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Abstract

In many real world problems, optimization decisions have to be
made with limited information. The decision maker may have no a
priori or posteriori data about the often nonconvex objective func-
tion except from on a limited number of points that are obtained over
time through costly observations. This paper presents an optimiza-
tion framework that takes into account the information collection (ob-
servation), estimation (regression), and optimization (maximization)
aspects in a holistic and structured manner. Explicitly quantifying
the information acquired at each optimization step using the entropy
measure from information theory, the (nonconvex) objective function
to be optimized (maximized) is modeled and estimated by adopting a
Bayesian approach and using Gaussian processes as a state-of-the-art
regression method. The resulting iterative scheme allows the decision
maker to solve the problem by expressing preferences for each aspect
quantitatively and concurrently.

1 Introduction

In many real world problems, optimization decisions have to be made with
limited information. Whether it is a static optimization or dynamic control
problem, obtaining detailed and accurate information about the problem or
system can often be a costly and time consuming process. In some cases,
acquiring extensive information on system characteristics may be simply
infeasible. In others, the observed system may be so nonstationary that by
the time the information is obtained, it is already outdated due to system’s
fast-changing nature. Therefore, the only option left to the decision-maker
is to develop a strategy for collecting information efficiently and choose a
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model to estimate the “missing portions” of the problem in order to solve it
satisfactorily and according to a given objective.

To make the discussion more concrete, consider the problem of maximiz-
ing a (Lipschitz) continuous nonconvex objective function, which is unknown
except from its value at only a small number of data points. The decision
maker may have no a priori information about the function and start with
zero data points. Furthermore, only a limited number of –possibly noisy–
observations may be available before making a decision on the maximum
value and its location. The function itself, however, remains unknown even
after the decision is made. What is the best strategy to address this problem?

The decision making framework presented in this paper captures the
posed problem by taking into account the information collection (observa-
tion), estimation (regression), and (multi-objective) optimization aspects in
a holistic and structured manner. Hence, the framework enables the decision
maker to solve the problem by expressing preferences for each aspect quan-
titatively and concurrently. It explicitly incorporates many concepts that
have been implicitly considered by heuristic schemes, and builds upon many
results from seemingly disjoint but relevant fields such as information the-
ory, machine learning, and optimization and control theories. Specifically,
it combines concepts from these fields by

• explicitly quantifying the information acquired using the entropy mea-
sure from information theory,

• modeling and estimating the (nonconvex) function or (nonlinear) sys-
tem adopting a Bayesian approach and using Gaussian processes as a
state-of-the-art regression method,

• using an iterative scheme for observation, learning, and optimization,

• capturing all of these aspects under the umbrella of a multi-objective
“meta” optimization formulation.

Despite methods and approaches from machine (statistical) learning are
heavily utilized in this framework, the problem at hand is very different
from many classical machine learning ones, even in its learning aspect. In
most classical application domains of machine learning such as data mining,
computer vision, or image and voice recognition, the difficulty is often in
handling significant amount of data in contrast to lack of it. Many methods
such as Expectation-Maximization (EM) inherently make this assumption,
except from “active learning” schemes [3]. Information theory plays plays
an important role in evaluating scarce (and expensive) data and developing
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strategies for obtaining it. Interestingly, data scarcity converts at the same
time the disadvantages of some methods into advantages, e.g. the scalability
problem of Gaussian processes.

It is worth noting that the class of problems described here are much
more frequently encountered in practice than it may first seem. For ex-
ample, the class of black-box methods known as “kriging” [10] have been
applied to such problems in geology and mining as well as to hydrology
since mid-1960s. In addition, the solution framework proposed is applicable
to a wide variety of fields due to its fundamental nature. One example is
decentralized resource allocation decisions in networked and complex sys-
tems, e.g. wired and wireless networks, where parameters change quickly
and global information on network characteristics are not available at the
local decision-making nodes. Another example is security-related decisions
where opponents spend a conscious effort to hide their actions. A related
area is security and information technology risk management in large-scale
organizations, where acquiring information on individual subsystems and
processes can be very costly. Yet another example application is in biologi-
cal systems where individual organisms or subsystems operate autonomously
(even if they are part of a larger system) under limited local information.

2 Problem Definition and Approach

A concrete definition of the motivating problem mentioned in the intro-
duction section is helpful for describing the multiple aspects of the limited
information decision making framework. Without loss of any generality, let

X ⊆ Ψ ⊂ R
d

be a nonempty, convex, and compact (closed and bounded) subset of the
original problem domain Ψ of d dimensions. The original domain Ψ does
not have to be convex, compact, or even fully known. However, adopting a
“divide and conquer” approach, the subset X provides a reasonable starting
point. Define next the objective function to be maximized

f : X → R,

which is unknown except from on a finite number of points (possibly imper-
fectly) observed. As a simplifying assumption, let f be Lipschitz continuous
on X . One of the main distinguishing characteristics of this problem is the
limitations on set of observations

Ωn := {x1, . . . , xn : xi ∈ X ∀i, n ≥ 1},

3



due to cost of obtaining information or non-stationarity of the underlying
system. Assume for now that the cost of observing the value of the objective
function f(x) is the same for any x ∈ X . Then, a basic search problem is
defined as follows:

Problem 1 (Basic Search Problem) Consider a Lipschitz-continuous ob-
jective function f : X → R on the d-dimensional nonempty, convex, and
compact set X ⊂ R

d. The function is unknown except from on a finite
number of observed data points. What is the best search strategy

ΩN := {x1, . . . , xN : xi ∈ X ∀i, N ≥ 1}

that solves
max
ΩN

f(x),

for a given N?

The number of observations, N , in Problem 1 may be imposed by the
nature of the specific application domain. In many problems, where there is
no time constraint, adopting an iterative (one-by-one) approach, and hence
choosing N = 1 is clearly beneficial as it allows for usage of incoming new
information at each step. Alternatively, the assumption on the equal obser-
vation cost can be relaxed and be formulated as a constraint

∑

x∈Ωn

co(x) ≤ C,

where co(x) : X → R is the observation cost function, and the scalar C is the
total “exploration budget”. It is also possible to define this cost iteratively
based on the (distance from) previous observation, e.g. co(xn, xn−1). In
such cases, a location-based iterative search scheme can be considered.

