Skip to main content
Log in

A smoothing Newton method for mathematical programs governed by second-order cone constrained generalized equations

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we consider a class of mathematical programs governed by second-order cone constrained parameterized generalized equations. We reformulate the necessary optimality conditions as a system of nonsmooth equations under linear independence constraint qualification and the strict complementarity condition. A set of second order sufficient conditions is proposed, which is proved to be sufficient for the second order growth of the stationary point. The smoothing Newton method in [40] is employed to solve the system of nonsmooth equations whose strongly BD-regularity at a solution point is demonstrated under the second order sufficient conditions. Several illustrative examples are provided and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alizadeh F., Goldfarb D.: Second-order cone programming. Math. Program. 95, 3–51 (2003)

    Article  Google Scholar 

  2. Anitescu M., Tseng P., Wright S.J.: Elastic-mode algorithms for mathematical programs with equilibrium constraints: global convergence and stationarity properties. Math. Program. Ser. A 110, 337–371 (2007)

    Article  Google Scholar 

  3. Bonnans J.F., Shapiro A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    Google Scholar 

  4. Bouza G., Still G.: Mathematical programs with complementarity constraints: convergence properties of a smoothing method. Math. Oper. Res. 32(2), 467–483 (2007)

    Article  Google Scholar 

  5. Chen J.-W., Cho Y.J., Kim J.K., Li J.: Multiobjective optimization problems with modified objective functions and cone constraints and applications. J. Global Optim. 49(1), 137–147 (2011)

    Article  Google Scholar 

  6. Chen, L., Goldfarb, D.: An active-set method for mathematical programs with linear complementarity constraints. Manuscript, Department of Industrial Engineering and Operations Research, Columbia University (2007)

  7. Chen X.D., Sun D., Sun J.: Complementarity functions and numerical experiments for second-order cone complementarity problems. Comput. Optim. Appl. 25, 39–56 (2003)

    Article  Google Scholar 

  8. Chinchuluun A., Pardalos P.M., Migdalas A., Pitsoulis L.: Pareto Optimality, Game Theory and Equilibria. Springer, Berlin (2008)

    Book  Google Scholar 

  9. Clarke F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    Google Scholar 

  10. De Miguel V., Friedlander M.P., Nogales F.J., Scholtes S.: A two-sided relaxation scheme for mathematical programs with equilibriums constraints. SIAM J. Optim. 16(2), 587–609 (2005)

    Article  Google Scholar 

  11. Facchinei F., Jiang H., Qi L.: A smoothing method for mathematical programs with equilibrium constrains. Math. Program. 85, 107–134 (1999)

    Article  Google Scholar 

  12. Faraut U., Korányi A.: Analysis on Symmetric Cones. Oxford Mathematical Monographs, Oxford University Press , New York (1994)

    Google Scholar 

  13. Fischer A.: Solution of monotone complementarity problems with locally Lipschitzian functions. Math. Program. 76, 513–532 (1997)

    Google Scholar 

  14. Fletcher R., Leyffer S., Ralph D., Scholtes S.: Local convergence of SQP methods for mathematical programs with equilibrium constraints. SIAM J. Optim. 17, 259–286 (2006)

    Article  Google Scholar 

  15. Fletcher R., Leyffer S.: Solving mathematical program with complementarity constraints as nonlinear programs. Optim. Methods Softw. 19, 15–40 (2004)

    Article  Google Scholar 

  16. Fukushima, M., Lin, G.H.: Smoothing methods for mathematical programs with equilibrium constraints. In: Proceedings of the International Conference on Informatics Research for Development of Knowledge Society Infrastructure, pp. 206–213 (2004)

  17. Fukushima M., Luo Z.Q., Pang J.S.: A globally convergent sequential quadratic programming algorithm for mathematical programs with linear complementarity constraints. Comput. Optim. Appl. 10, 5–34 (1998)

    Article  Google Scholar 

  18. Fukushima M., Luo Z.Q., Tseng P.: Smoothing functions for second-order cone complementarity problems. SIAM J. Optim. 12, 436–460 (2001)

    Article  Google Scholar 

  19. Fukushima M., Tseng P.: An implementable active-set algorithm for computing a B-stationary point of the mathematical program with linear complementarity constraints. SIAM J. Optim. 12, 724–739 (2002)

    Article  Google Scholar 

  20. Giallombardo G., Ralph D.: Multiplier convergence in trust-region methods with application to convergence of decomposition methods for MPECs. Math. Program. Ser. A 112, 335–369 (2008)

    Article  Google Scholar 

  21. Giannessi F., Maugeri A., Pardalos P.M.: Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  22. Gowda M.S., Sznajder R., Tao J.: Some P-properties for linear transformations on Euclidean Jordan algebras. Linear Algebra Appl. 393, 203–232 (2004)

