualitative example, pre-
sented later.

5.3 Deterministic transition kernels

Probability measureP(Ai) = Π f P(B j) defined by a linear transformation with deterministic
transition kernelδ f (b)(Ai) is sometimes denotedP f−1(Ai) := P{b : f (b) ∈ Ai} (e.g. [12],
Section 2). If f : B→ A is injective, thenP f−1(Ai) = P(B j) for eachAi = f (B j).

Definition 4 (Measurable isomorphism). An injective and measurable functionf : B→ A is
called ameasurable monomorphismof B. If f is also surjective andf−1(a) is measurable,
then f is ameasurable isomorphism.

We point out the following known result.

Proposition 5 (Invertible transformation). A linear transformationΠ : P(B)→ P(A) of sta-
tistical manifolds is invertible if and only if its Markov transition kernel isδ f (b)(Ai), where f
is a measurable isomorphism.

Proof. (⇒) Assume that the transition kernel ofΠ is not defined by any function. Thus,
Πδb = p /∈ extP(A) for someδb ∈ extP(B). Without loss of generality, we can assume that
p= (1− t)δa1 + tδa2 for somet ∈ (0,1), δa1, δa2 ∈ extP(A) such thatδa1 6= δa2. Then

Π−1p= Π−1[(1− t)δa1 + tδa2] = (1− t)Π−1δa1 + tΠ−1δa2 = δb

Becauseδb∈ extP(B) is not a convex combination of any points ofP(B), it impliesΠ−1δa1 =
Π−1δa2 = δb. But thenΠ−1 is not injective, becauseδa1 6= δa2, and thereforeΠ is not surjective.
Thus, the transition kernel of an invertibleΠ must beδ f (b)(Ai) for some measurable function
f : B → A. Clearly, suchΠ is invertible only if the mappingf : extP(B) → extP(A) is
injective, surjective, and bothf and f−1 are measurable.

(⇐) Obvious.

Let us consider information communicated by a deterministic transition kernelδ f (b)(Ai).
The maximum (or supremum) amount of information can be communicated if f is an injec-
tive function, because preimagef−1(a) uniquely determinesb. If a function is not injective,
thenb∈ f−1(a) is determined up to the probability 1/| f−1(a)|. Indeed, for countableB and
constantP(b)2 this can be shown as follows:

Pf (b | a) =
Pf (a,b)
Pf (a)

=
δ f (b)(a)P(b)

∑B δ f (b)(a)P(b)
=

1·P(b)

∑b∈ f−1(a)1·P(b)
=

1
| f−1(a)|

2The conditionP(b) = const was omitted in the final version.
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We can express the average amount of information communicated by function f by the fol-
lowing injectivity indexof f :

I( f ) :=
1

E{| f−1(a)|}
≤ 1

Note that ifB is finite, then we can compute the injectivity index asI( f ) = | f (B)|/|B|. Indeed,
∑a∈ f (B) | f

−1(a)| = |B|, and so the average value of| f−1(a)| is |B|/| f (B)|. Thus, I( f ) = 1
for an injective function, and infI( f ) = 0 corresponding to an empty function. For constant
functions,I( f ) = 1/|B|, and they communicate the least amount of information amongnon-
empty functions. IfB is finite, thenI( f ) < 1 implies | f (B)| < |B|. This is not the case,
however, for functions defined on an infinite set (e.g.I( f ) = 1/2 for f : Z → N defined as
f (b) = |b|, but | f (B)|= |B|= ℵ0). Let us show that if the image of a function is infinite, then
one can always construct an input distributionP(B) such that the output distributionP f−1(A)
has infinite entropy.