The simplest (both conceptually and computationally) strategy to solve
Problem 1 is random search on the domain X . As such no attempt is made
to “learn” the properties of the function f . Unless, f is “algorithmically
random” [14], which is rarely the case, this strategy wastes the information
collected on f . A slightly more complicated and very popular set of strate-
gies combine random search with simple modeling of the function through
gradient methods. In this case, the collected information is used to model f
rudimentarily using derived gradients to “define slopes” in a heuristic man-
ner. Then, these slopes of f are explored step-by-step in the upwards direc-
tion to find a local maximum, after which the search algorithm randomly
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jumps to another location. It is also possible to randomize the gradient
climbing scheme for additional flexibility [24].

The framework presented in this paper takes one further step and ex-
plicitly models the (entire) objective function f (on the set X ) using the
information collected instead of heuristically describing only the slopes. The
function f̂ , which models, approximates, and estimates f , belongs to a cer-
tain class functions such that f̂ ∈ F . The selection and properties of this
class is based on “a priori” information available and can be interpreted
as the “world view” of the decision maker. These properties can often be
expressed using meta-parameters which are then updated based on the ob-
servations through a separate optimization process. Likewise, a slower time-
scale process can be used for model selection if processing capabilities permit
a multi-model approach.

This model-based search process, which lies at the center of the frame-
work, is fundamentally a manifestation of the Bayesian approach [18]. It
first imposes explicit and a priori modeling assumptions by choosing f̂ from
a certain class of functions, F , and then infers (learns, updates) f̂ in a struc-
tured manner as more information becomes available through observations.

From a computational point of view, the decision making framework
with limited information lies at one end of the computation vs. observation
spectrum, while random search is at the opposite end. The framework tries
to utilize each piece of information to the maximum possible extent almost
regardless of the computational cost. The underlying assumption here is:
observation is very costly whereas computation is rather cheap.
This assumption is not only valid for a wide variety of problems from dif-
ferent fields ranging from networking and security to economics and risk
management, but also inspired from biological systems. In many biological
organisms, from single cells to human beings, operating close to this end
of the computation-observation spectrum is more advantageous than doing
random search.

When doing random search on the domain X , at each stage i.e. given
the previous observations, each remaining candidate data point provides
equivalent amount of information. However, this is not the case when doing
model-based search. Depending on the model adopted and previous infor-
mation collected, different unexplored points provide different amount of
information. This information can be exactly quantified using the definition
of entropy and information from the field of (Shannon) information theory.
Accordingly, the scalar quantity I(f̂ ,Ωn) denotes the aggregate information
obtained from the set of observations Ωn within the model represented by f̂ .
A related issue is the reliability and possibly noisy nature of observations,
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which will be discussed in further detail in the next section.
An extension of Problem 1 that captures the aspects discussed above is

defined next.

Problem 2 (Model-based Search Problem) Let f : X → R be an ob-
jective function on the d-dimensional nonempty, convex, and compact set
X ⊂ R

d, which is unknown except from on a finite number of observed data
points. Further let f̂(x) be an estimate of the objective function obtained
using an a priori model and observed data. What is the best search strategy
ΩN := {x1, . . . , xN : xi ∈ X ∀i, N ≥ 1} that solves the multi-objective
problem with the following components?

• Objective 1: maxΩN
f(x) given f̂(x)

• Objective 2: argminΩN
R
(

f(x), f̂(x)
)

, f̂ ∈ F

• Objective 3: maxΩN
I(f̂ ,Ωn)

Here, R(·, ·) is a risk or expected loss function quantifying the mismatch
between actual and estimated functions on the observation data [23]. The
scalar quantity I is the aggregate information obtained from the set of ob-
servations ΩN within the model represented by f̂ . The cardinality of ΩN ,
N , can be either given, e.g. N = 1, or defined as an additional constraint
∑

x∈Ωn
co(x) ≤ C, where co(x) : X → R is the observation cost function,

and the scalar C is the total “exploration budget”.

Figure 1: The three fundamental aspects of decision making with limited
information.
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It is important to observe here that the three objectives defined in Prob-
lem 2 are (almost) independent from and orthogonal to each other despite
being closely related. Objective 1 purely aims to maximize the unknown
objective function f using the best estimate (model) f̂ . Objective 2 focuses
on minimizing the error between the estimate f̂ and the real unknown func-
tion f based on the observations made. Objective 3 tries to maximize the
amount of information provided by each (costly) observation or experiment.
It is worth noting that Objective 3 is independently formulated from Objec-
tive 2, in other words, exploration is done independently from estimation.
In contrast, ensuring a balance between Objective 1 and 2 is necessary to
ensure that solution is robust. These objectives and the fundamental as-
pects of decision making with limited information are visually depicted in
Figure 1.

Table 1: Fundamental Trade-offs

Exploration Exploitation

Observation versus Computation

Robustness Optimization

There are multiple trade-offs that are inherent to this problem as listed
in Table 1. The first one, exploration versus exploitation, puts exploration
or obtaining more observations against exploitation, i.e. trying to achieve
the given objective. Observation versus computation captures the trade-
off between building sophisticated models using the available information
to the fullest extend and making more observations. Robustness versus
optimization puts risk avoidance against optimization with respect to the
original objective as in exploitation.

3 Methodology

This section presents the methods that are utilized within the framework
which addresses the problem defined in the previous one. First, the re-
gression model and Gaussian Processes (GP) are presented. Subsequently,
modeling and measurement of information is discussed based on (Shannon)
information theory.
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3.1 Regression and Gaussian Processes (GP)

Problem 2 presented in the previous section involves inferring or learning
the function f using the set of observed data points. This is known as
the regression problem in machine learning and is a supervised learning
method since the observed data constitutes at the same time the learning
data set. This learning process involves selection of a “model”, where the
learned function f̂ is, for example, expressed in terms of a set of parameters
and specific basis functions, and at the same time minimization of an error
measure between the functions f and f̂ on the learning data set. Gaussian
processes (GP) provide a nonparametric alternative to this but follow in
spirit the same idea.

The main goal of regression involves a trade-off. On the one hand, it
tries to minimize the observed error between f and f̂ . On the other, it
tries to infer the “real” shape of f and make good estimations using f̂ even
at unobserved points. If the former is overly emphasized, then one ends
up with “over fitting”, which means f̂ follows f closely at observed points
but has weak predictive value at unobserved ones. This delicate balance
is usually achieved by balancing the prior “beliefs” on the nature of the
function, captured by the model (basis functions), and fitting the model to
the observed data.

This paper focuses on Gaussian Process [23] as the chosen regression
method within the framework developed without loss of any generality.
There are multiple reasons behind this preference. Firstly, GP provides
an elegant mathematical method for easily combining many aspects of the
framework. Secondly, being a nonparametric method GP eliminates any
discussion on model degree. Thirdly, it is easy to implement and under-
stand as it is based on well-known Gaussian probability concepts. Fourthly,
noise in observations is immediately taken into account if it is modeled as
Gaussian. Finally, one of the main drawbacks of GP namely being computa-
tional heavy, does not really apply to the problem at hand since the amount
of data available is already very limited.

It is not possible to present here a comprehensive treatment of GP.
Therefore, a very rudimentary overview is provided next within the con-
text of the decision making problem. Consider a set of M data points

D = {x1, . . . , xM},

where each xi ∈ X is a d−dimensional vector, and the corresponding vector
of scalar values is f(xi), i = 1, . . . ,M . Assume that the observations are
distorted by a zero-mean Gaussian noise, n with variance σ ∼ N (0, σ).
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Then, the resulting observations is a vector of Gaussian y = f(x) + n ∼
N (f(x), σ).

A GP is formally defined as a collection of random variables, any fi-
nite number of which have a joint Gaussian distribution. It is completely
specified by its mean function m(x) and covariance function C(x, x̃), where

m(x) = E[f̂(x)] and C(x, x̃) = E[(f̂ (x)−m(x))(f̂ (x̃)−m(x̃))], ∀x, x̃ ∈ D.

Let us for simplicity choose m(x) = 0. Then, the GP is characterized
entirely by its covariance function C(x, x̃). Since the noise in observation
vector y is also Gaussian, the covariance function can be defined as the sum
of a kernel function Q(x, x̃) and the diagonal noise variance

C(x, x̃) = Q(x, x̃) + σI, ∀x, x̃ ∈ D, (1)

where I is the identity matrix. While it is possible to choose here any
(positive definite) kernel Q(·, ·), one classical choice is

Q(x, x̃) = exp

[

−
1

2
‖x− x̃‖2

]

. (2)

Note that GP makes use of the well-known kernel trick here by representing
an infinite dimensional continuous function using a (finite) set of continuous
basis functions and associated vector of real parameters in accordance with
the representer theorem [26].

The (noisy)1 training set (D, y) is used to define the corresponding GP,
GP(0, C(D)), through theM×M covariance function C(D) = Q+σI, where
the conditional Gaussian distribution of any point outside the training set,
ȳ ∈ X , ȳ /∈ D, given the training data (D, t) can be computed as follows.
Define the vector

k(x̄) = [Q(x1, x̄), . . . Q(xM , x̄)] (3)

and scalar
κ = Q(x̄, x̄) + σ. (4)

Then, the conditional distribution p(ȳ|y) that characterizes the GP(0, C) is
a Gaussian N (f̂ , v) with mean f̂ and variance v,

f̂(x̄) = kTC−1y and v(x̄) = κ− kTC−1k. (5)

This is a key result that defines GP regression as the mean function
f̂(x) of the Gaussian distribution and provides a prediction of the objective

1The special case of perfect observation without noise is handled the same way as long
as the kernel function Q(·, ·) is positive definite
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function f(x). At the same time, it belongs to the well-defined class f̂ ∈ F ,
which is the set of all possible sample functions of the GP

F := {f̂(x) : X → R such that f̂ ∈ GP(0, C(D)), ∀D, C},

where C(D) is defined in (1) and GP through (3), (4), and (5), above. Fur-
thermore, the variance function v(x) can be used to measure the uncertainty
level of the predictions provided by f̂ , which will be discussed in the next
subsection.

3.2 Quantifying Information in Observations

In the framework presented, each observation provides a data point to the
regression problem (estimating f by constructing f̂) as discussed in the
previous subsection. Many works in the learning literature consider the
“training” data used in regression available (all at once or sequentially) and
do not discuss the possibility of the decision maker influencing or even op-
timizing the data collection process. The active learning problem defined
in Section 2 requires, however, exactly addressing the question of “how to
quantify information obtained and optimize the observation process?”. Fol-
lowing the approach discussed in [17, 18], the framework here provides a
precise answer to this question.

Making any decision on the next (set of) observations in a principled
manner necessitates first measuring the information obtained from each ob-
servation within the adopted model. It is important to note that the infor-
mation measure here is dependent on the chosen model. For example, the
same observation provides a different amount of information to a random
search model than a GP one.

Shannon information theory readily provides the necessary mathemat-
ical framework for measuring the information content of a variable. Let
p be a probability distribution over the set of possible values of a dis-
crete random variable A. The entropy of the random variable is given
by H(A) =

∑

i pi log2(1/pi), which quantifies the amount of uncertainty.
Then, the information obtained from an observation on the variable, i.e.
reduction in uncertainty, can be quantified simply by taking the difference
of its initial and final entropy,

I = H0 −H1.

It is important here to avoid the common conceptual pitfall of equating en-
tropy to information itself as it is sometimes done in communication theory
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literature.2 Within this framework, (Shannon) information is defined as
a measure of the decrease of uncertainty after (each) observation (within a
given model). This can be best explained with the following simple example.

3.2.1 Example: Bisection

Choose a number between 1 and 64 randomly with uniform probability
(prior). What is the best searching strategy for finding this number? Let
the random variable A represent this number. In the beginning the entropy
of A is

H0(A) =

64
∑

i=1

1

64
log2

(

1

64

)

= 6 (bits).

The information maximization problem is defined as

max I = maxH0 −H1 = minH1,

since H0, the entropy before the action (obtaining information) is constant.
The entropyH1 is the one after information is obtained, and hence is directly
affected by the specific action chosen. Now, define the action as setting
a threshold 1 < t < 64 to check whether the chosen number is less or
higher than this threshold t. To simplify the analysis, consider a continuous
version of the problem by defining p as the probability of the chosen number
being less than the threshold. Thus, in this uniform prior case, the problem
simplifies to

min
p

H1 = min
p

p log(p) + (1− p) log(1− p),

which has the derivative

dH1

dp
= log(p)− log(1− p).

Clearly, the threshold p∗ = 0.5 is the global minimum, which roughly cor-
responds to t = 32 (ignoring quantization and boundary effects). Thus, bi-
section from the middle is the optimal search strategy for the uniform prior.
In this example, the number can be found in the worst-case in 6 steps, each

2Since this issue is not of great importance for the class of prob-
lems considered in communication theory, it is often ignored. How-
ever, the difference is of conceptual importance in this problem. See
http://www.ccrnp.ncifcrf.gov/~toms/information.is.not.uncertainty.html for
a detailed discussion.
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providing one bit of information. Nonuniform probabilities (priors) can be
handled in a similar way.

If this search process (bisection) is repeatedly applied without any feed-
back, then it results in the optimal quantization of the search space both in
the uniform case above and for the nonuniform probabilities. If feedback is
available, i.e. one learns after each bisection whether the number is larger
or less than the boundary, then this is as shown the best search strategy.

4 Model

The model adopted in the framework for decision making with limited in-
formation builds on the methods presented in the previous section and ad-
dresses the problem introduced in Section 2. The model consists of three
main parts: observation, update of GP for regression, and optimization to
determine next action. These three steps, shown in Figure 2 are taken it-
eratively to achieve the objectives in Problem 2. As a result of its iterative
nature, this approach can be considered in a sense similar to the well-known
Expectation-Maximization algorithm [3].

Figure 2: The main parts of the underlying model of the decision making
framework.

Observations, given that they are a scarce resource in the class of prob-
lems considered, play an important role in the model. Uncertainties in the
observed quantities can be modeled as additive noise. Likewise, properties
(variance or bias) of additive noise can be used to model the reliability of
(and bias in) the data points observed. GPs provide a straightforward math-
ematical structure for incorporating these aspects to the model under some
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simplifying assumptions.
The set of observations collected provide the (supervised) training data

for GP regression in order to estimate the characteristics of the function or
system at hand. This process relies on the GP methods described in Subsec-
tion 3.1. Thus, at each iteration an up-to-date description of the function or
system is obtained based on the latest observations. Specifically, f̂ provides
an estimate of the original function f .3 Assuming an additive Gaussian
noise model, the noise variance σ can be used to model uncertainties, e.g.
older and noisy data resulting in higher σ values.

The final and most important part of the model provides a basis for
determining the next action after an optimization process that takes into
account all three objectives in Problem 2. The information aspect of these
objectives is already discussed in Subsection 3.2. An important issue here is
the fact that there are infinitely many candidate points in this optimization
process, but in practice only a finite collection of them can be evaluated.

4.1 Sampling Solution Candidates

When making a decision on the next action through multi-objective opti-
mization, there are (infinitely) many candidate points. A pragmatic solution
to the problem of finding solution candidates is to (adaptively) sample the
problem domain X to obtain the set

Θ := {x1, . . . , xT : xi ∈ X , xi /∈ D, ∀i}

that does not overlap with known points. In low (one or two) dimensions,
this can be easily achieved through grid sampling methods. In higher di-
mensions, (Quasi) Monte Carlo schemes can be utilized. For large problem
domains, the current domain of interest X can be defined around the last or
most promising observation in such a way that such a sampling is compu-
tationally feasible. Likewise, multi-resolution schemes can also be deployed
to increase computational efficiency.

Although such a solution may seem restrictive at first glance, it is in spirit
not very different from other schemes such as simulated annealing, which are
widely used to address nonconvex optimization problems. However, a major
difference between this and other schemes is the fact that the candidate
sampling and evaluation are done here “a priori” due to experimentation
being costly while other methods rely on abundance of information.

3See [23, Chap 7.2] for a discussion on asymptotic analysis of GP regression. It should
not be noted, however, that asymptotic properties are of little relevance to the problem
at hand.
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A natural question that arises is: whether and under what conditions
does such a sampling method give satisfactory results. The following result
from [30, 31] provides an answer to this question in terms of number of
samples required.

Theorem 1 Define a multivariate function f(x) on the convex, compact
set X , which admits the maximum x∗ = argmaxx∈X f(x). Based on a set
of N random samples Θ = {x1, . . . , xN : xi ∈ X ∀i} from the entire set X ,
let x̂ := argmaxx∈Θ f(x) be an estimate of the maximum x∗.

Given an ε > 0 and δ > 0, the minimum number of random samples N
which guarantees that

Pr (Pr[f(x∗) > f(x̂)] ≤ ε) ≥ 1− δ,

i.e. the probability that ’the probability of the real maximum surpassing the
estimated one being less than ε’ is larger than 1− δ, is

N ≥
ln 1/δ

1/(1 − ε)
.

Furthermore, this bound is tight if the function f is continuous on X .

It is interesting and important to note that this bound is independent of the
sampling distribution used (as long as it covers the whole set X with nonzero
probability), the function f itself, as well as the properties and dimension
of the set X .

4.2 Quantifying Information in GP

The information measurement and GP approaches in Section 3 can be di-
rectly combined. Let the zero-mean multivariate Gaussian (normal) proba-
bility distribution be denoted as

p(x) =
1

√

2π|Cp(x)|
exp

(

−
1

2
[x−m]T |Cp(x)|

−1[x−m]

)

, x ∈ X , (6)

where | · | is the determinant, m is the mean (vector) as defined in (5), and
Cp(x) is the covariance matrix as a function of the newly observed point
x ∈ X given by

Cp(x) =









C(D) k(x)T

k(x) κ









. (7)
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Here, the vector k(x) is defined in (3) and κ in (4), respectively. The matrix
C(D) is the covariance matrix based on the training data D as defined in
(1).

The entropy of the multivariate Gaussian distribution (6) is [1]

H(x) =
d

2
+

d

2
ln(2π) +

1

2
ln |Cp(x)|,

where d is the dimension. Note that, this is the entropy of the GP estimate
at the point x based on the available data D. The aggregate entropy of the
function on the region X is given by

Hagg :=

∫

x∈X

1

2
ln |Cp(x)|dx. (8)

The problem of choosing a new data point x̂ such that the informa-
tion obtained from it within the GP regression model is maximized can be
formulated in a way similar to the one in the bisection example:

x̂ = argmax
x̃

I = argmax
x̃

∫

x∈X

[H0 −H1] dx = argmin
x̃

∫

x∈X

1

2
ln |Cq(x, x̃)|dx,

(9)
where the integral is computed over all x ∈ X , and the covariance matrix
Cq(x, x̃) is defined as

Cq(x, x̃) =













C(D) kT (x̃) kT (x)

k(x̃) κ̃ Q(x, x̃)
k(x) Q(x, x̃) κ













, (10)

and κ̃ = Q(x̃, x̃)+σ. Here, C(D) is a M ×M matrix and Cq is a (M +2)×
(M + 2) one, whereas κ and Q(x, x̃) are scalars and k is a M × 1 vector.
This result is summarized in the following proposition.

Proposition 1 As a maximum information data collection strategy for a
Gaussian Process with a covariance matrix C(D), the next observation x̂
should be chosen in such a way that

x̂ = argmax
x̃

I = argmin
x̃

∫

x∈X

ln |Cq(x, x̃)|dx,

where Cq(x, x̃) is defined in (10).
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An Approximate Solution to Information Maximization

Given a set of (candidate) points Θ sampled from X , the result in Propo-
sition 1 can be revisited. The problem in (9) is then approximated [31]
by

max
x̃

I ≈ min
x̃

∑

x∈Θ

ln |Cq(x, x̃)| (11)

⇒ x̂ = argmin
x̃∈Θ

∏

x∈Θ

|Cq(x, x̃)|,

using monotonicity property of the natural logarithm and the fact that the
determinant of a covariance matrix is non-negative. Thus, the following
counterpart of Proposition 1 is obtained:

Proposition 2 As an approximately maximum information data collection
strategy for a Gaussian Process with a covariance matrix C(D) and given
a collection of candidate points Θ, the next observation x̂ ∈ Θ should be
chosen in such a way that

x̂ = argmin
x̃∈Θ

∏

x∈Θ

|Cq(x, x̃)| ≈ argmax
x̃∈Θ

I,

where Cq(x, x̃) is given in (10).

Although it is an approximation, finding a solution to the optimization
problem in Proposition 2 can still be computationally costly. Therefore, a
greedy algorithm is proposed as a computationally simpler alternative. Let,
x∗ ∈ Θ be defined as

x∗ := argmax
x∈Θ

|Cp(x)| = |C(D)| |κ(x) − k(x)C−1(D)kT (x)|,

where the matrix Cp is given by (7) [21]. The first term above, |C(D)| is
fixed and the second one,

|κ(x)− k(x)C−1(D)kT (x)|,

is the same as the GP variance v(x) in (5). Hence, the sample x∗ is one of
those with the maximum variance in the set Θ, given current data D.

It follows from (10) and basic matrix theory that if x̃ = x for a given
x then |Cq(x, x̃)| is minimized. As a simplification, ignore the dependencies
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between Cq(x, x̃) matrices for different x ∈ Θ. Then, choosing the maximum
variance x̂ as

x̂ = argmax
x̃∈Θ

v(x̃) ≈ argmin
x̃∈Θ

∏

x∈Θ

|Cq(x, x̃)|,

leads to a large (possibly largest) reduction in
∏

x∈Θ |Cq(x, x̂)|, and hence
provides a rough approximate solution to (11) and to the result in Proposi-
tion 1. This result is consistent with widely-known heuristics such as “max-
imum entropy” or “minimum variance” methods [28] and a variant has been
discussed in [17].

Proposition 3 Given a Gaussian Process with a covariance matrix C(D)
and a collection of candidate points Θ, an approximate solution to the max-
imum information data collection problem defined in Proposition 1 is to
choose the sample point(s) x̃ in such a way that it has (they have) the max-
imum variance within the set Θ.

5 Optimization with Limited Information

Let f : X → R be the unknown Lipschitz-continuous function of interest
on the d-dimensional nonempty, convex, and compact set X ⊂ R

d. The
amount of information about this function available to the decision maker is
limited to a finite number of possibly noisy observations. Since the observa-
tions are costly, the goal of the decision maker is to find the maximum of f ,
estimate f as accurately as possible using available observations, and select
the most informative data points, at the same time. This naturally calls
for an iterative and myopic optimization procedure since each new observa-
tion provides a new data point that concurrently affects the maximization,
function estimation (regression), and information quantity.

The first and basic objective is the maximization of the function f(x) on
x ∈ X . As a simplification, observations are assumed to be sequential, one
at a time. Since f is basically unknown, this problem has to be formulated
as

max
x̃∈X

F1(x̃) = f̂(x̃),

where f̂ is the best estimate obtained through GP regression (5) using
the current data set D. Data uncertainty (observation errors) is modeled
through additive Gaussian noise with variance σ as a first approximation.
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The second objective is to minimize the difference (estimation error)
between f̂ and f . Define e(x) = f̂(x) − f(x), ∀x ∈ X . Given the set of
noisy observations

O = {f(xi) + n(xi) : x ∈ D, ∀i},

where n ∼ N (0, σ) denotes zero mean Gaussian noise, it is possible to use
another GP regression (5) to estimate this error function, ê(D, x), on the en-
tire set X . Thus, the second objective is to ensure that the next observation
x̃ solves

min
x̃∈X

F2(x̃) =

∫

τ∈X

|ê(x̃,D, τ)| dτ.

Note that, F2 here corresponds to a risk or loss estimate function.
The third objective is to maximize the amount of information obtained

with each observation x̃, or

max
x̃∈X

F3(x̃) = I(x̃, f̂) =

∫

x∈X

ln |Cq(x, x̃)|dx,

given the best estimate of the original function, f̂ . This objective has already
been discussed in Section 3.2 in detail.

The values of the three objectives, F1, F2, F3, cannot be evaluated nu-
merically on the entire set X . Therefore, a sampling method is used as de-
scribed in Section 4 to obtain a set of solution candidates Θ, which replaces
X in the maximization and minimization problems above. Next, specific
problem formulations are presented based on such a sampling of solution
candidates. The overall structure of the framework is visualized in Figure 3.

5.1 Solution Approaches

The most common approach to multi-objective optimization is theweighted
sum method [19, 9]. The three objectives discussed above can be com-
bined to obtain a single objective using the respective weights [w1, w2, w3],
∑

3

i=1
wi = 1, 0 ≤ wi ≤ 1∀i. Assuming a single data point is chosen from

and observed among the candidates Θ at each step, i.e. x̃ = Ω1, a specific
weighted sum formulation to address Problem 2 is obtained.

Proposition 4 The solution, x̃ ∈ Θ, to the optimization problem

max
x̃∈Θ

F (x̃) =

3
∑

i=1

Fi(x̃) = w1f̂(x̃)− w2

1

N

∑

τ∈Θ

|ê(x̃,D, τ)| + w3I(x̃, f̂), (12)
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Figure 3: The decision making framework for static optimization with lim-
ited information.

constitutes the best search strategy for this weighted sum formulation of Prob-
lem 2.

