Skip to main content
Log in

Differential evolution with multi-constraint consensus methods for constrained optimization

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Constrained optimization is an important research topic that assists in quality planning and decision making. To solve such problems, one of the important aspects is to improve upon any constraint violation, and thus bring infeasible individuals to the feasible region. To achieve this goal, different constraint consensus methods have been introduced, but no single method performs well for all types of problems. Hence, in this research, for solving constrained optimization problems, we introduce different variants of the Differential Evolution algorithm, with multiple constraint consensus methods. The proposed algorithms are tested and analyzed by solving a set of well-known bench mark problems. For further improvements, a local search is applied to the best variant. We have compared our algorithms among themselves, as well as with other state of the art algorithms. Those comparisons show similar, if not better performance, while also using significantly lower computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

X :

Decision vector

D :

Number of decision variables

f (X):

Objective function

g c (X):

cth inequality constraint

h e (X):

eth equality constraint

L j :

Lower limit of x j

U j :

Upper limit of x j

PS :

Population Size

Cr :

Crossover rate

F :

Amplification factor

WS :

Window size parameter

Ni :

Number of individuals assigned to the ith group

\({\varepsilon}\) :

Epsilon parameter for the equality constraints

P :

Number of infeasible points that follow the CC methods

\({\vec{V}_{i,t}}\) :

Mutant vector

α :

Feasibility distance tolerance

β :

Movement tolerance

μ :

Number of generations

\({Vio_{i,t}^{\rm best}}\) :

Constraint violation of the best individual in subpopulation i

FR i,t :

Feasibility ratio of operator i at generation t

MSS :

Minimum subpopulation size

References

  1. Goldberg D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Publishing Corporation, New York (1989)

    Google Scholar 

  2. Kennedy, J., Eberhart, R.: Particle swarm optimisation. In: The IEEE International Conference on Neural Network, pp. 1942–1948 (1995)

  3. Storn, R., Price, K.: Differential Evolution—A simple and efficient adaptive scheme for global optimization over continuous spaces. In: Technical Report. p. ALL. International Computer Science Institute (1995)

  4. Rechenberg, I.: Evolutions Strategie: Optimierung Technischer Systeme nach Prinzipien der biologischen Evolution. Fromman-Holzboog, Stuttgart (1973)

  5. Fogel L., Owens J., Walsh M.: Artificial Intelligence Through Simulated Evolution. Wiley, New York (1966)

    Google Scholar 

  6. Censor Y., Zenios S.: Parallel Optimization: Theory, Algorithms, and Applications. Oxford University Press, New York (1997)

    Google Scholar 

  7. Xiao Y., Censor Y., Michalski D., Galvin J.: The least-intensity feasible solution for aperture-based inverse planning in radiation therapy. Ann. Oper. Res. 119, 183–203 (2003)

    Article  Google Scholar 

  8. Chinneck J.W.: The constraint consensus method for finding approximately feasible points in nonlinear programs. INFORMS J. Comput. 16(3), 255–265 (2004). doi:10.1287/ijoc.1030.0046

    Article  Google Scholar 

  9. Censor Y., Gordon D., Gordon R.: Component averaging: an efficient iterative parallel algorithm for large and sparse unstructured problems. Parallel Comput. 27(6), 777–808 (2001). doi:10.1016/s0167-8191(00)00100-9

    Article  Google Scholar 

  10. Ibrahim W., Chinneck J.W.: Improving solver success in reaching feasibility for sets of nonlinear constraints. Comput. Oper. Res. 35(5), 1394–1411 (2008). doi:10.1016/j.cor.2006.08.002

    Article  Google Scholar 

  11. Moon J., Kulkarni K., Zhang L., Linninger A.A.: Parallel hybrid algorithm for process flexibility analysis. Ind. Eng. Chem. Res. 47(21), 8324–8336 (2008). doi:10.1021/ie800644n

    Article  Google Scholar 

  12. Deb K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186, 311–338 (2000)

    Article  Google Scholar 

  13. Liang, J.J., Runarsson, T.P., Mezura-Montes, E., Clerc, M., Suganthan, P.N., Coello, C.A.C., Deb, K.: Problem definitions and evaluation criteria for the cec 2006 special session on constrained real-parameter optimization. In: Technical Report, Nanyang Technological University, Singapore (2005)

  14. Jain A.K., Elmaraghy H.A.: Production scheduling/rescheduling in flexible manufacturing. Int. J. Prod. Res. 35(1), 281–309 (1997). doi:10.1080/002075497196082

    Article  Google Scholar 

  15. Smith L.: Improved Placement of Local Solver Launch Points for Large-scale Global Optimization. Carleton University, Ottawa (2011)

    Google Scholar 

  16. Hamza, N.M., Elsayed, S.M., Essam, D.L., Sarker, R.A.: Differential evolution combined with constraint consensus for constrained optimization. In: IEEE Congress on Evolutionary Computation, 5–8 June 2011, pp. 865–872

