Skip to main content
Log in

Local reduction based SQP-type method for semi-infinite programs with an infinite number of second-order cone constraints

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The second-order cone program (SOCP) is an optimization problem with second-order cone (SOC) constraints and has achieved notable developments in the last decade. The classical semi-infinite program (SIP) is represented with infinitely many inequality constraints, and has been studied extensively so far. In this paper, we consider the SIP with infinitely many SOC constraints, called the SISOCP for short. Compared with the standard SIP and SOCP, the studies on the SISOCP are scarce, even though it has important applications such as Chebychev approximation for vector-valued functions. For solving the SISOCP, we develop an algorithm that combines a local reduction method with an SQP-type method. In this method, we reduce the SISOCP to an SOCP with finitely many SOC constraints by means of implicit functions and apply an SQP-type method to the latter problem. We study the global and local convergence properties of the proposed algorithm. Finally, we observe the effectiveness of the algorithm through some numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For two sets \(X\subseteq Y\), the distance from \(X\) to \(Y\) is defined as \({\mathop {\mathrm{dist}\,}}(X,Y)\,{:=}\,\sup _{y\in Y}{\inf }_{x\in X }{\Vert }x-y{\Vert }\).

  2. This can be regarded as a kind of Cottle’s constraint qualification for \(\mathrm{SOCP}(x^{*},\varepsilon )\).

  3. The fact that \(u^{\top }v=0, u\in {\mathop {\mathrm{int}}}\,\mathcal{K }^m, v\in \mathcal{K }^m \Rightarrow v=0\) is used here.

  4. This spectral decomposition process may be expensive computationally, when the size of \(B_k\) becomes huge. In that case, it may be reasonable to use the modified Cholesky factorization [5] to make \(B_k\) positive-definite.

  5. The origin \(x=0\) always lies in the interior of the feasible region, since we have \(-b^s(t)\in {\mathop {\mathrm{int}}}\, \mathcal{K }^{m_s}\) from \(-b^s_1(t)-\Vert (-b^s_2(t),\ldots ,-b^s_{m_s}(t))^{\top }\Vert >0\) for all \(t\in T\).

  6. We also suppose that Assumption 4.1(b) holds.

References

  1. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95, 3–51 (2003)

    Article  Google Scholar 

  2. Bonnans, J.F., Ramírez, C.H.: Perturbation analysis of second-order cone programming problems. Math. Program. 104, 205–227 (2005)

    Article  Google Scholar 

  3. Floudas, C.A., Stein, O.: The adaptive convexification algorithm: a feasible point method for semi-infinite programming. SIAM J. Optim. 18, 1187–1208 (2007)

    Article  Google Scholar 

  4. Fukushima, M., Luo, Z.Q., Tseng, P.: Smoothing functions for second-order cone complementarity problems. SIAM J. Optim. 12, 436–460 (2001)

    Article  Google Scholar 

  5. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, London (1981)

    Google Scholar 

  6. Goberna, M.A., López, M.A.: Semi-Infinite Programming–Recent Advances. Kluwer, Dordrecht (2001)

    Book  Google Scholar 

  7. Gramlich, G., Hettich, R., Sachs, E.W.: Local convergence of SQP methods in semi-infinite programming. SIAM J. Optim. 5, 641–658 (1995)

    Article  Google Scholar 

  8. Hayashi, S., Wu, S.-Y.: An explicit exchange algorithm for linear semi-infinite programming problems with second-order cone constrains. SIAM J. Optim. 20, 1527–1546 (2009)

    Article  Google Scholar 

  9. Hayashi, S., Yamashita, N., Fukushima, M.: A combined smoothing and regularization method for monotone second-order cone complementarity problems. SIAM J. Optim. 15, 593–615 (2005)

    Article  Google Scholar 

  10. Hettich, R.: An implementation of a discretization method for semi-infinite programming. Math. Program. 34, 354–361 (1986)