As discussed in Subsection 3.2 and stated in Proposition 2, the informa-
tion objective, F3, in (12) can be approximated by substituting it with GP
variance v(x) in (5) to decrease computational load. Thus, an approximation
to the solution in Proposition 4 is:

Proposition 5 The solution, x̃ ∈ Θ, to the optimization problem

max
x̃∈Θ

F (x) =
3

∑

i=1

Fi(x̃) = w1f̂(x)− w2

1

N

∑

τ∈Θ

|ê(x̃,D, τ)|+ w3v(x̃), (13)

where v(x̃) is defined in (5), approximates the search strategy in Proposi-
tion 4.

The weighting scheme described is only meaningful if the three objec-
tives are of the same order of magnitude. Therefore, the original objective
functions, Fi, i = 1, 2, 3, have to be transformed or “normalized”. There are
many different approaches to perform such a transformation [19, 9]. The
most common one, which coincidentally is known as normalization, aims to
map each objective function to a predefined interval, e.g. [0, 1]. To do this,
estimate first an upper FU

i and lower FL
i bound on each individual objective

Fi(x). Then, the ith normalized objective is

FN
i (x) =

Fi(x)− FL
i

FU
i − FL

i

.
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The main issue in normalization is to determine the appropriate upper
and lower bounds, which is a very problem-dependent one. In the case
of Proposition 5, the estimated functions f̂ and ê on the set Θ as well as
the existing observations D, can be utilized to obtain these values. The
specific bounds for the respective objectives FU

1
= maxx∈Θ f̂(x), FL

1
=

minx∈Θ f̂(x), FU
2

= maxx∈Θ |ê(x,D)|, FL
2

= 0, FU
3

= maxx∈Θ κ(x), and
FU
3

= 0 provide a suitable starting estimate and can be combined with a
prior domain knowledge if necessary. Thus, a normalized version of the
formulation in Proposition 5 is obtained.

Proposition 6 The solution, x̃ ∈ Θ, to the optimization problem

max
x̃∈Θ

F (x) =

3
∑

i=1

FN
i (x̃) =

w1

∆1

(

f̂(x)− FL
1

)

−
w2

∆2

1

N

∑

τ∈Θ

|ê(x̃,D, τ)|+
w3

∆3

v(x̃),

(14)
where ∆i = FU

i −FL
i i = 1, 2, 3, provides an approximation to the best search

strategy for solving the normalized weighted-sum formulation of Problem 2.

The bounded objective function method provides a suitable alterna-
tive to the weighted sum formulation above in addressing the multi-objective
problem defined. The bounded objective function method minimizes the
single most important objective, in this case F1(x), while the other two
objective functions F2(x) and F3(x) are converted to form additional con-
straints. Such constraints are in a sense similar to QoS ones that naturally
exist in many real life problems [20, 2, 29]. As an advantage, in the bounded
objective formulation there is no need for normalization.

The bounded objective counterpart of the result in Proposition 5 is as
follows.

Proposition 7 The solution, x̃ ∈ Θ, to the constrained optimization prob-
lem

max
x̃∈Θ

f̂(x) (15)

such that 0 ≤ F2(x̃) =
1

N

∑

τ∈Θ

|ê(x̃,D, τ)| ≤ b1,

and 0 ≤ F3(x̃) = v(x̃) ≤ b2,

where b1 and b2 are given (predetermined) scalar bounds on F2 and F3,
respectively, provides an approximate best search strategy for a bounded-
objective formulation of Problem 2.
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The advantage of the bounded objective function method is that it pro-
vides a bound on the information collection and estimation objectives while
maximizing the estimated function. This leads in practice to an initial em-
phasis on information collection and correct estimation of the objective func-
tion. In that sense, the method is more “classical”, i.e. follows the common
method of learn first and maximize later. Furthermore, it does not require
normalization, i.e. it is easier to deploy. The method has, however, a sig-
nificant disadvantage which makes its usage prohibitive. In large-scale or
high-dimensional problems, the space to explore to satisfy any bound on
information is simply immense. Therefore, one does not have the luxury
of identifying the function first to maximize it later as it would take too
many samples to do this. In such cases, it makes more sense to deploy the
weighted sum method, possibly along with a cooling scheme to modify the
weights as part of a cooling scheme to balance depth-first vs. breadth-first
search.

Until now, it has been (implicitly) assumed that the static optimization
problem at hand is stationary. However, in a variety of problems this is not
the case and the function f(x, t) changes with time. The decision making
framework allows for modeling such systems in the following way. Let

O(t) = {f(xi, ti) + n(xi, ti) : xi ∈ D, ti ≤ t, ∀i},

be the set of noisy or unreliable past observations until time t, where n(x, t) ∼
N (0, σ(t)) is the zero mean Gaussian “noise” term at time t. Now, the de-
terioration in the past information due to change in f(x, t) can be captured
by increasing the variance of the noise term, σ(t), with time. For example,
a simple linear dynamic can be defined as

dσ(t)

dt
= η,

where η > 0 captures the level of stationarity, e.g. a large η indicates a
rapidly changing system and function f(x, t).

5.2 Algorithm

An algorithmic summary of the solution approaches discussed above for a
specific set of choices is provided by Algorithm 1, which describes both
weighted-sum and bounded objective variants.
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Algorithm 1 Optimization with Limited Information

1: Input: Function domain, X , GP meta-parameters, objective weights
[w1, w2, w3] or bounds b1, b2, initial data set (D, y).

2: Use GP with a Gaussian kernel and specific expected error variances for
function f̂ and error function ê estimation.

3: while Search budget available, 1 ≤ n ≤ Nmax. do
4: Sample domain X to obtain Θ(n). In some cases, Θ(n) = Θ ∀n.
5: Estimate f̂ and ê based on observed data (D, y) on Θ(n) using GPs.
6: Compute variance, v(x), of f̂ (5) on Θ(n) as an estimate of I(f̂).
7: if Weighted-sum method then
8: Next action maximizes a normalized and weighted sum of objectives

∑

3

i=1
FN
i as stated in Proposition 6.

9: else if Bounded objective method then
10: Next action is solution to the constrained problem in Proposition

7.
11: end if
12: Update the observed data (D, y).
13: end while

5.3 Numerical Analysis

The Algorithm 1 is illustrated next with multiple numerical examples. It is
worth reminding that the main issue here is to solve the optimization prob-
lems with minimum data using active learning. In all examples, a uniform
grid is used to sample the solution space rather than resorting to a more
sophisticated method since the examples are chosen to be only one or two
dimensional for visualization purposes.