    Article  Google Scholar 

  23. Jiang H., Ralph D.: Extension of quasi-Newton methods to mathematical programs with complementarity constraints. Comput. Optim. Appl. 25, 123–150 (2003)

    Article  Google Scholar 

  24. Jiang H., Ralph D.: QPECGEN, a Matlab generator for mathematical programs with quadratic objectives and affine variational inequality constraints. Comput. Optim. Appl. 13, 25–59 (1999)

    Article  Google Scholar 

  25. Jiang H., Ralph D.: Smooth SQP methods for mathematical programs with nonlinear complementarity constraints. SIAM J. Optim. 10, 779–808 (2000)

    Article  Google Scholar 

  26. Kong L., Xiu N.-H.: New smooth C-functions for symmetric cone complementarity problems. Optim. Lett. 1(4), 391–400 (2007)

    Article  Google Scholar 

  27. Leyffer S., Lopez-Calva G., Nocedal J.: Interior methods for mathematical programs with complementarity constraints. SIAM J. Optim. 17, 52–77 (2006)

    Article  Google Scholar 

  28. Li, Y.-M., Wang, X.-T., Wei, D.-Y.: Improved smoothing Newton methods for symmetric cone complementarity problems. Optim. Lett. (2011). doi:10.1007/s11590-010-0274-y

  29. Lin G.-H., Fukushima M.: A modified relaxation scheme for mathematical programs with complementarity constraints. Ann. Oper. Res. 133, 63–84 (2005)

    Article  Google Scholar 

  30. Lin G.-H., Fukushima M.: Some exact penalty results for nonlinear programs and mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 118(1), 67–80 (2003)

    Article  Google Scholar 

  31. Liu X.-W., Sun J.: Generalized stationary points and an interior-point method for mathematical programs with equilibrium constraints. Math. Program. Ser. B 101, 231–261 (2004)

    Article  Google Scholar 

  32. Liu Y.-J., Zhang L.-W.: Convergence analysis of the augmented Lagrangian method for nonlinear second-order cone optimization problems. Nonlinear Anal. 67(5), 1359–1373 (2007)

    Article  Google Scholar 

  33. Luo Z.-Q., Pang J.-S., Ralph D.: Mathematical Programs with Equilibrium Constraints. Cambridge University press, Cambridge (1996)

    Book  Google Scholar 

  34. Mifflin R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15, 957–972 (1997)

    Google Scholar 

  35. Variational Analysis and Generalized Differentiation, I: Basic Theory. Springer, Berlin (2006)

    Google Scholar 

  36. Outrata J.V., Kočvara M., Zowe J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer, Dordrecht (1998)

    Google Scholar 

  37. Outrata J.V.: Mathematical programs with equilibrium constraints: theory and numerical methods. In: Haslinger, J., Stavroulakis, G.E. (eds.) Nonsmooth Mechanics of Solids. CISM Courses and Lecture Notes, vol. 485, pp. 221–274. Springer, New York (2006)

    Google Scholar 

  38. Outrata J.V., Sun D.: On the coderivative of the projection operator onto the second-order cone. Set Valued Anal. 16(7–8), 999–1014 (2008)

    Article  Google Scholar 

  39. Pang J.S., Fukushima M.: Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. Comput. Manage. Sci. 2, 21–56 (2005)

    Article  Google Scholar 

  40. Qi L., Sun D., Zhou G.: A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities. Math. Program. 87, 1–35 (2000)

    Google Scholar 

  41. Qi L., Sun J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)

    Article  Google Scholar 

  42. Ralph D., Wright S.J.: Some properties of regularization and penalization schemes for MPECs. Optim. Methods Softw. 19, 527–556 (2004)

    Article  Google Scholar 

  43. Rockafellar R.T., Wets R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  Google Scholar 

  44. Scholtes S.: Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim. 11, 918–936 (2001)

    Article  Google Scholar 

  45. Scholtes S., Stöhr M.: Exact penalization of mathematical programs with equilibrium constraints. SIAM J. Control Optim. 37(2), 617–652 (1999)

    Article  Google Scholar 

  46. Yan, T., Fukushima, M.: Smoothing method for mathematical programs with symmetric cone complementarity constraints. Technical report 2009-017, Department of Applied Mathematics and Physics, Kyoto University (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Wu.

Additional information

The research is supported by the National Natural Science Foundation of China under project No. 11071029 and the Fundamental Research Funds for the Central Universities.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Zhang, L. & Zhang, Y. A smoothing Newton method for mathematical programs governed by second-order cone constrained generalized equations. J Glob Optim 55, 359–385 (2013). https://doi.org/10.1007/s10898-012-9880-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-012-9880-9

Keywords

Navigation