Skip to main content

Advertisement

Log in

Analysing the scalability of multiobjective evolutionary algorithms when solving the motif discovery problem

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper we analyse the scalability of seven multiobjective evolutionary algorithms when they solve large instances of a known biological problem, the motif discovery problem (MDP). The selected algorithms are a population-based and a trajectory-based algorithms (DEPT and MO-VNS, respectively), three swarm intelligence algorithms (MOABC, MO-FA, and MO-GSA), a genetic algorithm (NSGA-II), and SPEA2. The MDP is one of the most important sequence analysis problems related to discover common patterns, motifs, in DNA sequences. A motif is a nucleic acid sequence pattern that has some biological significance as being DNA binding sites for a regulatory protein, i.e., a transcription factor (TF). A biologically relevant motif must have a certain length, be found in many sequences, and present a high similarity among the subsequences which compose it. These three goals are in conflict with each other, therefore a multiobjective approach is a good way of facing the MDP. In addition, in recent years, scientists are decoding genomes of many organisms, increasing the computational workload of the algorithms. Therefore, we need algorithms that are able to deal with these new large DNA instances. The obtained experimental results suggest that MOABC and MO-FA are the algorithms with the best scalability behaviours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ao, W., Gaudet, J., Kent, W.J., Muttumu, S., Mango, S.E.: Environmentally induced foregut remodeling by PHA-4/FoxA and DAF-12/NHR. Science 305(5691), 1743–1746 (2004)

    Article  Google Scholar 

  2. Bailey, T.L., Elkan, C.: Unsupervised learning of multiple motifs in biopolymers using expectation maximization. Mach. Learn. 21(1–2), 51–80 (1995)

    Google Scholar 

  3. Che, D., Song, Y., Rashedd, K.: MDGA: motif discovery using a genetic algorithm. In: Proceedings of the 2005 Conference on Genetic and, Evolutionary Computation (GECCO’05), pp. 447–452 (2005)

  4. Congdon, C.B., Fizer, C.W., Smith, N.W., Gaskins, H.R., Aman, J., Nava, G.M., Mattingly, C.: Preliminary results for GAMI: a genetic algorithms approach to motif inference. In: Proceedings of the 2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB’05), pp. 97–104 (2005)

  5. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, New York (2001)

    Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  7. D’haeseleer, P.: What are DNA sequence motifs? Nat. Biotechnol. 24(4), 423–425 (2006)

    Article  Google Scholar 

  8. Eskin, E., Pevzner, P.A.: Finding composite regulatory patterns in DNA sequences. Bioinformatics 18(Suppl 1), S354–S363 (2002)

    Article  Google Scholar 

  9. Favorov, A.V., Gelfand, M.S., Gerasimova, A.V., Ravcheev, D.A., Mironov, A.A., Makeev, V.J.: A Gibbs sampler for identification of symmetrically structured, spaced DNA motifs with improved estimation of the signal length. Bioinformatics 21(10), 2240–2245 (2005)

    Article  Google Scholar 

  10. Fogel, G.B., Porto, V.W., Varga, G., Dow, E.R., Craven, A.M., Powers, D.M., Harlow, H.B., Su, E.W., Onyia, J.E., Su, C.: Evolutionary computation for discovery of composite transcription factor binding sites. Nucleic Acids Res. 36(21), e142 (2008)

    Article  Google Scholar 

  11. Fogel, G.B., Weekes, D.G., Varga, G., Dow, E.R., Harlow, H.B., Onyia, J.E., Su, C.: Discovery of sequence motifs related to coexpression of genes using evolutionary computation. Nucleic Acids Res. 32(13), 3826–3835 (2004)

    Article  Google Scholar 

  12. Frith, M.C., Hansen, U., Spouge, J.L., Weng, Z.: Finding functional sequence elements by multiple local alignment. Nucleic Acids Res. 32(1), 189–200 (2004)

    Article  Google Scholar 

  13. González-Álvarez, D.L., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: A multiobjective variable neighborhood search for solving the motif discovery problem. Int. Workshop Soft Comput. Models Ind. Appl. (SOCO’10) 73, 39–46 (2010)

    Google Scholar 

  14. González-Álvarez, D.L., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: Solving the motif discovery problem by using differential evolution with pareto tournaments. In: Proceedings of the 2010 IEEE Congress on, Evolutionary Computation (CEC’10), pp. 4140–4147 (2010)

  15. González-Álvarez, D.L., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: Applying a multiobjective gravitational search algorithm (MO-GSA) to discover motifs. International Work Conference on Artificial Neural Networks (IWANN’11), LNCS 6692/2011, 372–379 (2011)

  16. González-Álvarez, D.L., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: Finding motifs in DNA sequences applying a multiobjective artificial bee colony (MOABC) algorithm. In: Proceedings of 8th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EVOBIO’11), LNCS 6623/2011, pp. 89–100 (2011)

  17. González-Álvarez, D.L., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: Predicting DNA motifs by using evolutionary multiobjective optimization. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(6), 913–925 (2011)

    Article  Google Scholar 

  18. González-Álvarez, D.L., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: Comparing multiobjective swarm intelligence metaheuristics for DNA motif discovery. Eng. Appl. Artif. Intell. 26(1), 314–326 (2012)

    Article  Google Scholar 

  19. Hertz, G.Z., Stormo, G.D.: Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics 15(7–8), 563–577 (1999)

    Article  Google Scholar 

  20. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes University, Turkey (2005)

  21. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. J. 8(1), 687–697 (2008)

