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Abstract We study a multi-leader, one-follower game model in supply chain opti-

mization where n suppliers compete to provide a single product for a manufacturer.

We regard the selling price of each supplier as a pre-determined parameter and consider

the case that suppliers compete on the basis of delivery frequency to the manufacturer.

Each supplier’s profit depends not only on its own delivery frequency, but also on other

suppliers’ frequencies through their impact on manufacturer’s purchase allocation to

the suppliers. We first solve the follower’s (manufacturer’s) purchase allocation prob-

lem by deducing an explicit formula of its solution. We then formulate the n leaders’

(suppliers’) game as a generalized Nash game with shared constraints, which is theo-

retically difficult, but in our case could be solved numerically by converting to a regular

variational inequality problem. For the special case that the selling prices of all sup-

pliers are identical, we provide a sufficient and necessary condition for the existence

This paper was presented at The Eighth International Conference on Optimization: Techniques
and Applications (ICOTA8) in Shanghai, December 2010.

James Ang
Department of Decision Sciences, National University of Singapore. E-mail:
bizangsk@nus.edu.sg

Masao Fukushima
Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto
University. E-mail: fuku@i.kyoto-u.ac.jp

Fanwen Meng
Centre for Maritime Studies, National University of Singapore. E-mail: cmsmf@nus.edu.sg

Takahiro Noda
Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto
University. E-mail: noda@amp.i.kyoto-u.ac.jp

Jie Sun
Department of Decision Sciences and Risk Management Institute, National University of
Singapore. Tel.: +65-6516-6448 Fax: +65-6779-2621 E-mail: jsun@nus.edu.sg



2

and uniqueness of the Nash equilibrium. An explicit formula of the Nash equilibrium

is obtained and its local uniqueness property is proved.

Keywords Supply Chain Management · Leader-Follower Game · Nash Equilibrium ·
Nonlinear Programming

1 Introduction

Variational inequalities (VI) provide an avenue for addressing equilibrium conditions as

a compact form for Nash games with continuous-strategies. When the games are gener-

alized to allow mutually dependent strategy sets, the resulting games are referred to as

generalized Nash games or generalized Nash equilibrium problems, of which variational

conditions may be represented as quasi-variational inequalities (QVI). In particular,

when all players in a game share common constraints, such a game is called a gen-

eralized Nash game with shared constraints. Let N be a set of players and N = |N |.
Let xi ∈ <mi and ϑi be the strategy and the objective function with respect to player

i ∈ N . The generalized Nash game with shared constraints is defined as follows. For

each i ∈ N , given x−i, player i seeks to solve the following parameterized optimization

problem for xi:

min
xi

ϑ(xi; x−i)

s. t. xi ∈ Ki(x−i),

where x−i := (x1, . . . , xi−1, xi+1, . . . , xN )T , Ki(x−i) := {z ∈ <mi | (z;x−i) ∈ S}
with (z;x−i) := (x1, . . . , xi−1, z, xi+1, . . . , xN )T . Here T stands for the transpose and

S ⊆ <
PN

i=1
mi denotes the feasible set defined by the shared constraints. Further, a

strategy tuple x = (x1, . . . , xN )T is called a generalized Nash equilibrium (GNE) of

this game if, for each i ∈ N , xi is an optimal solution of the above problem.

The early study of GNEs dates back at least to Debreu [6] and Arrow and De-

breu [1], where a generalized Nash game was called a social equilibrium (problem) or

an abstract economy. The generalized Nash game with shared constraints was studied

by Rosen [18]. In recent years, generalized Nash games have been intensively studied,

for instance, see [11,17,7] and the references therein. In particular, the Nash equi-

librium has been investigated in various fields of economics, engineering science, and

management science. Motivated by such an application in supply chain management,

we investigate a specific class of generalized Nash game in this paper. Specifically, we

consider a supply chain network consisting of a single manufacturer and a number of

suppliers where the manufacturer has to accommodate orders emanating from differ-

ent locations and at different times under uncertain demand from the customers. Due

to the large number of potential suppliers, each supplier has little bargain power on

price. Instead, they would usually bid on the capability to deliver within a certain time

window. In short, suppliers should ship as often as possible without the associated cost

increase due to expediting or relying on more expensive modes of transport. The man-

ufacturer, on the other hand, has to decide on the amount to allocate to each supplier

as it does not want a deadlock situation where all the stocks arrive at the factory at the

same time. Put simply, for a fixed price, the manufacturer may have to choose a set of

suppliers who can ship more frequently. While many papers have discussed the “man-

agement” side of competition where delivery speed is treated as a source of competitive
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advantage, as we see e.g., from [9,12,13,16,14,19,10,4,3,2,5], our focus in this paper

is to address the “optimization” side of this problem; namely, we are concerned with

the general mathematical structure of the problem, possible global optimal solutions

and the uniqueness of the solution.

The analysis of this paper is basically based on the framework of variational inequal-

ities and the leader-follower game theory. For a general survey of stochastic optimiza-

tion problems with equilibrium constraints, see the recent work by Lin and Fukushima

[15]. The contributions of this paper are as follows.

1. We extend the 2 person-game as studied in the literature to n-leaders and 1-follower

game. We show that the order allocation problem of the follower is a convex sepa-

rable quadratic programming problem and its solution formula is derived.

2. We demonstrate that the supplier-competition model can be reformulated as a

generalized Nash game with shared constraints, in which each player’s feasible set

depends on other players’ decisions.

3. While this game is theoretically difficult to deal with, our third contribution is that,

for the special case where all suppliers offer the same selling price, we show that an

all positive Nash equilibrium exists and it can be computed by solving a quadratic

equation system.

4. Under the same setting, we also derive an explicit formula for the unique Nash

equilibrium in the leaders’ game and provide necessary and/or sufficient conditions

for the existence and uniqueness of such a solution.

The rest of this paper is organized as follows. Following the introduction, Section 2

provides a formulation of supplier competition based on delivery frequency with pre-

determined price and demand uncertainty. Section 3 investigates the Nash equilibrium

of the delivery competition game. A sufficient condition for the existence of a nontrivial

Nash equilibrium is established. Section 4 discusses the special case where all suppliers

sell their products at the same price, followed by some management insights. Section 5

concludes the paper.

2 Model Development of the Multi-leader Single-follower Game

In this section, we consider the situation where the suppliers are the leaders and the

manufacturer is the follower. This is a bi-level or two-stage problem, in which the

suppliers of the upper level problem will compete on delivery frequency, depending on

the follower’s action of the lower-level problem associated with the manufacturer. We

shall establish this model and then investigate its properties of interest. First, we list

the notations on the variables and parameters related to all players involved in the

supply chain. For i = 1, 2, . . . , n:

Variables:

ri: expected delivery frequency of supplier i;

λi : demand allocations to each supplier i determined by the manufacturer.

Parameters:

D: the manufacturer’s random demand which follows a certain distribution;

E[D]: mathematical expectation of D;

h: unit inventory holding cost of the manufacturer;
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li : lower bound of the expected delivery frequency of supplier i;

ui: upper bound of the expected delivery frequency of supplier i;

pi: unit selling price of the product set by supplier i;

ci: unit cost of production of supplier i;

Ci: fixed cost of production of supplier i;

ki: unit cost of delivery of supplier i;

Ki: fixed cost of delivery of supplier i.

In the game presented below, ri, i = 1, . . . , n, are decision variables determined by

suppliers, while λi, i = 1, . . . , n, are decision variables determined by the manufacturer.

In the following analysis, we assume that the parameters h > 0, ui ≥ li > 0, pi > 0,

ci > 0, Ci > 0, ki > 0, and Ki > 0 are fixed scalars. For simplicity of discussion,

we consider the expectation of the manufacturer’s demand, E[D] > 0, throughout this

paper.

In the problem under consideration, we assume that suppliers may set different

prices pi of the product and those prices are fixed constants. Moreover, we assume that

the selling price pi of the product is greater than the sum of unit production cost ci
and unit transportation cost ki of the product, i.e., pi > ci + ki, for each supplier i.

As to the variables, each supplier i has to make the decision ri on delivery frequency

of the product, while the respective demand allocations λi are determined by the

manufacturer based on the prices pi and delivery frequencies ri given by all suppliers.

Since each λi represents a fraction or a portion of the total demand assigned to supplier

i, they satisfy
Pn

i=1 λi = 1, λi ≥ 0, i = 1, . . . , n. The objective of each supplier is to

maximize his profit, while the manufacturer aims to minimize the total cost incurred.

The suppliers compete each other on delivery frequencies in order to obtain the share

of demand allocation as much as possible from the manufacturer, thereby achieving

their maximum profits.

We formulate this problem as a bi-level non-cooperative game; in the upper level,

the suppliers compete on delivery frequencies without adopting any cooperative strat-

egy or share any information among them, while in the lower level, the manufacturer

determines the demand allocations to the suppliers in response to the delivery frequen-

cies given by the suppliers.

