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Abstract In this paper, we consider an optimal control problem in which the
control takes values from a discrete set and the state and control are sub-
ject to continuous inequality constraints. By introducing auxiliary controls
and applying a time-scaling transformation, we transform this optimal control
problem into an equivalent problem subject to additional linear and quadratic
constraints. The feasible region defined by these additional constraints is dis-
connected, and thus standard optimization methods struggle to handle these
constraints. We introduce a novel exact penalty function to penalize constraint
violations, and then append this penalty function to the objective. This leads
to an approximate optimal control problem that can be solved using standard
software packages such as MISER. Convergence results show that when the
penalty parameter is sufficiently large, any local solution of the approximate
problem is also a local solution of the original problem. We conclude the paper
with some numerical results for two difficult train control problems.
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1 Introduction

In many practical optimal control problems arising in engineering applica-
tions, the control is only allowed to assume a finite number of values. Such
problems are called optimal discrete-valued control problems. Optimal discrete-
valued control problems arise in many applications, including train control [2],
switched amplifier design [11], submarine operation [10], sensor scheduling [16]
and hybrid power system design [15,13]. To solve an optimal discrete-valued
control problem, we need to determine the order in which the different control
values are operated, as well as the times at which the control switches from
one value to another. Since the ordering of control values is a discrete variable,
classical optimal control methods are not applicable to this type of problem.

In [2], the driving strategy for a diesel train traveling on a level track is con-
sidered. The train only has three modes of operation — accelerate, coast and
brake — and thus the problem of controlling the train so that fuel consump-
tion is minimized is an optimal discrete-valued control problem. An optimality
condition is derived in [2] for solving this problem. However, this condition is
only applicable to the train problem, and is not applicable to general optimal
discrete-valued control problems.

In [6], a time-scaling transformation technique is developed for solving opti-
mal discrete-valued control problems. Under this transformation, the original
problem with variable control switching points is transformed into an ordi-
nary optimal control problem with known and fixed switching points. Thus,
the transformed problem can be easily solved by many existing optimal con-
trol methods. However, the time-scaling transformation introduces many ad-
ditional switches, and therefore the transformed problem is not equivalent to
the original problem.

In [14], a new approach is proposed for solving nonlinear mixed discrete
programming problems. The idea is to introduce a set of new continuous vari-
ables and transform the discrete programming problem into an ordinary op-
timization problem. In principle, this new problem can be solved using many
existing nonlinear programming techniques. However, the transformation in-
troduces additional equality and inequality constraints, and these constraints
are extremely difficult to satisfy in practice.

In [17], an exact penalty method is proposed for solving semi-infinite pro-
gramming problems. This method is adapted in [5] to develop an effective
algorithm for solving optimal control problems with continuous inequality con-
straints. It is shown that, under some mild assumptions, making the penalty
parameter sufficiently large forces the continuous inequality constraints to be
satisfied. In this case, a local optimal solution of the penalty problem is also
a local optimal solution of the original problem.

In this paper, we consider a class of optimal discrete-valued control prob-
lems, where there is an upper bound on the maximum number of control
switches. We first apply the transformation reported in [14], under which the
discrete-valued control is expressed as a linear combination of piecewise con-
stant controls subject to a linear equality constraint and a set of quadratic
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inequality constraints. The original problem can then be written equivalently
as an optimal control problem with piecewise constant controls subject to the
original inequality constraints and the new constraints. Then, the time-scaling
transformation [6] is applied to the transformed problem, yielding an optimal
control problem with piecewise constant controls and fixed switching times.
To solve this new problem, we introduce an exact penalty function, which is
motivated by the work in [5,17–19], and construct a corresponding penalty
problem. Convergence results show that when the penalty parameter is suffi-
ciently large, the penalty problem is equivalent to the original problem. This
penalty problem can be solved easily by many existing optimization software
packages. Numerical results show that our approach can effectively solve two
difficult train control problems.