    Article  Google Scholar 

  22. Kaya, M.: MOGAMOD: multi-objective genetic algorithm for motif discovery. Expert Syst. Appl. 36(2), 1039–1047 (2009)

    Article  Google Scholar 

  23. Liu, F.F.M., Tsai, J.J.P., Chen, R.M., Chen, S.N., Shih, S.H.: FMGA: finding motifs by genetic algorithm. Fourth IEEE Symposium on Bioinformatics and, Bioengineering (BIBE’04), pp. 459–466 (2004)

  24. Lones, M.A., Tyrrell, A.M.: Regulatory motif discovery using a population clustering evolutionary algorithm. IEEE/ACM Trans. Comput. Biol. Bioinform. 4(3), 403–414 (2007)

    Article  Google Scholar 

  25. Mladenovic, N., Hansen, P.: Variable neighborhood search. Comput. Operat. Res. 24, 1097–1100 (1997)

    Article  Google Scholar 

  26. Paul, T.K., Iba, H.: Identification of weak motifs in multiple biological sequences using genetic algorithm. In: Proceedings of the 2006 Conference on Genetic and, Evolutionary Computation (GECCO’06), pp. 271–278 (2006)

  27. Pavesi, G., Mauri, G., Pesole, G.: An algorithm for finding signals of unknown length in DNA sequences. Bioinformatics 17(Suppl 1), S207–S214 (2001)

    Article  Google Scholar 

  28. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)

    Article  Google Scholar 

  29. Regnier, M., Denise, A.: Rare events and conditional events on random strings. Discrete Math. Theor. Comput. Sci. 6, 191–214 (2004)

    Google Scholar 

  30. Roth, F.P., Hughes, J.D., Estep, P.W., Church, G.M.: Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat. Biotechnol. 16(10), 939–945 (1998)

    Article  Google Scholar 

  31. Shao, L., Chen, Y.: Bacterial foraging optimization algorithm integrating tabu search for motif discovery. IEEE International Conference on Bioinformatics and, Biomedicine (BIBM’09), pp. 415–418 (2009)

  32. Shao, L., Chen, Y., Abraham, A.: Motif discovery using evolutionary algorithms. International Conference of Soft Computing and, Pattern Recognition (SOCPAR’09), pp. 420–425 (2009)

  33. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures, 4th edn. Chapman & Hall/CRC Press, New York (2007)

    Google Scholar 

  34. Sinha, S., Tompa, M.: YMF: a program for discovery of novel transcription factor binding sites by statistical overrepresentation. Nucleic Acids Res. 31(13), 3586–3588 (2003)

    Article  Google Scholar 

  35. Srinivas, N., Deb, K.: Multi-objective function optimization using non-dominated sorting genetic algorithms. Evol. Comput. 2(3), 221–248 (1995)

    Article  Google Scholar 

  36. Stine, M., Dasgupta, D., Mukatira, S.: Motif discovery in upstream sequences of coordinately expressed genes. 2003 Congr. Evol. Comput. (CEC’03) 3, 1596–1603 (2003)

    Article  Google Scholar 

  37. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  Google Scholar 

  38. Thijs, G., Lescot, M., Marchal, K., Rombauts, S., De Moor, B., Rouzé, P., Moreau, Y.: A higher-order background model improves the detection of promoter regulatory elements by Gibbs sampling. Bioinformatics 17(12), 1113–1122 (2001)

    Article  Google Scholar 

  39. Tompa, M., Li, N., Bailey, T.L., Church, G.M., De Moor, B., Eskin, E., Favorov, A.V., Frith, M.C., Fu, Y., Kent, W.J., Makeev, V.J., Mironov, A.A., Noble, W.S., Pavesi, G., Pesole, G., Regnier, M., Simonis, N., Sinha, S., Thijs, G., van Helden, J., Vandenbogaert, M., Weng, Z., Workman, C., Ye, C., Zhu, Z.: Assessing computational tools for the discovery of transcription factor binding sites. Nat. Biotechnol. 23(1), 137–144 (2005)

    Article  Google Scholar 

  40. van Helden, J., Andre, B., Collado-Vides, J.: Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. J. Mol. Biol. 281(5), 827–842 (1998)

    Article  Google Scholar 

  41. van Helden, J., Rios, A.F., Collado-Vides, J.: Discovering regulatory elements in non-coding sequences by analysis of spaced dyads. Nucleic Acids Res. 28(8), 1808–1818 (2000)

    Article  Google Scholar 

  42. Weicker, N., Szabo, G., Weicker, K., Widmayer, P.: Evolutionay multiobjective optimization for base station transmitter placement with frequency assignment. IEEE Trans. Evol. Comput. 7(2), 189–203 (2003)

    Article  Google Scholar 

  43. Workman, C.T., Stormo, G.D.: ANN-Spec: a method for discovering transcription factor binding sites with improved specificity. Pacific Symposium on Biocomputing, pp. 467–478 (2000)

  44. Yang, X.S.: Firefly algorithms for multimodal optimization. 5th International Symposium of Stochastic Algorithms: Foundations and Applications (SAGA’09), LNCS 5792, pp. 169–178 (2009)

  45. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

  46. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm. Technical report tik-report 103, Swiss Federal Institute of Technology Zurich, Switzeland (2001)

  47. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially funded by the Spanish Ministry of Economy and Competitiveness and the ERDF (European Regional Development Fund), under the contract TIN2012-30685 (BIO project). Thanks also to the Fundación Valhondo for the economic support offered to David L. González-Álvarez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. González-Álvarez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Álvarez, D.L., Vega-Rodríguez, M.A. Analysing the scalability of multiobjective evolutionary algorithms when solving the motif discovery problem. J Glob Optim 57, 467–497 (2013). https://doi.org/10.1007/s10898-013-0069-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-013-0069-7

Keywords

Navigation