    Article  Google Scholar 

  11. Hettich, R., Kortanek, K.O.: Semi-infinite programming: theory, methods, and applications. SIAM Rev. 35(3), 380–429 (1993)

    Article  Google Scholar 

  12. Kato, H., Fukushima, M.: An SQP-type algorithm for nonlinear second-order cone programs. Optim. Lett. 1, 129–144 (2007)

    Article  Google Scholar 

  13. Lai, H.C., Wu, S.-Y.: On linear semi-infinite programming problems. Numer. Funct. Anal. Optim 13, 287–304 (1992)

    Article  Google Scholar 

  14. Li, D.H., Qi, L., Tam, J., Wu, S.-Y.: A smoothing Newton method for semi-infinite programming. J. Glob. Optim. 30, 169–194 (2004)

    Article  Google Scholar 

  15. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284, 193–228 (1998)

    Article  Google Scholar 

  16. López, M.A., Still, G.: Semi-infinite programming. Eur. J. Oper. Res. 180, 491–518 (2007)

    Article  Google Scholar 

  17. Okuno, T., Hayashi, S., Fukushima, M.: A regularized explicit exchange method for semi-infinite programs with an infinite number of conic constraints. SIAM J. Optim. 22, 1009–1028 (2012)

    Article  Google Scholar 

  18. Pereira, A., Costa, M., Fernandes, E.: Interior point filter method for semi-infinite programming problems. Optimization 60, 1309–1338 (2011)

    Article  Google Scholar 

  19. Pereira, A., Fernandes, E.: A reduction method for semi-infinite programming by means of a global stochastic approach. Optimization 58, 713–726 (2009)

    Article  Google Scholar 

  20. Qi, L., Wu, S.-Y., Zhou, G.: Semismooth Newton methods for solving semi-infinite programming problems. J. Global Optim. 27, 215–232 (2003)

    Article  Google Scholar 

  21. Reemtsen, R.: Discretization methods for the solution of semi-infinite programming problems. J. Optim. Theory Appl. 71, 85–103 (1991)

    Article  Google Scholar 

  22. Reemtsen, R., R\(\ddot{\text{u}}\)ckmann, J.-J. (eds.): Semi-Infinite Programming. Kluwer, Boston (1998)

  23. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11, 625–653 (1999)

    Article  Google Scholar 

  24. Tanaka, Y., Fukushima, M., Ibaraki, T.: A globally convergent SQP method for semi-infinite nonlinear optimization. J. Comput. Appl. Math. 23, 141–153 (1988)

    Article  Google Scholar 

  25. Toh, K.C., Todd, M.J., T\(\ddot{\text{u}}\)t\(\ddot{\text{u}}\)nc\(\ddot{\text{u}}\), R.H.: SDPT3–a MATLAB software package for semidefinite programming, version 2.1. Optim. Methods Softw. 11, 545–581 (1999)

  26. Wang, Y., Zhang, L.: Properties of equation reformulation of the Karush-Kuhn-Tucker condition for nonlinear second order cone optimization problems. Math. Meth. Oper. Res. 70, 195–218 (2009)

    Article  Google Scholar 

  27. Wu, S.-Y., Li, D.H., Qi, L., Zhou, G.: An iterative method for solving KKT system of the semi-infinte programming. Optim. Methods Softw. 20, 629–643 (2005)

    Article  Google Scholar 

  28. Yamashita, H., Yabe, H.: A primal-dual interior point method for nonlinear optimization over second-order cones. Optim. Methods Softw. 24, 407–426 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank two anonymous referees for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masao Fukushima.

Additional information

This research was supported in part by Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okuno, T., Fukushima, M. Local reduction based SQP-type method for semi-infinite programs with an infinite number of second-order cone constraints. J Glob Optim 60, 25–48 (2014). https://doi.org/10.1007/s10898-013-0063-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-013-0063-0

Keywords

Navigation