Example 1

The first numerical example aims to visualize the presented framework and
algorithm. Hence, the chosen function is only one dimensional, f(x) =
sin(5x)/x on the interval X = [0.1, 3.9]. The interval is linearly sampled
to obtain a grid with a distance of 0.01 between points, i.e. Θ = {xi ∈
X ∀i : x1 = 0.1, x2 = 0.11, . . . , xN = 3.9}. A Gaussian kernel with variance
0.1 is chosen for estimating both f̂ and ê. The weights are equal to one,
w = [1, 1, 1], in the weighted-sum method. The bounds are b1 = 0.5 for the
error bound and b2 = 0.2 for the bound on maximum variance estimate in
the bounded objective method. The initial data consists of a single point,
x = 0.1.
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Figure 4 shows the results based on the normalized weighted-sum method
in Proposition 6 after 5 iterations (6 samples in total, together with the
initial data point). The variance here is v(x) of the estimated function f̂
using data points D. Clearly, the estimated peak is not the one of the real
function f .

Next, Figure 5 shows that after 11 iterations (12 data points in D), the
function and the location of its peak is estimated correctly. The sequence
of points selected during the iteration process are:

D = {0.47, 3.22, 1.17, 1.66, 2.43, 2.06, 3.9, 2.83, 3.6, 0.82, 1.42}.
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Figure 4: Optimization result using the weighted-sum method with 6 data
points.

The amount of information obtained during the iterative optimization
is of particular interest. Figure 6 depicts the mean variance v and entropy
I of the estimated function f̂ on Θ at each iteration step. In this specific
example, the two quantities are very well correlated. Note, however, that
this correlation is a function of the relative weights between information
collection and other objectives.

Finally, Figure 7 depicts the results of the bounded objective method
with the given bounds. The number of iterations is 11 as before, which
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Figure 5: Optimization result using the weighted-sum method with 12 data
points.
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Figure 6: Mean variance v and entropy I on Θ at each iteration step.
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Figure 7: Optimization result using the bounded objective method with 12
data points.

gives an opportunity of direct comparison with the weighted-sum method.
The sequence of points selected during the iteration process are:

D = {0.47, 3.22, 1.17, 1.66, 2.43, 2.06, 3.9, 2.83, 3.6, 0.82, 1.42}.

Example 2

The objective function in the second numerical example is the Goldstein&Price
function [8], which is shown in Figure 8 in its inverted form to ensure con-
sistency with the maximization formulation in this paper. The problem do-
main consists of the two dimensional rectangular region X = [−2, 2]×[−2, 2],
which is linearly sampled to obtain a uniform grid with a 0.05 interval be-
tween sample points. A Gaussian kernel with variance 0.5 and 0.1 is chosen
for estimating f̂ and ê, respectively. The weighted-sum method is utilized
in Algorithm 1 with the weights w = [4, 2, 3]. The search budget is cho-
sen as 50 before stopping the algorithm (for the search space of approx.
6400 samples in the grid). The real global minimum (peak) of the (in-
verted) Goldstein&Price function is at (0,−1) and the location found by
the algorithm using the 50 data points is (−0.15,−1.05). Figure 9 depicts
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the estimated function, the data points as well as the optimum found. Al-
though the real optimum value is −3 (in the inverted version) while the
obtained one is −9.75, the result is still very satisfactory considering that
the simple sampling scheme used and the Goldstein&Price function takes
values in a range of 1 million, i.e. the error is less than 0.001 percent of the
range. Finally, Figure 10 depicts the mean variance v and entropy I of the
estimated function f̂ on Θ at each iteration step.
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Figure 8: The inverted Goldstein&Price function [8].

Example 3

The third example uses the same setup as the second one but this time
with the (inverted) Brain function [6] shown in Figure 11. The rectangular
problem domain X = [−5, 10] × [0, 15] is sampled uniformly to obtain a
grid of points with a 0.2 interval. The real global minimums (peaks) of
the (inverted) Branin function are at (9.4, 2.47), (−π, 12.28), and (π, 2.28)
whereas the locations found by the algorithm are (9, 2.6), (−3.2, 12), and
(3, 2.2). The values at these locations found vary between −4.3 and −0.5
compared to the real global value of −0.4 (of the inverted function). Thus,
the algorithm again performs satisfactorily. Figure 9 shows the computed
location of one optimum, the data points, as well as the estimated function
based on the data points.

26



−2
−1

0
1

2

−2

0

2
−10

−5

0

5

x 10
5

 
Optimization of Inverted G&P function with Limited Information

 

estimate
data points
peak

Figure 9: Optimization of the inverted Goldstein&Price function [8] using
the weighted-sum method with 50 data points.
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Figure 10: Mean variance v and entropy I on Θ at each iteration step.

27



−5

0

5

10

0

5

10

15
−350

−300

−250

−200

−150

−100

−50

0

Inverted Branin function

Figure 11: The inverted Branin function [6].
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Figure 12: Optimization of the inverted Branin function [6] using the
weighted-sum method with 50 data points.

28



Example 4

The fourth example is based on the six-hump camel function [7] (see Fig-
ure 13) on the domain X = [−2, 2]×[−2, 2], which is sampled uniformly with
a 0.05 interval. All of the parameters are chosen to be the same as before.
Figure 14 shows the computed location of two optimums, the 50 data points,
as well as the estimated function based on the data points. The optimum
locations found are (0, 0.65) and (0.05, −0.6) with respective values of 0.98
and 1.06, whereas the real locations are (−0.09, 0.71) and (0.09,−0.71) with
the value 1.03.
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Figure 13: The inverted six-hump camel function.

6 Literature Review

Decision making with limited information is related to search theory. The
idea of using information (theory) in this context is hardly new as evidenced
by the article “A New Look at the Relation Between Information Theory and
Search Theory” from 1979 [22]. The subject is further studied in [11]. The
topic of optimal search is more recently revisited by [35], which contains
substantial historical notes and studies problems where the search target
distribution in itself is unobservable.
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Figure 14: Optimization of the inverted six-hump camel function [7] using
the weighted-sum method with 50 data points.