Let Φi(r, λ) denote the expected profit function of each supplier i (i = 1, . . . , n)

and Ψ(λ, r) the expected cost function of the manufacturer, where λ = (λ1, ..., λn)T

and r = (r1, ..., rn)T . Then it follows that

Φi(r, λ) ≡ (pi − ci − ki)λiE[D] − (Ci +Ki)ri. (1)

In addition, using the EOQ logic, it is known that the total purchase cost together

with the inventory cost of the manufacturer is as follows:

Ψ(λ, r) ≡
n
X

i=1

„

piλi +
hλ2

i

2ri

«

E[D]. (2)

The mathematical model of the underlying game is therefore stated as follows. Each

leader (supplier) solves the following problems for ri:

max
ri

Φi(r, λ) s.t. li ≤ ri ≤ ui, (3)
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while the follower (manufacturer) solves the following problem for λ:

min
λ

Ψ(λ, r) s.t.
n
X

i=1

λi = 1, λi ≥ 0, i = 1, . . . , n. (4)

This is a bi-level game. Apparently, the objectives of the upper-level problems (the

leaders’ problems) are of implicit form since λ is an optimal solution of the lower-level

problem (the follower’s problem) in which r is a parameter. Note also that the objective

function of the lower-level problem is strictly convex and quadratic, hence the optimal

solution, denoted by λ(r), exists and is unique. In other words, an optimal demand

allocation λ(r) by the manufacturer is uniquely determined in response to delivery

frequencies r of the suppliers. Thus, the underlying bi-level model can be rewritten as

max
ri

Φi(r, λ(r)) s.t. li ≤ ri ≤ ui, and λ(r) is the solution to (4). (5)

Now let us derive the optimal solution λ(r) of the manufacturer’s problem (4).

Since the problem is strictly convex and feasible, it is necessary and sufficient that the

optimal solution λ along with Lagrange multipliers v and w = (w1, . . . , wn)T satisfies

the following Karush-Kuhn-Tucker (KKT) conditions:

pi +
h

ri
λi − v −wi = 0 i = 1, . . . , n, (6)

n
X

i=1

λi = 1, (7)

λi ≥ 0, wi ≥ 0, λiwi = 0 i = 1, . . . , n. (8)

From (6) and (8), we have

wi = pi +
λi

ri
h− v ≥ 0, i = 1, . . . , n,

which implies

λi ≥
ri
h

(v − pi), i = 1, . . . , n.

Moreover, taking into account the complementarity condition (8), we obtain

λi = max
“

0,
ri
h

(v − pi)
”

, i = 1, . . . , n.

It then follows from (7) that

n
X

i=1

max
“

0,
ri
h

(v − pi)
”

= 1. (9)

Let v∗ denote the unique solution of this equation. Then the optimal solution λ∗ =

(λ∗1, . . . , λ
∗
n)T to problem (4) is given by

λ∗i = max
“

0,
ri
h

(v∗ − pi)
”

, i = 1, . . . , n. (10)

It is reasonable to require v∗ > pi for i = 1, . . . , n for otherwise we should instead

consider k(< n) leaders rather than the n leaders by ignoring the suppliers with zero

allocation. This requirement imposes a set of new constraints among the leaders as
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follows. From (9) and v∗ > pi , one has v∗ = (
Pn

j=1 rj)
−1(
Pn

j=1 rjpj +h). Substituting

it into (10), we have

λi(r) =
ri

Pn
j=1 rj

h

1 +
1

h

n
X

j=1

rj(pj − pi)
i

, i = 1, . . . , n. (11)

Thus the condition v∗ > pi (i.e. λi(r) > 0) for i = 1, . . . , n is equivalent to that there

exists a positive number ε such that

n
X

j=1

rj(pi − pj) ≤ h− ε, i = 1, . . . , n, (12)

which is a set of shared constraints for the upper level n-leaders game.

By substituting the optimal response λ(r) given by (11) into the function Φi defined

by (1), the objective function of supplier i becomes

Φi(r, λ(r)) =
(pi − ci − ki)E(D)ri

Pn
j=1 rj

h

1 +
1

h

n
X

j=1

rj(pj − pi)
i

− (Ci +Ki)ri.

For ease of notation, let

αi ≡
(pi − ci − ki)E(D)

Ci +Ki
, i = 1, . . . , n. (13)

Note that the assumption pi > ci + ki made earlier in this section ensures αi > 0 for

all i = 1, . . . , n. Moreover, define the functions φi(r) by

φi(r) ≡
1

Ci +Ki
Φi(r, λ(r)) =

αiri
Pn

j=1 rj

h

1 +
1

h

n
X

j=1

rj(pj − pi)
i

− ri, i = 1, . . . , n.

