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Abstract. We provide a first-order necessary and sufficient condition for optimality of lower
semicontinuous functions on Banach spaces using the concept of subdifferential. From the
sufficient condition we derive that any subdifferential operator is monotone absorbing, hence
maximal monotone when the function is convex.
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1 Introduction

First-order sufficient conditions for optimality in terms of derivatives or directional derivatives
are well known. Typical such conditions are variants of Minty variational inequalities. Let us
quote for example the following simple result (see [3]): Let f be a real-valued function which
is continuous on a neighbourhood D centred at a in R

n and differentiable on D \ {a}. Then,
f has a local minimum value at a if (x − a) · ∇f(x) > 0 for all x ∈ D \ {a}. For first-order
conditions in terms of directional derivatives, we refer to [5].

The main objective of this note is to establish a necessary and sufficient condition for
optimality of nonsmooth lower semicontinuous functions on Banach spaces using subdiffer-
entials. To this end, we first provide a link between the directional derivative of a function
and its dual companion represented by the subdifferential (Theorem 2.1). Then, we prove a
sharp version of the mean value inequality for lower semicontinuous function using directional
derivative (Lemma 3.1). Finally, we combine both results to obtain our subdifferential test for
optimality (Theorem 3.3). A discussion on the sufficient condition follows where it is shown
that any subdifferential operator is monotone absorbing, a property which reduces to maximal
monotonicity when the function is convex (Theorem 3.4).

This paper complements our previous work [8] which concerned only the elementary sub-
differentials.

2 Directional Derivative and Subdifferential

In the following, X is a real Banach space with unit ball BX , X∗ is its topological dual with unit
ball BX∗ , and 〈., .〉 is the duality pairing. Set-valued operators T : X ⇒ X∗ are identified with
their graph T ⊂ X×X∗. For a subset A ⊂ X, x ∈ X and λ > 0, we let dA(x) := infy∈A ‖x−y‖
and Bλ(A) := {y ∈ X : dA(y) ≤ λ}. All the functions f : X → ]−∞,+∞] are assumed to be
lower semicontinuous and proper, which means that the set dom f := {x ∈ X : f(x) < ∞} is
nonempty. The (radial or lower Dini) directional derivative of a function f at a point x̄ ∈ domf
is given by:

∀d ∈ X, f ′(x̄; d) := lim inf
tց0

f(x̄+ td)− f(x̄)

t
.
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A subdifferential of a lower semicontinuous function f is a set-valued operator ∂f : X ⇒ X∗

which coincides with the usual convex subdifferential whenever f is convex, that is,

∂f(x̄) := {x∗ ∈ X∗ : 〈x∗, y − x̄〉+ f(x̄) ≤ f(y), ∀y ∈ X},

and satisfies elementary stability properties like ∂(f − x∗)(x) = ∂f(x) − x∗ for every x ∈ X
and x∗ ∈ X∗. In this work, we also require that the subdifferentials satisfy the following basic
calculus rule:

Separation Principle. For any lower semicontinuous f, ϕ with ϕ convex Lipschitz near
x̄ ∈ domf ∩ domϕ, if f + ