Skip to main content
Log in

Characterization and recognition of d.c. functions

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

A function \({f : \Omega \to \mathbb{R}}\) , where Ω is a convex subset of the linear space X, is said to be d.c. (difference of convex) if fgh with \({g, h : \Omega \to \mathbb{R}}\) convex functions. While d.c. functions find various applications, especially in optimization, the problem to characterize them is not trivial. There exist a few known characterizations involving cyclically monotone set-valued functions. However, since it is not an easy task to check that a given set-valued function is cyclically monotone, simpler characterizations are desired. The guideline characterization in this paper is relatively simple (Theorem 2.1), but useful in various applications. For example, we use it to prove that piecewise affine functions in an arbitrary linear space are d.c. Additionally, we give new proofs to the known results that C 1,1 functions and lower-C 2 functions are d.c. The main goal remains to generalize to higher dimensions a known characterization of d.c. functions in one dimension: A function \({f : \Omega \to \mathbb{R}, \Omega \subset \mathbb{R}}\) open interval, is d.c. if and only if on each compact interval in Ω the function f is absolutely continuous and has a derivative of bounded variation. We obtain a new necessary condition in this direction (Theorem 3.8). We prove an analogous sufficient condition under stronger hypotheses (Theorem 3.11). The proof is based again on the guideline characterization. Finally, we obtain results concerning the characterization of convex and d.c. functions obeying some kind of symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandroff A.D.: Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it. Ucenye Zapiski Leningr. Gos. Univ. Ser. Mat. 37(6), 3–35 (1939)

    Google Scholar 

  2. Blanquero R., Carrizosa E.: Optimization of the norm of a vector-valued DC function and applications. J. Optim. Theory Appl. 107, 245–260 (2000)

    Article  Google Scholar 

  3. Bougeard M.L.: Morse theory for some lower-C 2 functions in finite dimension. Math. Program. 41(Ser. A), 141–159 (1988)

    Article  Google Scholar 

  4. Bui A., Bui M., Tuy H.: A nonconvex optimization problem arising from distributed computing. Mathematica 43(66), 151–165 (2001)

    Google Scholar 

  5. Conway J.B.: A Course in Functional Analysis. Graduate Texts in Mathematics, vol. 96. Springer, New York (1990)

  6. Dempe S., Gadhi N.: Necessary optimality conditions of a D.C. set-valued bilevel optimization problem. Optimization 57, 777–793 (2008)

    Article  Google Scholar 

  7. Demyanov V., Rubinov A.: An introduction to quasidifferentiable calculus. In: Demyanov, V., Rubinov, A. (eds.) Quasidifferentiability and Related Topics, Nonconvex Optimization and its Applications, vol. 43, pp. 1–30. Kluwer Academic Publishers, Dordrecht (2000)

    Chapter  Google Scholar 

  8. Duda J., Veselý L., Zajíček L.: On d.c. functions and mappings. Atti Sem. Mat. Fis. Univ. Modena 51, 111–138 (2003)

    Google Scholar 

  9. Elhilali A.A.: Caractérisation des fonctions DC. Ann. Sci. Math. Québec 20, 1–13 (1996)

    Google Scholar 

  10. Elhilali A.A., Lafhim L., Metrane A.: Fonctions DC vectorielles. Math. Rech. Appl. 6, 37–55 (2004)

    Google Scholar 

  11. Ellaia, R.: Contribution à à l’Analyse et l’Optimisation de Differences de Fonctions Convexes. Ph.D. Thesis, l’Université Paul Sabatier (1984)

  12. Ellaia R., Hassouni A.: Characterization of nonsmooth functions through their generalized gradients. Optimization 22, 401–416 (1991)

    Article  Google Scholar 

  13. Ginchev I., Martínez-Legaz J.E.: Characterization of d.c. functions in terms of quasidifferentials. Nonlinear Anal. 74, 6781–6787 (2011)

    Article  Google Scholar 

  14. Hartman P.: On functions representable as a difference of convex functions. Pac. J. Math. 9, 707–713 (1959)

    Article  Google Scholar 

  15. Hiriart-Urruty, J.-B.: Generalized Differentiability, Duality and Optimization for Problems Dealing with Differences of Convex Functions. Convexity and Duality in Optimization (Groningen, 1984), Lecture Notes in Economics and Mathematical Systems, vol. 256, pp. 37–70. Springer, Berlin (1985)

  16. Laghdir M.: Optimality conditions in DC-constrained optimization. Acta Math. Vietnam. 30, 169–179 (2005)

    Google Scholar 

  17. Lahoussine L., Elhilali A.A., Gadhi N.: Set-valued mapping monotonicity as characterization of D.C. functions. Positivity 13, 399–405 (2009)

    Article  Google Scholar 

  18. Martínez-Legaz, J.-E., Volle, M.: Duality for d.c. optimization over compact sets. Optimization Theory (Mátraháza, 1999), Appl. Optim., vol. 59, pp. 139–146. Kluwer Academic Publishers, Dordrecht (2001)

  19. Moudafi A.: Convergence of a proximal-type method for DC functions. J. Appl. Funct. Anal. 1, 285–291 (2006)

    Google Scholar 

  20. Moudafi A., Maingé P.-E.: On the convergence of an approximate proximal method for DC functions. J. Comput. Math. 24, 475–480 (2006)

    Google Scholar 

  21. Penot J.P., Bougeard M.L.: Approximation and decomposition properties of some classes of locally D.C. functions. Math. Program. 41(Ser. A), 195–227 (1988)

    Article  Google Scholar 

  22. Rockafellar R.T.: Convex Analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton (1970)

    Google Scholar 

  23. Sun W.-Y., Sampaio R.J.B., Candido M.A.B.: Proximal point algorithm for minimization of DC function. J. Comput. Math. 21, 451–462 (2003)

    Google Scholar 

  24. Volle M.: Duality principles for optimization problems dealing with the difference of vector-valued convex mappings. J. Optim. Theory Appl. 114, 223–241 (2002)

    Article  Google Scholar 

  25. Yomdin Y.: On functions representable as a supremum of a family of smooth functions. SIAM J. Math. Anal. 14, 239–246 (1983)

    Article  Google Scholar 

  26. Zălinescu C.: Convex Analysis in General Vector Spaces. World Scientific Publishing Co., Inc., River Edge (2002)

    Book  Google Scholar 

  27. Zelený M.: An example of a C 1,1 function, which is not a d.c. function. Comment. Math. Univ. Carolin. 43, 149–154 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Ginchev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ginchev, I., Gintcheva, D. Characterization and recognition of d.c. functions. J Glob Optim 57, 633–647 (2013). https://doi.org/10.1007/s10898-012-9964-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-012-9964-6

Keywords

Mathematics Subject Classification (2000)

Navigation