Since Ci + Ki > 0 for all i, in terms of finding an equilibrium point of the leaders’

game, we could instead consider φi(r) as the actual objective function of player i. Then,

taking into account the constraint (12), the optimization problem (5) of supplier i in

the upper-level can be rewritten as

max
ri

φi(ri, r−i) s.t.

n
X

j=1

rj(pi − pj) ≤ h− ε, li ≤ ri ≤ ui, (14)

where r−i = (r1, . . . , ri−1, ri+1, . . . , rn)T is given as exogenous. This is a generalized

Nash game, since the constraints in (14) contain the other suppliers’ variables r−i. We

denote the feasible set of problem (14) by Si(r−i). Moreover, let us define the set

S ≡

8

<

:

r = (r1, . . . , rn)T

˛

˛

˛

˛

˛

˛

n
X

j=1

rj(pi − pj) ≤ h− ε, li ≤ ri ≤ ui, i = 1, . . . , n

9

=

;

.

Then it is easy to see the following relation:

r ∈ S ⇐⇒ ri ∈ Si(r−i), i = 1, . . . , n.

In other words, the feasible sets of all leaders’ problems are defined by means of the

set S, that is, all leaders share the common constraints.
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Note that problem (14) is particularly a generalized Nash game with shared con-

straints. Recall that a vector r∗ = (r∗1 , . . . , r
∗
n)T is a generalized Nash equilibrium, if,

for each i = 1, . . . , n, r∗i is an optimal solution of the optimization problem (14) with

r−i fixed at r∗−i. It is known that a generalized Nash game can be reformulated as

a quasi-variational inequality problem (see Harker [11], Pang and Fukushima [17], for

example), which is, however, generally difficult to solve. In the next section, we will

concentrate on a special class of GNEs called a normalized equilibrium (see Rosen [18])

and discuss reformulation of a generalized Nash game with shared constraints as a

variational inequality problem (see, e.g., Facchinei and Kanzow [7]) that is much easier

to deal with than a quasi-variational inequality problem.

3 Variational Inequality Formulation and Normalized Equilibrium

First we remark that the set of inequalities
Pn

j=1 rj(pi − pj) ≤ h− ε, i = 1, . . . , n, can

be replaced by the single inequality
Pn

j=1 rj(p̄−pj) ≤ h−ε, where p̄ = max(p1, ..., pn).

Thus the set S is given by

S =

8

<

:

r = (r1, . . . , rn)T

˛

˛

˛

˛

˛

˛

n
X

j=1

rj(p̄− pj) ≤ h− ε, li ≤ ri ≤ ui, i = 1, . . . , n

9

=

;

. (15)

Define the function g(r) by

g(r) ≡
n
X

j=1

rj(p̄− pj) − h+ ε.

Then the supplier i’s problem (14) can be rewritten as

max φi(ri, r−i) s.t. g(ri , r−i) ≤ 0, li ≤ ri ≤ ui, (16)

and the KKT conditions for this problem are given by

∇riφi(ri, r−i) − µi∇rig(ri , r−i) − ξi + ηi = 0,

µi ≥ 0, g(ri , r−i) ≤ 0, µig(ri , r−i) = 0,

ξi ≥ 0, ui − ri ≥ 0, ξi(ui − ri) = 0,

ηi ≥ 0, ri − li ≥ 0, ηi(ri − li) = 0,

(17)

where µi, ξi, ηi are Lagrange multipliers. Since each problem (16) is a convex pro-

gramming problem with linear constraints, the KKT conditions (17) are necessary and

sufficient optimality conditions. Therefore, a vector r = (r1, . . . , rn)T is a GNE if and

only if it along with some Lagrange multipliers ξ1, . . . , ξn, η1, . . . , ηn and µ1, . . . , µn

satisfies the concatenated KKT system

∇riφi(ri, r−i) − µi∇rig(ri , r−i) − ξi + ηi = 0

µi ≥ 0, g(ri, r−i) ≤ 0, µig(ri, r−i) = 0

ξi ≥ 0, ui − ri ≥ 0, ξi(ui − ri) = 0

ηi ≥ 0, ri − li ≥ 0, ηi(ri − li) = 0

9

>

>

=

>

>

;

i = 1, . . . , n. (18)

Now let us consider the following variational inequality problem (VIP): Find a

vector r ∈ S such that

(r′ − r)T F (r) ≥ 0 ∀r′ ∈ S, (19)
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where F (r) is the mapping defined by

F (r) ≡

0

B

@

−∇r1
φ1(r)
...

