Skip to main content
Log in

Large-scale standard pooling problems with constrained pools and fixed demands

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We present a new variant of the standard pooling problem in which demands are fixed and there are specific constraints on the intermediate pool. We propose a new formulation composed of proportion-flow variables, and we design an exact branch and bound algorithm by combining existing algorithms. Difficult instances have been generated to demonstrate the efficiency of our method, and our results are compared with those of Couenne, a generic MINLP solver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adhya N., Tawarmalani M., Sahinidis N.: A Lagrangian approach to the pooling problem. Ind. Eng. Chem. Res. 38(5), 1956–1972 (1999)

    Article  Google Scholar 

  2. Al-Khayyal F., Falk J.: Jointly constrained biconvex programming. Math. Oper. Res. 8, 273–286 (1983)

    Article  Google Scholar 

  3. Alfaki, M.: Strong formulations for the pooling problem. In: Toulouse Global Optimization workshop, Toulouse, France (2010)

  4. Almutairi H., Elhedhli S.: A new Lagrangean approach to the pooling problem. J. Glob. Optim. 45(2), 237–257 (2009)

    Article  Google Scholar 

  5. An L., Tao P.: The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann. Oper. Res. 133(1–4), 23–46 (2005)

    Article  Google Scholar 

  6. Androulakis I., Maranas C., Floudas C.: αBB: a global optimization method for general constrained nonconvex problems. J. Glob. Optim. 7(4), 337–363 (1995)

    Article  Google Scholar 

  7. Audet C., Brimberg J., Hansen P., Le Digabel S., Mladenovic N.: Pooling problem: alternate formulations and solution methods. Manag. Sci. 50(6), 761–776 (2004)

    Article  Google Scholar 

  8. Audet C., Hansen P., Jaumard B., Savard G.: A branch and cut algorithm for nonconvex quadratically constrained quadratic programming. Math. Program. 87(1), 131–152 (2000)

    Google Scholar 

  9. Bao X., Sahinidis N., Tawarmalani M.: Multiterm polyhedral relaxations for nonconvex, quadratically constrained quadratic programs. Optim. Methods Softw. 24(4), 485–504 (2009)

    Article  Google Scholar 

  10. Belotti P., Lee J., Liberti L., Margot F., Wächter A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24(4), 597–634 (2009)

    Article  Google Scholar 

  11. Ben-Tal A., Eiger G., Gershovitz V.: Global minimization by reducing the duality gap. Math. Program. 63(1–3), 193–212 (1994)

    Article  Google Scholar 

  12. Floudas C., Gounaris C.: A review of recent advances in global optimization. J. Glob. Optim. 45(1), 3–38 (2009)

    Article  Google Scholar 

  13. Floudas C., Visweswaran V.: Primal-relaxed dual global optimization approach. J. Optim. Theory Appl. 78(2), 187–225 (1993)

    Article  Google Scholar 

  14. Foulds L., Haugland D., Jörnsten K.: A bilinear approach to the pooling problem. Optimization 24(1–2), 165–180 (2002)

    Google Scholar 

  15. Furman K., Ioannis P.: A novel MINLP-based representation of the original complex model for predicting gasoline emissions. Comput. Chem. Eng. 32(12), 2857–2876 (2008)

    Article  Google Scholar 

  16. Gounaris C., Misener R., Floudas C.: Computational comparison of piecewise-linear relaxations for pooling problems. Ind. Eng. Chem. Res. 48(12), 5742–5766 (2009)

    Article  Google Scholar 

  17. Haverly C.: Studies of the behavior of recursion for the pooling problem. ACM SIGMAP Bull. 25, 19–28 (1978)

    Article  Google Scholar 

  18. Horst R., Thoai N.: DC programming: overview. J. Optim. Theory Appl. 103(1), 1–43 (1999)

    Article  Google Scholar 

  19. Jezowski J.: Review of water network design methods with literature annotations. Ind. Eng. Chem. Res. 49(10), 4475–4516 (2010)