Proposition 6 (Maximizing input distribution). Let (A,A ) and(B,B) be infinite measurable
sets, and let{ fn} be a sequence of measurable functions fn : B→ A with finite images. There
exists a sequence of probability measures Pn onB such that

lim
| fn(B)|→∞

{

Hn{a} =− ∑
a∈ fn(B)

ln[Pn f−1
n (a)]Pn f−1

n (a)

}

= ∞

Proof. It is sufficient to takePn on B that induce under the mappingsfn : B→ A constant (i.e.
uniform) probability distributions on the imagesfn(B). For example, assuming without loss
of generality thatB is countable, define the following function onB:

Pn(b) =
1

| fn(B)|
1

| f−1
n ◦ fn(b)|

It is a probability measure, because it is positive, additive andPn(B) = 1. Indeed

Pn(B j) =
1

| fn(B)|
∑

b∈B j

1

| f−1
n ◦ fn(b)|

≤
1

| fn(B)|
∑

a∈ fn(B j )

| f−1
n (a)|

| f−1
n (a)|

=
| fn(B j)|

| fn(B)|

where equality holds if and only ifB j = f−1
n ◦ fn(B j). Then

Pn f−1
n (a) =

1
| fn(B)|

∑
b∈ f−1

n (a)

1

| f−1
n ◦ fn(b)|

=
1

| fn(B)|
| f−1

n (a)|

| f−1
n (a)|

=
1

| fn(B)|

The entropy ofPn f−1
n (a) is Hn{a} = ln | fn(B)|, and it grows infinitely with| fn(B)|.

It follows from Proposition 6 that if the amount of information communicated by a de-
terministic transition kernelδ f (b)(Ai) is finite for any input distributionP(B j), then the image
of f must be finite. Note that this argument is not based on any specific notion of mutual
information. For Shannon information, one can show that thefollowing inequality holds for a
deterministic kernelδ f (b)(Ai):

IS{a,b} = ∑
b∈B

P(b) ∑
a∈A

[

ln
δ f (b)(a)

P f−1(a)

]

δ f (b)(a)

= ∑
b∈B

P(b)

[

ln
1

P f−1◦ f (b)

]

≤ ln | f (B)| (15)

22



This inequality is obtained by maximizingIS{a,b} for a fixed deterministic kernelδ f (b)(Ai)
over all input distributionsP(b). The supremum ofIS{a,b} is achieved atP(b) inducing a
constant distributionP f−1(a) onA, such as the maximizing distribution in Proposition 6.

5.4 Exponential kernels

If the function f : B→A is not injective, then there exist input distributionsP(B) with non-zero
entropy such thatP f−1(a) = 1 for somea∈ A. In this case, the output entropyH{a} is zero,
and the transition kernel communicates no information. Moreover, if f : B → A has infinite
domain and finite image, then its injectivity index is zero: lim|B|→∞ | f (B)|/|B| = 0. This
means that such a function can potentially ‘loose’ an infinite amount of information. Non-
deterministic transition kernels, on the other hand, are quite different in this sense, because
there exist kernels that always communicate some information. An important example are
exponential transition kernels.

Let Ω = A×B andx : A×B→ R be a utility function. Consider variational problems (2)
and (3) withIKL(p,q) := Ep{ln[p/q]} defining Shannon mutual information (14). The unique
solutions to these problems are joint probability measurespβ ∈ P(A×B) that belong to a
one-parameter exponential family:

dPβ (a,b) = eβ [x(a,b)+Φ(β−1)]dP(a)dP(b) ,

whereΦ(β−1) is determined from the normalization condition

e−β Φ(β−1) =

∫

A×B
eβ x(a,b) dP(a)dP(b)

The corresponding exponential transition kernels are

dPβ (a | b) = eβ [x(a,b)+Φ(β−1,b)]dP(a) , dPβ (b | a) = eβ [x(a,b)+Φ(β−1,a)]dP(b)

whereΦ(β−1,b) andΦ(β−1,a) now depend onb anda, as they are computed using partial
integrals:

e−β Φ(β−1,b) =
∫

A
eβ x(a,b) dP(a) , e−β Φ(β−1,a) =

∫

B
eβ x(a,b) dP(b)

If the producteβ Φ(β−1,b) dP(b) does not depend onb, andeβ Φ(β−1,a)dP(a) does not de-
pend ona, then exponential kernels do not depend on the marginal measuresdP(a) anddP(b)
respectively. Indeed, becausedP(a) =

∫

BdP(a,b) anddP(b) =
∫

AdP(a,b), we have the fol-
lowing equations

∫

B
eβ [x(a,b)+Φ(β−1,b)]dP(b) = 1,

∫

A
eβ [x(a,b)+Φ(β−1,a)]dP(a) = 1

Then, using the facts thateβ Φ(β−1,b) dP(b) andeβ Φ(β−1,a)]dP(a) are constants, we obtain:

e−β Φ(β−1,b) = [dP(b)/db]
∫

B
eβ x(a,b) db, e−β Φ(β−1,a) = [dP(a)/da]

∫

A
eβ x(a,b) da

Using these relations and the Bayes formula the exponentialtransition kernels can be written
in the following simple form

dPβ (a | b) =
eβ x(a,b) da

∫

Aeβ x(a,b) da
, dPβ (b | a) =

eβ x(a,b) db
∫

Beβ x(a,b) db
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Here, the normalizing integrals are constant, because theydo not depend ona or b, and one
can introduce thefree energyfunctionΦ0(β−1) := −β−1 ln

∫

Beβ x(a,b) db or thefree cumulant
generating functionΨ0(β ) = −βΦ0(β−1). If one of the marginal distributions, sayP(B), is
fixed, then Shannon information has the following expression:

IS{a,b} =
∫

A
dP(a)

∫

B

[

ln
dP(b | a)

dP(b)

]

dP(b | a)

=
∫

A
dP(a)

∫

B

{

β x(a,b)− ln
∫

B
eβ x(a,b) db− ln[dP(b)/db]

}

dP(b | a)

= β Epβ {x}−Ψ0(β )+H{b} , (16)

Observe also that the expected utility is the derivative ofΨ0(β ) = ln
∫

Beβ x(a,b) db:

Epβ {x} =
∫

A
dP(a)

∫

B

x(a,b)eβ x(a,b)

∫

Beβ x(a,b) db
db=

dΨ0(β )
dβ

∫

A
dP(a) = Ψ′

0(β ) (17)

Here, H{b} = −
∫

B ln[dP(b)/db]dP(b) is the differential entropy ofP(B) (assuming that
the densitydP(b)/db exists). Also, becauseIS{a,b} = H{b} − H{b | a}, the difference
Ψ0(β )− β Ψ′

0(β ) is the conditional differential entropyH{b | a}. Expected utility defined
by equation (17) is independent of the input distributionP(B).

One can show that the productseβ Φ(β−1,b) dP(b) andeβ Φ(β−1,a)dP(a) are constant when
A= (A,+) andB= (B,+) are equivalent locally compact groups with invariant measuresda
anddb, and the utility function is translation invariant:x(a+ c,b+ c) = x(a,b). An impor-
tant example is whenA andB are equivalent linear spaces, andx(a,b) depends only on the
differencea−b (e.g. x(a,b) = −1

2‖a− b‖2). In such cases, the simplified expressions and
equations (16) and (17) can be applied.

Joint exponential measuresPβ are mutually absolutely continuous for allβ ≥ 0. Further-
more, by Corollary 1 about the support of utility functionsx(a,b) and due to normalization of
probability measures, conditionPβ (Ai ×B j) = 0 impliesx(a,b) is constant onAi ×B j , and one
may extend this to the casex(a,b) =−∞. As is well known, exponential distributions approxi-
mate the Diracδ -function forβ → ∞. The corresponding joint probability measures define de-
terministic transition kernelsδ f (b)(a), where functionf is such thatx( f (b),b) = supa∈Ax(a,b),
and one may include the case supx(a,b) = ∞.

5.5 Qualitative example

Strict inequalities of Theorem 2 present an interesting opportunity for constructing an ex-
ample such that〈x, pf 〉 = −∞ or F(pf ) = ∞ for any deterministic transition kernel satisfy-
ing a proper information constraintF(p) ≤ λ < λ or a non-trivial expected utility constraint
Ep{x} = 〈x, p〉 ≥ υ > υ0. If solutions pβ to the corresponding variational problems exist,
then inequalities〈x, pβ 〉 > −∞ or F(pβ ) < ∞ suggest that a non-deterministic transition ker-
nel satisfying the same constraints may have a finite expected utility and information. Such
an example would provide qualitative rather than quantitative illustration. Let us consider one
prototypical example.