−∇rnφn(r)

1

C

A
. (20)

Since the mapping F (r) is continuous and the set S is nonempty, closed, convex and

bounded, the VIP (19) has a solution. Since S is given by (15), a vector r is a solution of

the VIP (19) if and only if it along with some Lagrange multipliers ξ1, . . . , ξn, η1, . . . , ηn

and µ satisfies the following KKT conditions for the VIP (19):

∇riφi(ri, r−i) − µi∇rig(ri , r−i) − ξi + ηi = 0

µ ≥ 0, g(ri , r−i) ≤ 0, µg(ri , r−i) = 0

ξi ≥ 0, ui − ri ≥ 0, ξi(ui − ri) = 0

ηi ≥ 0, ri − li ≥ 0, ηi(ri − li) = 0

9

>

>

=

>

>

;

i = 1, . . . , n. (21)

Note that the only difference between the two KKT systems (18) and (21) is that (18)

contains the Lagrange multipliers µ1, . . . , µn corresponding to the respective shared

constraints g(ri, r−i) ≤ 0 in problems (16), while (21) contains only one Lagrange

multiplier µ corresponding to the constraint g(r) ≤ 0 in the VIP (19).

In fact, a GNE with Lagrange multipliers µi, i = 1, . . . , n, satisfying (18) and the

additional condition

µ1 = µ2 = · · · = µn

is a special GNE called a normalized equilibrium first studied by Rosen [18]. By direct

comparison of the two KKT systems (18) and (21), it is easily seen that a normalized

equilibrium can be obtained as a solution of the VIP (19).

Next we consider the uniqueness of a normalized equilibrium by way of the unique-

ness of a solution to the VIP (19). From the well known result in variational inequality

problems (see, e.g., Facchinei and Pang [8]), a solution of the VIP (19) is unique if the

mapping F (r) is strictly monotone. A sufficient condition for the strict monotonicity

of the mapping F (r) is that the Jacobian matrix F ′(r) is positive definite for any r.

Moreover, since an asymmetric square matrix A is positive definite if and only if its

symmetric part A+AT is positive definite, and any diagonally dominant matrix with

positive diagonal elements is positive definite, we can deduce that a normalized equilib-

rium is unique if the matrix F ′(r)+F ′(r)T is diagonally dominant and its diagonal ele-

ments are all positive. By the definition (20) of F (r), its Jacobian F ′(r) = (−∂2φi(r)
∂ri∂rj

),

which we denote A = (aij) for notational simplicity, is given by

aii =
2αi

R3

h

1 +
1

h

n
X

k=1

rk(pk − pi)
i

(R− ri), i = 1, . . . , n,

aij =
αi

R3

h

1 +
1

h

“
n
X

k=1

rk(pk − pi) − rj(pj − pi)
”i

(2ri −R)

− αi(pj − pi)

hR3 (2rirj + R2 − rjR), i, j = 1, . . . , n; i 6= j,

where αi are given by (13) and R ≡ Pn
j=1 rj . Therefore a normalized equilibrium is

unique if the following condition is satisfied for all i = 1, . . . , n:

2aii >
X

j 6=i

|aij + aji|. (22)
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It is not difficult to see that aii is always positive for each i. Although the condition

(22) need not always hold, we can verify that it holds, for example, when n < 4,

p1 = · · · = pn and c1 + k1 = · · · = cn + kn.

4 The Nash Equilibrium for Equally Priced Suppliers

In this section, we study properties, including the existence and uniqueness together

with the representation, of the Nash equilibrium of the leader-follower game discussed

in the last section. We assume that the prices are all equal, i.e., p1 = · · · = pn ≡ p, and

also explore how the suppliers compete by changing their delivery frequencies. Under

this assumption, we can delete the shared constraint in each supplier’s problem (14),

since it is automatically satisfied.

For ease of mathematical exposition, we allow (in theory) ri’s to be nonnegative

rather than assuming them to be strictly positive. The only requirement is that r1 +

· · · + rn 6= 0. As we will see below, this additional condition allows us to relax the

constraint li ≤ ri ≤ ui to simply ri ≥ 0, r 6= 0, while still preserving the existence and

uniqueness of the Nash equilibrium. Then, each supplier’s problem (14) is substantially

simplified to

max φi(ri, r−i) =
αiri

Pn
j=1 rj

− ri s.t. ri ≥ 0, (23)

where αi is defined by (13). This is no longer a generalized Nash game, but an ordinary

Nash game. It will be convenient to use the following shorthand notations:

σi ≡
n
X

j=1

j 6=i

rj ,

which is the sum of all components of r except ri.