    Article  Google Scholar 

  20. Karuppiah R., Grossmann I.: Global optimization for the synthesis of integrated water systems in chemical processes. Comput. Chem. Eng. 30(4), 650–673 (2006)

    Article  Google Scholar 

  21. Liberti L., Pantelides C.: An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms. J. Glob. Optim. 36(2), 161–189 (2006)

    Article  Google Scholar 

  22. Liu W., Floudas C.: Convergence of the (GOP) algorithm for a large class of smooth optimization problems. J. Glob. Optim. 6(2), 207–211 (1995)

    Article  Google Scholar 

  23. McCormick G.: Computability of global solutions to factorable nonconvex programs: part I—Convex underestimating problems. Math. Program. 10(1), 147–175 (1976)

    Article  Google Scholar 

  24. Meyer C., Floudas C.: Global optimization of a combinatorially complex generalized pooling problem. AIChE J. 52(3), 1027–1037 (2006)

    Article  Google Scholar 

  25. Misener R., Floudas C.: Advances for the pooling problem: modeling, global optimization, and computational studies (survey). Appl. Comput. Math. 8(1), 3–22 (2009)

    Google Scholar 

  26. Pham V., Laird C., El-Halwagi M.: Convex hull discretization approach to the global optimization of pooling problems. Ind. Eng. Chem. Res. 48(4), 1973–1979 (2009)

    Article  Google Scholar 

  27. Phong T., Tao P., An L.: A method for solving d.c. programming problems. Application to fuel mixture nonconvex optimization problem. J. Glob. Optim. 6(1), 87–105 (1995)

    Article  Google Scholar 

  28. Quesada I., Grossmann I.: Global optimization of bilinear process networks with multicomponent flows. Comput. Chem. Eng. 19, 1219–1242 (1995)

    Article  Google Scholar 

  29. Ryoo H., Sahinidis N.: A branch-and-reduce approach to global optimization. J. Glob. Optim. 8(2), 107–138 (1996)

    Article  Google Scholar 

  30. Sahinidis N.: Baron: a general purpose global optimization software package. J. Glob. Optim. 8(2), 201–205 (1996)

    Article  Google Scholar 

  31. Sahinidis N., Tawarmalani M.: Accelerating branch-and-bound through a modeling language construct for relaxation-specific constraints. J. Glob. Optim. 32(2), 259–280 (2005)

    Article  Google Scholar 

  32. Sherali H., Adams W.: Nonconvex Optimization and Its Applications, Chap. A Reformulation-Linearization Technique for Solving Discrete and Continuous Non Convex Problems. Kluwer Academic Publisher, Dordrecht (1999)

    Book  Google Scholar 

  33. Sherali H., Tuncbilek C.: New reformulation linearization/convexification relaxations for univariate and multivariate polynomial programming problems. Oper. Res. Lett. 21(1), 1–9 (1997)

    Article  Google Scholar 

  34. Tawarmalani M., Sahinidis N.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software and Applications. Kluwer Academic Publisher, Dordrecht (2002)

    Google Scholar 

  35. Tuy H.: D(C)-optimization and robust global optimization. J. Glob. Optim. 47(3), 485–501 (2010)

    Article  Google Scholar 

  36. Tuy H., Hoai-Phuong N.: A robust algorithm for quadratic optimization under quadratic constraints. J. Glob. Optim. 37(4), 557–569 (2007)

    Article  Google Scholar 

  37. Visweswaran V., Floudas C.: New properties and computational improvement of the GOP algorithm for problems with quadratic objective functions and constraints. J. Glob. Optim. 3(4), 439–462 (1993)

    Article  Google Scholar 

  38. Wicaksono D., Karimi I.: Piecewise MILP under—and overestimators for global optimization of bilinear programs. AIChE J. 54(4), 991–1008 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Ruiz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz, M., Briant, O., Clochard, JM. et al. Large-scale standard pooling problems with constrained pools and fixed demands. J Glob Optim 56, 939–956 (2013). https://doi.org/10.1007/s10898-012-9869-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-012-9869-4

Keywords

Navigation