Let a ∈ A and b ∈ B be real variables, and let us consider the problem of information
transmission betweenA and B that is optimal with respect to a measurable utility function
x : A×B→R. If b∈ (R,B,P) is a random variable with known distribution, then the expected
utility Ep{x} is:

Ep{x} =
∫

A

∫

B
x(a,b)dP(a,b) =

∫

B
dP(b)

∫

A
x(a,b)dP(a | b) =

∫

B
Ep{x | b}dP(b)
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HereEp{x | b} denotes the conditional expected utility, and it is maximized by choosing the
optimal conditional probability measuredP(a | b). The maximum of information is communi-
cated by an injective functiona= f (b), defining a deterministic transition kernel. The optimal
function is such thatx( f (b),b) = supa∈A x(a,b). On the other hand, if no information can be
communicated, thendP(a | b) = dP(a). A deterministic kernel communicating no informa-
tion is defined by a constant function. Note, however, that one can still choose an optimal
constant function ¯a1 = f (b). Indeed, ifx(a,b) is differentiable and concave ina, then ā1 is
a solution to the equation∇a

∫

Bx(a,b)dP(b) = 0. In particular, ifx(a,b) = −1
2(a−b)2, then

∇a
∫

Bx(a,b)dP(b) =
∫

B(b−a)dP(b), andā1 =
∫

BbdP(b) = Ep{b}, which is the well-known
classical method minimizing mean-squared deviation. Thus, for constantf (b) = a1

Epf {x} =−
1
2

∫

B
(a1−b)2dP(b)≤−

1
2

∫

B
(Ep{b}−b)2 dP(b) =−

1
2

Var{b}

The value on the right depends on the distributionP(B), and there are many examples of distri-
butions with unbounded variance, such asdP(b) = [π(b2+1)]−1db (the Cauchy distribution).
Indeed, the integral

∫

B(a−b)2(b2+1)−1dbdoes not converge onB= (−∞,∞).
Let us assume now that some limited information can be communicated so thatdP(a | b) 6=

dP(a) (and hencedP(b | a) 6= dP(b)). For example, this can be the information associated
with b belonging to some subset ofB, such asb> 0 or b≤ 0. In each case, one can choose
different optimal elements ¯a1 and ā2. A more ‘precise’ information would correspond to a
larger number of subsetsBi ⊂ B and optimal elements ¯ai , such that

Epf {x} ≤ −
1
2

n

∑
i=1

∫

Bi

(āi −b)2dP(b)

Observe that the value above still depends onP(B), and because for any finite partition of the
real line there are some unbounded intervals, one can takeP(B) giving a negatively infinite
value on the right. For example, ifP(B) is the Cauchy distribution, then the integral

∫

(a−
b)2(b2 + 1)db does not converge on the intervalsB1 = (−∞,0] or B2 = [0,∞). Thus,b can
be distributed in such a way that the expected value of utility x(a,b) = −1

2(a−b)2 cannot be
larger than−∞ for any deterministicpf with finite image| f (B)|. The expected utility can have
finite values only if f has an infinite image. By the argument of Proposition 6, however, this
means that the function can communicate an infinite amount ofinformation. Let us show now
that there exist non-deterministic transition kernels forthis problem achieving finite expected
utility and communicating finite amount of information.

Indeed, consider an exponential kernel from Section 5.4, optimal for constraints on Shan-
non mutual information. Because the utility functionx(a,b) = −1

2(a− b)2 is translation in-
variantx(a+ c,b+ c) = x(a,b), we can use the simplified expressions from Section 5.4. In
particular,Ψ0(β ) = ln

√

2πβ−1, and the exponential kernel is Gaussian

dPβ (a | b) =
1

√

2πβ−1
e−β 1

2(a−b)2
da

Conditional expectationEpβ {x | b} is constant for allb∈ B:

Epβ {x | b}=−
1
2

1
√

2πβ−1

∫ ∞

−∞
(a−b)2 e−β 1

2(a−b)2
da=−

1
2

√

2πβ−3
√

2πβ−1
=−

1
2

β−1

and therefore

Epβ {x} =
∫

B
Epβ {x | b}dP(b) =−

1
2

β−1
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The expression above can also be easily obtained from equation (17) as the derivative of
Ψ0(β ) = ln

√

2πβ−1. The optimal valueβ−1 ≥ 0 depends on the amountλ of mutual in-
formation, and it can be computed using equation (16) by inverting λ = IS{a,b}:

β = 2πe1−2[H{b}−λ ]

The valueβ depends on the differenceH{b}−λ , which equals to the conditional differential
entropyH{b | a}, becauseIS{a,b} = H{b}−H{b | a} = λ . Therefore, ifH{b | a} is finite,
thenβ > 0, andEpβ {x} is finite for all λ > 0.

Other examples can be constructed using the same principles. For instance, ifA= B= N,
and the utility functionx(a,b) is a polynomial of degreem≥ 1, then one can distributeb∈ B
according toP(b) = [bm+1ζ (m+1)]−1, whereζ (k) = ∑b∈N b−k is the Riemann zeta function.
In this case, the expected utility is negatively infinite forany deterministic kernelδ f (b)(a), if
f has finite image satisfying a finite information constraint.The optimal transition kernels
satisfying both finite expected utility and finite information constraints in such problems are
non-deterministic. These examples demonstrate that deterministic and non-deterministic tran-
sition kernels are qualitatively different, because theirexpected utilities can be separated by
infinity.

5.6 Application: Deterministic and non-deterministic algorithms

Because Markov transition kernels give a non-deterministic generalization of functions, they
can be used to model various input-output or information processing systems. Computational
machines and algorithms are examples of such systems, and wenow discuss how they can be
represented by transition kernels and the corresponding variational problems. Results of this
work may have interesting applications to the study of algorithms and computation.

An algorithm Γ is defined as a system of computations transforming input words w0 in
some finite alphabet into output (e.g. final) wordswt (e.g. [24]). Each word in the domain of
definition ofΓ can be considered as initial wordw0. In a deterministic algorithm, the compu-
tation process is performed by a sequence of transformations γ(wt) = wt+1 of words, where
γ is called thedirect processingoperator [21] or a transition function. In a non-deterministic
algorithm, these transitions are randomized according to some local probabilities. The com-
putational process may terminate reaching a final word (answer), terminate without reaching
a final word (error) or continue the computations indefinitely. In addition, when computation
terminates with a non-final word, one may distinguish between errors of the first and second
kinds (i.e. false positives and false negatives). Algorithms may be restricted to run in poly-
nomial time of the size of input words or produce only certaintypes of errors (i.e. one-sided
errors).

The computational cost ofΓ(w0) can be associated with resources or complexity of com-
putations, such as the length of the output sequence(w1, . . . ,wt), if wt is final:

l(Γ(w0),w0) :=

{

t if Γ(w0) = (w1, . . . ,wt) andwt is a final word
∞ otherwise

A Boolean loss function can be defined byδ∞(l(Γ(w0),w0)), whereδ∞(·) indicates an error
(i.e. one, if the algorithm does not terminate or terminateswith a non-final word). A utility
of computation can be defined by any function proportional tonegative loss, such as Boolean
utility x(Γ(w0),w0) = 1−δ∞(l(Γ(w0),w0)). Maximization of expectationEp{x} for Boolean
utility is maximization of the probability that computation terminates with a final word.
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Both deterministic and non-deterministic algorithms compute a function from the set of
input wordsw0, for which the computation terminates with an answer, onto the set of final
words wt . The main difference is that a non-deterministic algorithmcan compute the pair
(w0,wt) in different ways and with different running times, so that the cost or utility of a
non-deterministic computation is a random variable. We canrepresent algorithms by Markov
transition kernels as follows.