4.1 Explicit formula for the unique Nash equilibrium

Lemma 1 For any given h > 0 and p > 0, the optimal solution λ = (λ1, . . . , λn)T of

the manufacturer’s problem (4) is uniquely given by

λi =
ri

Pn
j=1 rj

≥ 0, i = 1, . . . , n, (24)

with λ 6= 0.

Proof. Since p1 = · · · = pn = p, it is easy to verify that the unique solution to (9) is

given by

v∗ =
h

Pn
j=1 rj

+ p > 0.

Note that we must have

v∗ − p =
h

Pn
j=1 rj

> 0, (25)

since otherwise we have a contradiction to (9). Therefore, by (10), the optimal allocation

of the suppliers’ shares is given by (24). 2
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Remark 1 Contrary to our intuition of “giving all contracts to the most frequent sup-

plier”, the solution (24) suggests that any supplier with ri > 0 should have a positive

share of the market, no matter how small its frequency is. Practically, it suggests a

diversification strategy.

Lemma 2 For any given r ≥ 0, if αi > σi, then there exists r′i > 0 such that φi(r
′) >

0, where r′ := (r1, . . . , ri−1, r
′
i, ri+1, . . . , rn)T .

Proof. Note that

φi(r) = αi

“

1− σi

ri + σi

”

− ri.

It follows that

(ri + σi)φi(r) = αi

`

ri + σi − σi

´

− ri
`

ri + σi

´

= (αi − σi)ri − r2i .

Since αi − σi > 0 by assumption, there exists an r′i sufficiently small and positive such

that

(αi − σi) r
′
i − r′i

2
> 0,

which implies that φi(r
′) > 0. 2

Remark 2 In practice, Lemma 2 says each supplier will be able to turn to profit by just

adjusting its delivery frequency. It is reasonable for otherwise this supplier will have

no incentive to play the game. In fact, if φi(r) > 0 already, we have ri > 0 and can

simply take r′i = ri , whereas if φi(r) = 0, there must hold r′i 6= ri .

With help of Lemma 2, we derive a necessary and sufficient condition concerning the

uniqueness of the Nash equilibrium, which is one of main results of this paper.

Theorem 1 The game (23) has a unique positive Nash equilibrium

ri = (n− 1)
“

n
X

j=1

α−1
j

”−1
− α−1

i (n− 1)2
“

n
X

j=1

α−1
j

”−2
, i = 1, . . . , n (26)

if and only if

αi > σi, i = 1, . . . , n. (27)

Proof. Note that for any fixed r−i = (r1, . . . , ri−1, ri+1, . . . , rn)T , the function φi(r)

is strictly concave in ri, which can be seen by the fact that ∂2φi/∂r
2
i < 0.

Necessity. If r > 0 is the Nash equilibrium, then one must have

∂φi

∂ri
= 0 ⇐⇒ αiσi

(ri + σi)2
− 1 = 0 ⇐⇒ r2i + 2σiri + σ2

i − αiσi = 0.

For fixed σi, the last equation above has a real positive root ri only if αi > σi.

Sufficiency. Suppose (27) holds. We claim that at a Nash equilibrium, we have ri > 0

for all i. Indeed, if ri = 0, one has φi(r) = 0. By Lemma 2, there exists r′i > 0 such that

φi(r
′
i, r−i) > 0. Therefore, by unilaterally increasing ri , player i has an advantage. This

conflicts with the definition of a Nash equilibrium. It follows that a Nash equilibrium, if
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exists at all, must be strictly positive. We next prove that the Nash equilibrium exists

and is unique since it is the unique positive solution of the equation system

∂φi

∂ri
= 0 ⇐⇒

“

n
X

j=1

rj

”2
= αiσi, i = 1, . . . , n. (28)

Setting c ≡ αiσi, we have σi = cα−1
i , where c is independent of i since c =

`
Pn

j=1 rj
´2

by (28). Then

c

n
X

j=1

α−1
j =

n
X

j=1

σj = (n− 1)

n
X

j=1

rj = (n− 1)
√
c,

which yields

n
X

j=1

rj =
√
c = (n− 1)