2 Problem Formulation

2.1 A Discrete-Valued Control Problem

Consider the following dynamic system on the time horizon [0, T ]:

ẋ(t) = f(x(t),u(t)) (1)

with the initial and terminal conditions

x(0) = x0, x(T ) = xf , (2)

where x ∈ R
n is the state vector, T is a given terminal time, and x0 and xf are

given vectors. We assume that the function f : Rn ×R
r → R

n is continuously
differentiable with respect to each of its arguments.

Let
U = {u1,u2, · · · ,um},

where each uj ∈ R
r is a given vector. We assume that the control u is a

discrete-valued control taking values in U. Thus, u is completely determined
by specifying:

– The order in which it assumes the different values in U (the so-called
switching sequence); and

– The times at which it switches from one value inU to another (the so-called
switching times).

In this paper, we assume that there is an upper bound N on the maxi-
mum number of control switches. A function u : [0, T ] → U with at most
N switches/discontinuities is called an admissible control. Let U denote the
class of all such admissible controls.

Our optimal discrete-valued control problem is stated as follows: Given the
dynamic system (1)-(2), find an admissible control u ∈ U such that the cost
function

J(u) =

∫ T

0

L0(x(t),u(t))dt (3)
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is minimized subject to the constraints

gi(x(t),u(t)) ≤ 0, t ∈ [0, T ], i = 1, 2, · · · , p. (4)

Let this problem be referred to as Problem (P ). Here, we assume that the
functions L0 and gi, i = 1, · · · , p, are continuously differentiable with respect
to each of their arguments.

Most numerical techniques for solving nonlinear optimal control problems
— for example, control parametrization (see [12]) and state discretization (see
[1,4]) — are only applicable when the control range is a continuous set. Thus,
such methods are not applicable to Problem (P ), in which the control range
consists of a finite number of discrete points.

The time-scaling transform introduced in [6], which is also called the Con-
trol Parametrization Enhancing Technique (CPET), is an effective method for
solving optimal discrete-valued control problems. This transformation involves
expanding the number of control switches to allow for every possible switching
sequence, and then mapping the switching times to fixed points in a new time
horizon. This yields a new optimization problem that can be solved using stan-
dard optimization techniques, such as sequential quadratic programming with
active set strategy (see [9]). However, the problem with this transformation
is that it introduces many “artificial” switches, and thus the optimal control
obtained may have more than the maximum allowable number of switches.
Consequently, the transformed optimal control problem obtained by using the
time-scaling transformation in [6] is not equivalent to the original problem.
We will introduce an equivalent transformation in the next section.

2.2 Problem Transformation

Let V denote the class of all piecewise constant functions mapping [0, T ] into
R

m and having no more than N switches/discontinuities. Let v ∈ V , where
v(t) =

(

v1(t), v2(t), · · · , vm(t)
)

, be an auxiliary control function.
We impose the following constraints:

m
∑

j=1

vj(t) = 1, t ∈ [0, T ], (5a)

vj(t)(1 − vj(t)) ≤ 0, t ∈ [0, T ], j = 1, 2, · · · ,m, (5b)

0 ≤ vj(t) ≤ 1, t ∈ [0, T ], j = 1, 2, · · · ,m. (5c)

The constraints (5) ensure that at each time t ∈ [0, T ], there exists exactly
one j ∈ {1, · · · ,m} such that vj(t) = 1 and vk(t) = 0 for all k 6= j.

To continue, we let

ū(t) =

m
∑

j=1

vj(t)uj . (6)
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Since v ∈ V and constraints (5) hold, ū(t) ∈ U for all t ∈ [0, T ]. Moreover,
since v contains at most N switches, so does ū. It follows that ū is an ad-
missible control for Problem (P ). In fact, it is easy to see that any admissible
control for Problem (P ) can be written in the form of (6). Thus, by substituting
u(t) = ū(t) into the dynamical system (1), we obtain

ẋ(t) =

m
∑

j=1

vj(t)f(x(t),uj). (7)

Similarly, the constraints (4) become

m
∑

j=1

vj(t)gi(x(t),uj) ≤ 0, t ∈ [0, T ], i = 1, 2, · · · , p. (8)

Our new optimal control problem is stated as follows: Given the dynamic
system (7) with the initial and terminal conditions (2), find a control v ∈ V

such that the cost function

J̄(v) = J(ū) =
m
∑

j=1

∫ T

0

vj(t)L0(x(t),uj)dt

is minimized subject to constraints (5) and (8). Let this problem be referred
to as Problem (P̄ ).