Let B be the set of all input wordsw0, and letA be the set of all, possibly infinite, output
word sequences{wt}. A deterministic algorithm corresponds to a deterministicMarkov tran-
sition kernelδΓ(b)(a), so that each input word is mapped to a particular output wordsequence:
B∋w0 7→ Γ(w0) = (w1, . . . ,wt , . . .)∈A. A non-deterministic algorithm assigns non-zero prob-
abilitiesPΓ(a | b) to different output sequences. We say that two algorithms are equivalent, if
they correspond to identical Markov transition kernels. Points in the setP(A×B), which is a
Choquet simplex, correspond to equivalence classes of all deterministic and non-deterministic
algorithms, defined onB, together with all distributionsP(B) of input words. This formalism
allows us to consider optimization of algorithms in the context of variational problems (2), (3)
and their generalizations.

Indeed, optimization of a class of algorithms subject to constraintEp{l} ≤ υ on the ex-
pected loss or a constraintEp{x}≥υ on the expected utility has been considered in complexity
theory (e.g. see [16]). For example, the complexity class ofbounded error probabilistic poly-
nomial time machines (BPP) is defined as a class of problems solved by non-deterministic
algorithms with constraints on the expected error (i.e.Ep{x} ≥ υ > 1/2, wherex is Boolean
utility). Information constraints have also been considered in complexity theory, such as con-
straints on communication capacity (communication complexity) or in the class of probabilis-
tically checkable proofs (PCP), which is defined as a non-deterministic algorithm with con-
straints on randomness and a number of queries to an oracle (i.e. a constraint on information
amount about the proof). Problems of optimization of algorithms can be considered as a search
for the corresponding class of optimal Markov transition kernels (i.e. variational problems of
the third kind in information theory). The optimal value functions (5)–(8) put the expected
utility constraintEp{x} ≥ υ in duality with a constraintF(p)≤ λ on an information resource.
Thus, the study of performance and computational complexity of the algorithms is related to
the study of their information constraints.

6 Discussion

We have studied families of optimal measures using a generalization of the classical varia-
tional problems of information theory [33, 34] and statistical physics [17]. In fact, standard
formulae of these theories relating Gibbs measures, free energy, entropy and channel capacity
can be recovered simply by defining information constraintsusing the Kullback-Leibler di-
vergence. The main motivation for the generalization was understanding the mutual absolute
continuity of measures within optimal families, and it was established that such families ex-
ist if an abstract information resource has a strictly convex dual, which is a geometric rather
than algebraic property of information. We have discussed also that strict convexity of the
dual functional is related to separability of different variational problems, which is useful in
the context of optimization. Our method does not depend on commutativity of the algebra
of random variables or observables, and for this reason the result holds both for commutative
(classical) and non-commutative (quantum) measures.

Mutual absolute continuity of optimal probability measures allowed us to show that de-
terministic transition kernels are strictly sub-optimal.This result is important not only for

27



applications of optimization theory, but also for some theoretical questions in studies of al-
gorithms and computational complexity, where much of the effort is devoted to the question
whether non-deterministic procedures have any qualitative advantage over deterministic. Our
results suggest that in a broad class of optimization problems with constraints on informa-
tion optimal deterministic kernels do not exist. Moreover,an example has been constructed
to show that the difference between expected utilities of deterministic and non-deterministic
kernels can be infinite for all proper constraints on an information resource.

These results about strict sub-optimality of deterministic kernels do not contradict the
established understanding in the classical theory of statistical decisions that asymptotically
randomized policies cannot be better than deterministic (e.g. see [35] or more recently [22]).
Indeed, these asymptotic results are concerned with obtaining all, possibly infinite amount of
information, in which case there are deterministic optimalkernels. Our results, on the other
hand, are about optimality subject to constraints making such asymptotic solutions unfeasible.
Note also that a simple randomization of a function’s outputcan only decrease (loose) the
amount of information it communicates. However, we have compared deterministic and non-
deterministic kernels that can communicate the same amountof information. The possibility
to separate deterministic and non-deterministic transitions qualitatively (i.e. by infinity) is
particularly interesting, because it confirms a common intuition in applied optimization about
numerous problems, in which non-deterministic algorithmsoutperform all known determinis-
tic methods.
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derivées partielles. Collége de France, Paris (1967)
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