Skip to main content
Log in

Uniqueness of supporting hyperplanes and an alternative to solutions of variational inequalities

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

A uniqueness theorem of supporting hyperplanes for a class of convex level sets in a Hilbert space is obtained. As an application of this result, we prove an alternative theorem on solutions of variational inequalities defined on convex level sets. Three examples are given to demonstrate the usefulness and advantages of our alternative theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baiocchi C., Capelo A.: Variational and Quasi Variational Inequalities. Wiley, New York (1984)

    Google Scholar 

  2. Beauzamy B.: Introduction to Banach Spaces and Their Geometry. North-Holland Publishing Company, Amsterdam (1982)

    Google Scholar 

  3. Bnouhachem A.: A self-adaptive method for solving general mixed variational inequalities. J. Math. Anal. Appl. 309, 136–150 (2005)

    Article  Google Scholar 

  4. Cottle R.W., Giannessi F., Lions J.L.: Variational Inequalities and Complementarity Problems: Theory and Applications. Wiley, New York (1980)

    Google Scholar 

  5. Diestel, J.: Geometry of Banach Spaces—Selected topics, Lecture Notes in Mathematics, vol. 485. Springer, Berlin (1975)

  6. Fukushima M.: Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math. Program. 53, 99–110 (1992)

    Article  Google Scholar 

  7. Geobel K., Kirk W.A.: Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics. Vol. 28, Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  8. Giannessi F., Maugeri A., Pardalos P.M.: Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models. Kluwer Academic Press, Dordrecht, Holland (2001)

    Google Scholar 

  9. Glowinski R., Lions J.L., Tremoliers R.: Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam, Holland (1981)

    Google Scholar 

  10. Harker P.T., Pang J.S.: Finite-dimensional variational inequality and nonlinear omplementarity problems: a survey of theory, algorithms and applications. Math. Program. 48, 161–220 (1990)

    Article  Google Scholar 

  11. He, B.S.: A class of implicit methods for monotone variational inequalities. Reports of the Institute of Mathematics 95-1 Nanjing University, China (1995)

  12. He B.S., Liao L.Z.: Improvement of some projection methods for monotone variational inequalities. J. Optim. Theory Appl. 112, 111–128 (2002)

    Article  Google Scholar 

  13. He S., Xu H.K.: Variational inequalities governed by boundedly Lipschitzian and strongly monotone operators. Fixed Point Theory 10(2), 245–258 (2009)

    Google Scholar 

  14. He B.S., Yang Z.H., Yuan X.M.: An approximate proximal-extradient type method for monotone variational inequalities. J. Math. Anal. Appl. 300(2), 362–374 (2004)

    Article  Google Scholar 

  15. Hiriart-Urruty J.B., Lemarchal C.: Fundamentals of convex analysis. Springer, Berlin (2001)

    Book  Google Scholar 

  16. Kinderlehrer D., Stampacchia G.: An Introduction to Variational Inequalities and their Applications. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  17. Raciti F., Falsaperla P.: Improved noniterative algorithm for solving the traffic equilibrium problem. J. Optim. Theory Appl. 133, 401–411 (2007)

    Article  Google Scholar 

  18. Stampacchia G.: Formes bilineaires coercivites sur les ensembles convexes. CR. Acad. Sci. 258, 4413–4416 (1964)

    Google Scholar 

  19. Xu H.K., Kim T.H.: Convergence of hybrid steepest-descent methods for variational inequalities. J. Optim. Theory Appl. 119, 185–201 (2003)

    Article  Google Scholar 

  20. Xu H.K.: Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298, 279–291 (2004)

    Article  Google Scholar 

  21. Yamada I.: The hybrid steepest-descent method for variational inequality problems over the intersection of the fixed point sets of nonexpansive mappings. In: Butnariu, D., Censor, Y., Reich, S. (eds) Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, pp. 473–504. North-Holland, Amsterdam, Holland (2001)

    Chapter  Google Scholar 

  22. Yang H., Bell M.G.H.: Traffic restraint, road pricing and network equilibrium. Trans. Res. B 31, 303–314 (1997)

    Article  Google Scholar 

  23. Zeidler E.: Nonlinear Functional Analysis and Its Application, vol. , Fixed Point Theorems. Springer, Berlin (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Kun Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, S., Xu, HK. Uniqueness of supporting hyperplanes and an alternative to solutions of variational inequalities. J Glob Optim 57, 1375–1384 (2013). https://doi.org/10.1007/s10898-012-9995-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-012-9995-z

Keywords

Mathematics Subject Classification (2000)

Navigation