It is clear that Problems (P̄ ) and (P ) are equivalent. Thus, we have the
following result.

Theorem 1 Let v⋆ =
(

v⋆1 , v
⋆
2 , · · · , v

⋆
m

)

∈ V and

ū⋆(t) =
m
∑

j=1

v⋆j (t)uj .

Then v⋆ is an optimal control for Problem (P̄ ) if and only if ū⋆ is an optimal

control for Problem (P ).

Problem (P̄ ) is a standard optimal control problem subject to the continuous
inequality constraints (8) and the new constraints (5). In principle, many op-
timal control software packages — for example, MISER [3] — can be used to
solve this problem. However, in reality, there are two major difficulties that
prevent us from solving Problem (P̄ ) directly:

– The switching times for the new controls vj are decision variables.
– The feasible region defined by the constraints (5) is a disconnected set.

We can overcome the first difficulty by applying the time-scaling transforma-
tion (see [6]), in which the variable switching times are mapped into fixed
switching times. For the second difficulty, we will introduce an exact penalty
function method that is inspired by our previous work in [5]. The details are
provided in the next section.
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3 Solution Procedure

3.1 Time-Scaling Transformation

Recall that the control v ∈ V in Problem (P̄ ) has at most N switches. Let τk
denote the kth switching time. Then

0 = τ0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τN+1 = T.

We map these switching times to fixed time points as follows. Let s ∈ [0, N+1]
be a new time variable, and relate t to s by the following differential equation:

ṫ(s) = µ(s),

t(0) = 0,
(9)

where µ(s) = θk = τk − τk−1 for s ∈ [k − 1, k), k = 1, · · · , N + 1. We can
express the piecewise constant function µ as follows:

µ(s) =
N+1
∑

k=1

θkχ[k−1,k)(s),

where χI is the indicator function of I defined by

χI(s) =

{

1, if s ∈ I,

0, otherwise.

Let θ = [θ1, · · · , θN+1]
T ∈ R

N+1, and note that θk = τk − τk−1 is the duration
of the kth control value. For each k = 1, · · · , N + 1, we have

t(k) =

∫ k

0

µ(s)ds

=

∫ k

0

[

θ1χ[0,1)(s) + · · ·+ θN+1χ[N,N+1](s)
]

ds

= θ1 + · · ·+ θk = τk.

This shows that the transformation (9) maps each integer k to the kth switch-
ing time. Furthermore,

t(N + 1) =

∫ N+1

0

µ(s)ds =

N+1
∑

l=1

θl = T. (10)

Clearly,

0 ≤ θk = τk − τk−1 ≤ T, k = 1, · · · , N + 1. (11)

Thus,

0 ≤ µ(s) ≤ T, s ∈ [0, N + 1].
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Under the time-scaling transform, the control vj in Problem (P̄ ) becomes

ṽj(s) = vj(t(s)) =

N+1
∑

k=1

ξjkχ[k−1,k)(s),

where ξjk is the value of vj on [τk−1, τk). Constraints (5) become:

m
∑

j=1

ξjk = 1, k = 1, · · · , N + 1, (12a)

ξjk(1− ξjk) ≤ 0, j = 1, · · · ,m, k = 1, · · · , N + 1, (12b)

0 ≤ ξjk ≤ 1, j = 1, · · · ,m, k = 1, · · · , N + 1. (12c)

Define
ξj = [ξj1, · · · , ξj(N+1)]

T ∈ R
N+1

and
ξ = [ξT1 , · · · , ξ

T
m]T ∈ R

m×(N+1).