“
n
X

j=1

α−1
j

”−1
, (29)

while by the definition of c and σi,

αi

n
X

j=1

j 6=i

rj = c = (n− 1)2
“

n
X

j=1

α−1
j

”−2
. (30)

Multiplying (30) by α−1
i and subtracting it from (29), we have

ri = (n− 1)
“

n
X

j=1

α−1
j

”−1
− α−1

i (n− 1)2
“

n
X

j=1

α−1
j

”−2
,

as desired. 2

Remark 3 From (30), we have σi = α−1
i (n− 1)2

`Pn
j=1 α

−1
j

´−2
. Hence the condition

(27) can be rewritten as

α2
i > (n− 1)2

“

n
X

j=1

α−1
j

”−2
, i = 1, . . . , n. (31)

Consider the special case that α1 = · · · = αn = α. Then the condition becomes

1 >

„

n− 1

n

«2

.

This is valid and hence implies that condition (31) is not an empty condition. Further-

more, it actually specifies a certain “cost structure” of the suppliers in order for them

to stay in business in practice.
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4.2 Local uniqueness of Nash equilibrium

We next discuss the question as to when the Nash equilibrium is an isolate point, or in

other words, what condition will guarantee that the Nash equilibrium is locally unique.

We first define some notations for simplicity of description. Let

E =

0

B

B

@

1 1 · · · 1

1 1 · · · 1

· · · · · · · · · · · ·
1 1 · · · 1

1

C

C

A

and A =

0

B

B

@

0 −α1 · · · −α1

−α2 0 · · · −α2

· · · · · · · · · · · ·
−αn −αn · · · 0

1

C

C

A

.

Note that, by definition, A is a non-positive matrix in the sense that all entries of the

matrix are non-positive.

Applying basic operations, rewrite the Nash equilibrium system (28) as

ψ(r) = 0,

where

ψ(r) ≡

0

B

B

@

(eT r)2 − (eT r − r1)α1

(eT r)2 − (eT r − r2)α2

· · ·
(eT r)2 − (eT r − rn)αn

1

C

C

A

and e = (1, . . . , 1)T . By direct calculation, the Jacobian matrix of ψ(r) can be expressed

as

ψ′(r) = (2eT r)E + A.

Then, we have the following result immediately.

Proposition 1 Let r∗ satisfy equation (28). If the Jacobian matrix ψ′(r∗) = (2eT r∗)E+

A is nonsingular, then r∗ is a locally unique solution.

Proof. Since ψ is continuously differentiable in r on some neighborhood of r∗, the

conclusion follows from a classical result in calculus. 2

According to Proposition 1, we derive the local uniqueness of a Nash equilibrium

as follows.

Proposition 2 Let r∗ be a Nash equilibrium of the game (23). Then it is a locally

unique equilibrium.

Proof. By virtue of Proposition 1, we only need to show the Jacobian ψ′(r∗) is non-

singular. Recall that αi, i = 1, . . . , n, defined by (13) are all positive by the assumption

p > ci + ki made in Section 2. Note that ψ′(r∗) can be written as

ψ′(r∗) = (2eT r∗)E + A =

0

B

B

@

δ∗ δ∗ − α1 · · · δ∗ − α1

δ∗ − α2 δ∗ · · · δ∗ − α2

· · · · · · · · · · · ·
δ∗ − αn δ∗ − αn · · · δ∗

1

C

C

A

,

where δ∗ ≡ 2(r∗1 + · · ·+r∗n). Then, by applying some basic operations in linear algebra,

we have

det
`

ψ′(r∗)
´

= det

„

M $

%T δ∗

«

,
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where det(S) represents the determinant of a square matrix S and

M ≡

0

B

B

@

α1 0 · · · 0

0 α2 · · · 0

· · · · · · · · · · · ·
0 0 · · · αn−1

1

C

C

A

, $ ≡

0

B

B

B

@

δ∗ − α1

δ∗ − α2

...

δ∗ − αn−1

1

C

C

C

A

, % ≡

0

B

B

B

@

−αn

−αn

...

−αn

1

C

C

C

A

.

Since the diagonal matrix M is nonsingular, we have

det

„

M $

%T δ∗

«

= det(M)det(δ∗ − %TM−1$)

=

"

δ∗
“

n
X

i=1

α−1
i

”

− (n− 1)

#

n
Y

i=1

αi.

From (29) and the definition of δ∗, we have

δ∗ = 2(n− 1)
“

n
X

j=1

α−1
j

”−1
.