  17. Tjalling Y.J.: Historical development of the Newton-Raphson method. SIAM Rev. 37(4), 531–551 (1995)

    Article  Google Scholar 

  18. Storn R., Price K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997). doi:10.1023/a:1008202821328

    Article  Google Scholar 

  19. Storn, R.: On the usage of differential evolution for function optimization. In: Biennial Conference of the North American Fuzzy Information Processing Society (NAFIPS) 1996, pp. 519–523

  20. Qin A.K., Huang V.L., Suganthan P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417 (2009)

    Article  Google Scholar 

  21. Mezura-Montes, E., Reyes, J.V., Coello, C.A.C.: A comparative study of differential evolution variants for global optimization. In: The 8th Annual Conference on Genetic and Evolutionary Computation, Seattle, Washington, USA 2006, pp. 485–492. ACM, 1144086

  22. Price K.V., Storn R.M., Lampinen J.A.: Differential Evolution: A Practical Approach to Global Optimization. Natural Computing Series. Springer, Berlin (2005)

    Google Scholar 

  23. Gämperle, R., Müller, S.D., Koumoutsakos, P.: Parameter study for differential evolution. In: WSEAS International Conference on Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Computation 2002, pp. 293–298

  24. Ronkkonen, J., Kukkonen, S., Price, K.V.: Real-parameter optimization with differential evolution. In: The 2005 IEEE Congress on Evolutionary Computation., 5 Sept. 2005, vol. 501, pp. 506–513

  25. Abbass, H.A.: The self-adaptive Pareto differential evolution algorithm. In: IEEE Congress on Evolutionary Computation. 2002, pp. 831–836

  26. Zaharie, D.: Control of population diversity and adaptation in differential evolution algorithms. In: The 9th International Conference on Soft Computing 2003, pp. 41–46

  27. Das, S., Konar, A., Chakraborty, U.K.: Two improved differential evolution schemes for faster global search. Paper presented at the the 2005 conference on Genetic and evolutionary computation, Washington DC, USA

  28. Zamuda, A., Brest, J., Boskovic, B., Zumer, V.: Differential Evolution with Self-adaptation and Local Search for Constrained Multiobjective Optimization. In: IEEE Congress on Evolutionary Computation, 18–21 May 2009, pp. 195–202

  29. Elsayed S.M., Sarker R.A., Essam D.L.: Multi-operator based evolutionary algorithms for solving constrained optimization problems. Comput. Oper. Res. 38(12), 1877–1896 (2011)

    Article  Google Scholar 

  30. Yang Z., Yao X., He J.: Making a difference to differential evolution. In: Siarry, P., Michalewicz, Z. (eds) Advances in Metaheuristics for Hard Optimization Natural Computing Series, pp. 397–414. Springer, Berlin (2008)

    Chapter  Google Scholar 

  31. Corder G.W., Foreman D.I.: Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach. John Wiley, Hoboken, NJ (2009)

    Book  Google Scholar 

  32. PowellM. : A fast algorithm for nonlinearly constrained optimization calculationsNumerical Analysis. In: Watson, G. (ed) Lecture Notes in Mathematics, vol. 630, pp. 144–157. Springer, Berlin (1978)

    Google Scholar 

  33. Boggs P.T., Tolle J.W.: Sequential quadratic programming. Acta Numer. 4, 1–51 (1995). doi:10.1017/S0962492900002518

    Article  Google Scholar 

  34. Mallipeddi R., Suganthan P.N.: Ensemble of constraint handling techniques. IEEE Trans. Evol. Comput. 14(4), 561–579 (2010)

    Article  Google Scholar 

  35. Mezura-Montes, E., Velazquez-Reyes, J., Coello Coello, C.A.: Modified differential evolution for constrained optimization. In: IEEE Congress on Evolutionary Computation, pp. 25–32, 2006

  36. Tessema B., Yen G.G.: An adaptive penalty formulation for constrained evolutionary optimization. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 39(3), 565–578 (2009)

    Article  Google Scholar 

  37. Yong W., Zixing C., Yuren Z., Wei Z.: An adaptive tradeoff model for constrained evolutionary optimization. IEEE Trans. Evol. Comput. 12(1), 80–92 (2008)

    Article  Google Scholar 

  38. Mezura-Montes E., Coello C.A.C.: A simple multimembered evolution strategy to solve constrained optimization problems. IEEE Trans. Evol. Comput. 9(1), 1–17 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noha M. Hamza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamza, N.M., Sarker, R.A. & Essam, D.L. Differential evolution with multi-constraint consensus methods for constrained optimization. J Glob Optim 57, 583–611 (2013). https://doi.org/10.1007/s10898-012-9987-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-012-9987-z

Keywords

Navigation