Now, by applying the time-scaling transform to Problem (P̄ ), the dynamical
system (7) becomes

dx̃(s)

ds
= µ(s)

m
∑

j=1

ṽj(s)f(x̃(s),uj) =

N+1
∑

k=1

m
∑

j=1

θkξjkf(x̃(s),uj)χ[k−1,k)(s), (13)

where
x̃(s) = x(t(s)).

The initial and terminal conditions (2) become

x̃(0) = x0, x̃(N + 1) = xf . (14)

Problem (P̄ ) may now be written equivalently as the following problem, which
we call Problem (P̃ ): Given the dynamic system (13)-(14), find θ ∈ R

N+1 and
ξ ∈ R

m×(N+1) such that the cost function

J̃(θ, ξ) =

∫ N+1

0

L̃0(s, x̃(s), θ, ξ)ds,

where

L̃0(s, x̃(s), θ, ξ) =

N+1
∑

k=1

m
∑

j=1

θkξjkL0(x̃(s),uj)χ[k−1,k)(s),

is minimized subject to the constraints

g̃i(s, x̃(s), ξ) =

N+1
∑

k=1

m
∑

j=1

ξjkgi(x̃(s),uj)χ[k−1,k)(s) ≤ 0,

s ∈ [0, N + 1], i = 1, · · · , p,

(15)

and constraints (10), (11) as well as (12).
In the next section, we will introduce an exact penalty function to develop

an effective computational method for solving Problem (P̃ ).
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3.2 An Exact Penalty Function

Problem (P̃ ) is an optimal control problem subject to the linear constraints
(10), (12a) and (12c), the quadratic constraints (12b), and the nonlinear con-
tinuous inequality constraints (15). The continuous inequality constraints (15)
are continuously differentiable with respect to each of their arguments. By
adopting the idea introduced in [5], we construct the following exact penalty
function:

Fκ(θ, ξ, ǫ) =















J̃(θ, ξ), if ǫ = 0, and (θ, ξ) is feasible

for Problem (P̃ ),

J̃(θ, ξ) + ǫ−α∆(θ, ξ, ǫ) + κǫβ, if ǫ > 0,
+∞, otherwise,

where ǫ > 0 is a new decision variable, and the constraint violation ∆(θ, ξ, ǫ)
is defined by

∆(θ, ξ, ǫ) =

N+1
∑

k=1

m
∑

j=1

max
{

0, ξjk(1 − ξjk)− ǫγ
}2

+

N+1
∑

k=1

m
∑

j=1

max
{

0, ξjk − 1− ǫγ
}2

+

N+1
∑

k=1

m
∑

j=1

max
{

0,−ξjk − ǫγ
}2

+

N+1
∑

k=1

{

m
∑

j=1

ξjk − 1− ǫγ
}2

+

p
∑

i=1

∫ N+1

0

max
{

0, g̃i(s, x̃(s), ξ)− ǫγ
}2

ds+
(

t(N + 1)− T − ǫγ
)2

+

N+1
∑

k=1

max{0,−θk − ǫγ}2.

Here, α, β and γ are positive real numbers, and κ is a penalty parameter.
Next, we define

Sǫ =
{

(θ, ξ,ǫ) ∈ R
N+1 × R

m×(N+1) × [0,∞) :

t(N + 1)− T = ǫγ

− θk ≤ ǫγ , k = 1, · · · , N + 1,
m
∑

j=1

ξjk − 1 = ǫγ , k = 1, · · · , N + 1,

ξjk(1− ξjk) ≤ ǫγ , j = 1, · · · ,m, k = 1, · · · , N + 1,

ξjk − 1 ≤ ǫγ , j = 1, · · · ,m, k = 1, · · · , N + 1,

− ξjk ≤ ǫγ , j = 1, · · · ,m, k = 1, · · · , N + 1,

N+1
∑

k=1

m
∑

j=1

ξjkgi(x̃(s),uj)χ[k−1,k)(s) ≤ ǫγ , i = 1, 2, · · · , p
}

.

(16)
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Now, consider the following problem: Given the dynamical system (13)-(14),
find a triple (θ, ξ, ǫ) ∈ R

N+1 ×R
m×(N+1) × [0,∞) such that the penalty func-

tion Fκ(θ, ξ, ǫ) is minimized. This problem is referred to as Problem (P̃κ).