The book [18] provides important and valuable insights into the rela-
tionship between information theory, inference, and learning. Measuring
information content of experiments using Shannon information is explicitly
mentioned and a slightly informal version of the bisection example in Subsec-
tion 3.2 is discussed. However, focusing mainly on more traditional coding,
communication, and machine learning topics, the book does not discuss the
type of decision making problems presented in this paper.

Learning plays an important role in the presented framework, especially
regression, which is a classical machine (or statistical) learning method. A
very good introduction to the subject can be found in [3]. A complemen-
tary and detailed discussion on kernel methods is in [26]. Another relevant
topic is Bayesian inference [33, 18], which is in the foundation of the pre-
sented framework. In machine learning literature, Gaussian processes (GPs)
are getting increasingly popular due to their various favorable characteris-
tics. The book [23] presents a comprehensive treatment of GPs. Additional
relevant works on the subject include [18, 26, 16], which also discuss GP
regression.

Convex optimization [4] is a well-understood topic that is often easy
to handle even if available information is limited. Optimizing nonconvex
functions, however, is still a research subject [12]. It is interesting to note
that the method known as kriging in global optimization is almost the same
as GP regression in machine learning. The field stochastic programming
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focuses on optimization under uncertainty but assumes a certain amount
of prior knowledge on the problem at hand and models the uncertainty
probabilistically [25]. The popular heuristic method simulated annealing [24]
is essentially based on iterative random search. Another popular heuristic
scheme particle swarm optimization [13] is also based on random search but
parallel in nature as a distinguishing characteristic rather than iterative.

Gaussian processes have been recently applied to the area of optimiza-
tion and regression [5] as well as system identification [32]. While the latter
mentions active learning, neither work discusses explicit information quan-
tification or builds a connection with Shannon information theory. The
recent articles [15, 34], which utilize GP regression for optimization in a
setting similar to the one in this paper and for state-space inference and
learning, respectively, do not consider information-theoretic aspects of the
problem, either. Likewise, the article [10] on stochastic black box optimiza-
tion, which considers a problem similar to the one here, does not take into
account explicit measurement of information.

The area of active learning or experiment design focuses on data scarcity
in machine learning and makes use of Shannon information theory among
other criteria [28]. The paper [17] discusses objective functions which mea-
sure the expected informativeness of candidate measurements within a Bayesian
learning framework. The subsequent study [27] investigates active learning
for GP regression using variance as a (heuristic) confidence measure for test
point rejection.

7 Discussion

The foundation of the approach adopted in this paper is Bayesian infer-
ence, where the main idea is to choose an a priori model and update it with
actual experimental data observed (see [18, Chap. 2] for a beautiful intro-
ductory discussion on the subject). As long as the a priori model is close
to the reality (of the problem at hand), this inference methodology works
very efficiently as indicated by the numerical examples in Section 5.3. In
many cases this background information, which is sometimes referred to as
“domain knowledge”, is already available. However, in others one has to
explore the model domain and learn model meta-parameters in a time scale
naturally longer than the one of actual optimization [16].

The GP regression adopted in the presented framework is only one
method for function estimation and other, e.g. parametric, methods can
easily replace GP for the regression part. In any case, the regression method-
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ology here is consistent with the principle of “Occam’s razor”, more specif-
ically its interpretation using Kolmogorov complexity [14]. A priori, the
optimization problems at hand are more probable to be simple rather than
complex to describe in accordance with universal distribution [14]. Hence,
given a data set it is reasonable to start describing it with the simplest expla-
nation. GP regression already incorporates this line of thinking by relying
on a kernel-based approach and making use of the representer theorem [23,
Chap. 6.2]. As a visual example, we refer Figures 4 and 5 for a comparison
of function estimates with different sets of available data.

This paper considers a class of problems where data is scarce and ob-
taining it is costly. Information theory plays an especially important role
in devising optimal schemes for obtaining new data points (active learning).
The entropy measure from Shannon information theory provides the neces-
sary metric for this purpose, which quantifies the “exploration” aspect of the
problem. Using a multi-objective optimization formulation, the presented
framework allows explicit weighting of exploration vs. exploitation aspects.
This trade-off is also very similar to one between the well-known depth-first
vs. breadth-first search algorithms in search theory.

The amount of information obtained from each data point is different
here only because a specific a priori general model is utilized to explain
the observed data (GP regression). Because of this the amount of infor-
mation obtained is specific to the model. Otherwise, without this Bayesian
approach, each data point would give the same information (inversely pro-
portional to the total number of candidate points).

The illustrative examples discussed are low-dimensional, which makes
it possible to use grids for sampling. However, in higher dimensions (i.e.
when the problem is much more “difficult”) this “luxury” is not affordable
and one has to necessarily resort to Monte Carlo methods. In such cases,
the trade-off between exploration and exploitation is even more emphasized.
Possible methods to address this issue include, “cooling” approaches similar
to those used in simulated annealing, multi-resolution sampling based on
region of interest or using topological properties of Gaussian mixtures to
intelligently estimate candidate points based on the current state.

The optimization approach presented here can also be interpreted from
a biological perspective. If an analogy between the decision-maker and a
biological organism is established, then the a-priori Bayesian model (meta
parameters of the GP) that is refined over a long time scale corresponds to
evolution of a species in an environment (problem domain). Each individual
organism belogning to the species obtains new information to achieve its
objective while preserving resources as much as possible. The existing evo-
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lutionary basis (GP model) gives them an advantage to find a solution much
faster compared to random search. From the perspective of the species, it
also makes sense for some of its members to explore the model (meta param-
eter) domain and further refine it through adaptation. Those with better
meta parameters achieve then their objectives even more efficiently and ob-
tain an evolutionary edge in natural selection (assuming competition).

8 Conclusion

The decision making framework presented in this paper addresses the prob-
lem of decision making under limited information by taking into account the
information collection (observation), estimation (regression), and (multi-
objective) optimization aspects in a holistic and structured manner. The
methodology is based on Gaussian processes and active learning. Various
issues such as quantifying information content of new data points using in-
formation theory, the relationship between information and GP variance as
well as related approximation and multi-objective optimization schemes are
discussed. The framework is demonstrated with multiple numerical exam-
ples.

The presented framework should be considered mainly as an initial step.
Future research directions are abundant and include further investigation
of the exploration-exploitation trade-off, adaptive weighting parameters,
and random sampling methods for problems in higher dimensional spaces.
Additional research topics are the relationship of the framework with ge-
netic/evolutionary methods, dynamic control problems, and multi-person
decision making, i.e. game theory.
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