Thus we obtain

det

„

M $

%T δ∗

«

= (n− 1)

n
Y

i=1

αi 6= 0.

Hence the Jacobian ψ′(r∗) is nonsingular. 2

From Proposition 2, we conclude that as long as the leaders’ game has a Nash equilib-

rium, the equilibrium point will be isolated (locally unique).

4.3 Discussion

We continue to consider the case when all the suppliers offer an identical price. Denote

γ ≡ (n− 1)

 

n
X

i=1

1

αi

!−1

.

By (29), this is actually equal to the sum of delivery frequencies ri of all suppliers, i.e.,

γ =
Pn

i=1 ri. Moreover, by (26), each supplier’s delivery frequency satisfies

ri = γ
“

1 − γ

αi

”

, i = 1, . . . , n. (32)

This gives a formula for supplier i to decide its delivery frequency. If the information

is incomplete, then supplier i would not know the exact values αj of other suppliers

j 6= i. However, the supplier could at least have an estimate on γ based on market

information. Therefore the above formula can be used to determine ri approximately.

Substituting (32) into the objective function φi of the game (23) and taking into

account the relation γ =
Pn

j=1 rj , we obtain the profit of supplier i as

φi(r) =
αiri

Pn
j=1 rj

− ri =
(αi − γ)2

αi
.
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Finally, the necessary and sufficient condition αi > σi for the existence of a positive

Nash equilibrium shown in Theorem 1 gives rise to the necessary “minimum profit

margin” of supplier i to stay at the Nash equilibrium. It says that the frequency game

cannot have an equilibrium if any supplier seeks to enlarge its market share by just

lowering its selling price. This is somewhat surprising and not intuitive at all. This

explains why it is not wise for a supplier to produce at the breakeven price. In fact,

the results suggest that firms should look for ways to stabilize their cost structures

while at the same time having a flexible manufacturing system that permits changes

in delivery frequency.

Proposition 3 Suppose that all suppliers offer the identical price p1 = · · · = pn = p.

Then, for any i, j, l ∈ {1, 2, . . . , n}, we have

0 =

„

Cj +Kj

p− cj − kj
− Cl +Kl

p− cl − kl

«

ri +

„

Cl +Kl

p− cl − kl
− Ci +Ki

p− ci − ki

«

rj

+

„

Ci +Ki

p− ci − ki
− Cj +Kj

p− cj − kj

«

rl. (33)

Proof. By (28), it follows that

αi(r
T e− ri) = αj(r

T e − rj) = αk(rT e− rk).

Then, we have

αiαjri + αjαl(r
T e − rl) = αiαjri + αjαi(r

T e− ri) = αjαir
T e

= αiαj(r
T e− rj + rj) = αiαjrj + αiαj(r

T e− rj) = αiαjrj + αiαl(r
T e− rl).

Then, it yields that

αiαjri + αjαlri + αjαlrj + αjαl(r
T e − ri − rj − rl)

= αiαjrj + αiαlrj + αiαlri + αiαl(r
T e− ri − rj − rl).

Applying some basic operations, it follows from the above equation that

(αiαj + αjαl − αiαl)ri − αlαjri − αlαjrl = (αiαj + αiαl − αjαl)rj − αlαirj − αiαkrl.

Then, it gives that

αi(αj − αl)ri = αj(αi − αl)rj + αl(αj − αi)rl,

which can be written as

αi(αl − αj)ri + αj(αi − αl)rj + αl(αj − αi)rl = 0.

Dividing each item on the left side of the above equation by αi, αj , αl, it gives that
„

1

αj
− 1

αl

«

ri +

„

1

αl
− 1

αi

«

rj +

„

1

αi
− 1

αj

«

rl = 0.

The result follows immediately by replacing each αs with ps−cs−ks

Cs+Ks
. This completes

the proof. 2

Proposition 3 describes an interesting relationship between the delivery frequencies

and the contribution margins of the underlying suppliers. Note that the sum of the

coefficients in equation (33) is equal to zero. Note also that (33) actually reflects a

linear relationship among the delivery frequencies, which shows the higher the delivery

frequency the higher the profit per unit cost.
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5 Conclusion

In this paper, we have examined a delivery frequency competition game of n competing

suppliers and one manufacturer. A generalized Nash equilibrium has been considered

first under a general setting, and the existence and uniqueness of an equilibrium have

been discussed by way of the variational inequality formulation. For the special case

of equal selling price, we have derived an explicit formula for a Nash equilibrium and

given a necessary and sufficient condition for the existence and uniqueness of such an

equilibrium.
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