In the next section, we will see that, under some mild assumptions, when the
penalty parameter κ is sufficiently large, the satisfaction of the constraints (10),
(11), (12) and (15) will be achieved, i.e. ∆(θ, ξ, ǫ) = 0 for ǫ = 0. Furthermore,
an optimal solution of Problem (P̃κ) is an optimal solution of Problem (P̃ ).

3.3 Convergence Results

To obtain our main result, we need the following definition.

Definition 1 Suppose that the following implication holds:

p
∑

i=1

∫ N+1

0

ϕi(s)
∂g̃i(s, x̃(s), ξ)

∂ξ
ds = 0 =⇒ ϕi(s) = 0

for all s ∈ [0, N+1], i = 1, · · · , p. Then, we say that the constraint qualification
is satisfied for the continuous inequality constraints (15).

Let {κl}
∞

l=1 be an increasing sequence of penalty parameters such that κl → ∞.
Furthermore, let (θ(l),∗, ξ(l),∗, ǫ(l),∗) denote a local optimal solution of Problem
(P̃κl

). We assume that the following hypotheses are satisfied.

(H1) The constraint qualification defined in Definition 1 is satisfied at (θ, ξ) =
(θ∗, ξ∗), where (θ∗, ξ∗) is a local optimal solution of Problem (P̃ ).

(H2) There exists real numbers δ1 > 0 and δ2 > 0 such that

lim
l→∞

max{0, Gι(s, x̃(s), θ
(l),∗, ξ(l),∗)}

(ǫ(l),∗)δ1
= 0

and

lim
l→∞

Hη(s, x̃(s), θ
(l),∗, ξ(l),∗)

(ǫ(l),∗)δ2
= 0,

where Gι, ι = 1, · · · , p + (3m + 1)(N + 1) and Hη, η = 1, · · · , N + 2, are,
respectively, the inequality constraints and the equality constraints of Problem

(P̃ ).

Theorem 2 Suppose that (θ(l),∗, ξ(l),∗, ǫ(l),∗) → (θ∗, ξ∗, ǫ∗) as l → +∞, and

that the hypotheses (H1)-(H2) are satisfied. Then, ǫ∗ = 0 and (θ∗, ξ∗) ∈ S0,

where S0 is defined by (16) with ǫ = 0.
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Theorem 3 Suppose that γ > α, δ = min(δ1, δ2) > α, 2δ > α+1, 2γ > α+1.
Then

Fκl
(θ(l),∗, ξ(l),∗, ǫ(l),∗)

ǫ(l),∗→ǫ∗=0
−−−−−−−−−−−−−−−−−→
(θ(l),∗,ξ(l),∗)→(θ∗,ξ∗)∈S0

Fκl
(θ∗, ξ∗, 0) = J̃(θ∗, ξ∗)

∇Fκl
(θ(l),∗, ξ(l),∗, ǫ(l),∗)

ǫ(l),∗→ǫ∗=0
−−−−−−−−−−−−−−−−−→
(θ(l),∗,ξ(l),∗)→(θ∗,ξ∗)∈S0

∇Fκl
(θ∗, ξ∗, 0) = (∇J̃(θ∗, ξ∗), 0).

Theorem 4 Let ǫ(l),∗ → ǫ∗ = 0, (θ(l),∗, ξ(l),∗) → (θ∗, ξ∗) ∈ S0 be such that

Fκl
(θ∗, ξ∗, ǫ∗) is finite, where S0 is as defined by (16) with ǫ = 0. Then,

(θ∗, ξ∗) is a local optimal solution of Problem (P̃ ).

Theorem 5 Suppose that (θ(l),∗, ξ(l),∗, ǫ(l),∗) → (θ∗, ξ∗, ǫ∗) as l → +∞, and

that the parameters α and γ satisfy the same conditions as in Theorem 3.

Then, there exists a l0 > 0 such that ǫ(l),∗ = 0 and (θ(l),∗, ξ(l),∗) = (θ∗, ξ∗),
for all l ≥ l0. Furthermore (θ∗, ξ∗) is a local optimal solution of Problem (P̃ ).

The proofs of these theorems are quite similar to the proofs of Theorems 5.1-
5.4 in [5] and Theorem 4 in [8]. Thus, they are omitted. From the results
above, we can conclude that under some mild assumptions, for a sufficiently
large κ, a local optimal solution of Problem (P̃κ) is a local optimal solution of
Problem (P̃ ). Such a solution can then be used to construct a corresponding
local solution of Problem (P ).

Problem (P̃κ) is a standard optimal control problem with fixed switching
points and can be readily solved by various existing optimal control techniques.
Here, the optimal control software package MISER 3.3 [3] is used. In the next
section, two practical problems concerning optimal driving strategies for trains
are solved by the proposed method.

4 Numerical Results

4.1 Optimal Train Control on a Level Track

The following model for the motion of a train is given in references [2,6]:

ẋ1 = x2

ẋ2 = ϕ(x2)u1 + ζ2u2 + ρ(x2),

where x1 is the train’s distance along the track, x2 is the train’s speed, u1

is the fuel setting and u2 models the deceleration applied to the train by the
brakes. The function ϕ, which models the tractive effort, is defined by

ϕ(x2) =















ζ1/x2, if x2 ≥ ζ3 + ζ4,
ζ1/ζ3 + η1(x2 − ζ3 + ζ4)

2

+ η2(x2 − ζ3 + ζ4)
3,

if ζ3 − ζ4 ≤ x2 < ζ3 + ζ4,

ζ1/ζ3, if x2 < ζ3 − ζ4,
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ζ1 ζ2 ζ3 ζ4 ζ5 ζ6 ζ7
1.5 1 1.4 0.1 -0.015 -0.00003 -0.000006

Table 1 Values of ζi, i = 1, · · · , 7.

where ζ1, ζ2, ζ3 and ζ4 are constants, and

η1 = ζ1

[( 1

ζ3 + ζ4
−

1

ζ3

) 3

4ζ24
+

1

2ζ4(ζ3 + ζ4)2

]

,

and

η2 = ζ1

[

−
( 1

ζ3 + ζ4
−

1

ζ3

) 3

4ζ34
−

1

4ζ24 (ζ3 + ζ4)2

]

.

The function ρ, which models the resistive deceleration due to friction, is given
by

ρ(x2) = ζ5 + ζ6x2 + ζ7x
2
2.

The constants ζi, i = 1, · · · , 7, are defined in Table 1. The initial and terminal
states are

x(0) = [0, 0]T , x(1500) = [18000, 0]T .

This means that the train starts from the origin at rest and comes to rest
again 18, 000 meters away at t = 1500. Since the train is not allowed to go
backwards, a non-negativity constraint is imposed on the speed,

x2(t) ≥ 0, t ∈ [0, 1500].

The train driver can choose from three operation modes for the train: ac-
celerate (powered by the engine), coast (no power), and brake (decelerate
by the brakes). These three modes correspond to the following values for
u = [u1, u2]

T : [1, 0]T , [0, 0]T , and [0,−1]T . Thus, we have

U =
{

[1, 0]T , [0, 0]T , [0,−1]T
}

.

The objective is to minimize the fuel consumption, i.e.,

min J(u) =

∫ 1500

0

u1(t)dt.

Here, we assume that the maximum number of switches is N = 2. We apply
our method in conjunction with MISER 3.3 to solve the problem.

Figure 1 and Figure 2 show the optimal trajectory of x1 and x2, respec-
tively. From the figures, we see that the train accelerates for the first quarter
of the journey, then coasts almost until the end. The brakes are applied briefly
at the end before the train stops.

Figure 4 and Figure 5 show the optimal controls u1 and u2, respectively.
We see that the control u2 stays zero for almost the entire time horizon, and
assumes the value −1 less than two seconds before the end.

The minimum fuel consumption is 205.06. This is slightly higher than
the result of 202.67 reported in [6], which was obtained using the control
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Fig. 1 The trajectory x1(t) against t
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Fig. 2 The speed x2(t) against t

parametrization enhancing transform (CPET) directly with 6 switching points.
It is worth noting that our method obtains the same result as in [6] when we
increase the maximum number of switches to N = 6. More importantly, unlike
CPET, our method ensures that the constraint on the maximum number of
switches is always satisfied.
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Fig. 4 The optimal control u1 against t

4.2 Optimal Train Control on an Uneven Track

We now consider a more complicated train control problem [2,7]. The dynamics
for this problem are

ẋ1 = x2

ẋ2 = ϕ(x2)u1 + ζ2u2 + ρ(x2) + ϑ(x1),

where x1, x2, u1, u2, ϕ(·) and ρ(·) are as defined in Example 1, and ξi, i =
1, · · · , 7, are as defined in Table 1. The function ϑ(·) is the gravitational ac-
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Fig. 5 The optimal control u2 near the terminal time

celeration due to the non-constant gradient of the track given by:

ϑ(x1) =



















































0, if x1 ≤ 20000− ζ8,

−0.05{ (x1−20000)2

ζ2
8

+ (x1−20000)
ζ8

+ 1}, if 20000− ζ8 < x1 ≤ 20000,

−0.05{− (x1−20000)2

ζ2
8

+ (x1−20000)
ζ8

+ 1}, if 20000 < x1 ≤ 20000 + ζ8,

−0.1, if 20000 + ζ8 < x1 ≤ 25000− ζ8,

−0.05{− (x1−25000)2

ζ2
8

− (x1−25000)
ζ8

+ 1}, if 25000− ζ8 < x1 ≤ 25000,

−0.05{ (x1−25000)2

ζ2
8

− (x1−25000)
ζ8

+ 1}, if 25000 < x1 ≤ 25000 + ζ8,

0, if x1 > 25000 + ζ8,

where ζ8 = 300.
The initial and terminal states are

x(0) = [0, 0]T , x(2800) = [50000, 0]T .

Again, we have a non-negativity constraint on x2 to prevent the train from
going backwards:

x2(t) ≥ 0, t ∈ [0, 2800].

We also impose a speed limit on the train that decreases as the train moves
further along the track:

0.0002x1(t) + x2(t) ≤ 28, t ∈ [0, 2800].

The control u = [u1, u2]
T is now restricted to the discrete set

U =
{

[1, 0]T , [0, 0]T , [0,−1]T , [2, 0]T
}

.
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Fig. 6 The trajectory x1(t) against t

The objective is

min J(u) =

∫ 2800

0

u1(t)dt

Here, we assume that the maximum allowable number of switches is N = 8.
Using our method, the problem is again solved by MISER 3.3. Figure 6 and
Figure 7 show the optimal trajectory of x1 and x2, respectively. Figure 8 and
Figure 9 show the optimal controls u1 and u2, respectively. Note that the
optimal control does not assume the value [2, 0]T . From Figure 10, we can
see that the continuous inequality constraint is satisfied throughout the entire
time horizon.

To solve this highly complex problem, we first used our method to deter-
mine the optimal switching sequence. After identifying the optimal switching
sequence, we then applied CPET directly with the control sequence fixed to
refine the switching times. The minimum fuel consumption is 937.42. This is
better than the result obtained in [7], which uses the CPET directly with 18
switching points and has a larger fuel consumption of 938.63.

5 Conclusion

In this paper, a new computational method is proposed for solving optimal
discrete-valued control problems. By introducing new controls and applying
an equivalent transformation, the original problem becomes a standard op-
timal control problem subject to equality and inequality constraints. Then,
an exact penalty method is employed to solve the transformed problem. Our
numerical results for the train control problems in Section 4 show that this
approach is superior to the direct application of the control parametrization
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Fig. 8 The optimal control u1 against t

enhancing transform, which involves introducing many artificial switches. Our
optimal solutions require less switchings and always satisfy the constraint on
the maximum allowable number of switchings.
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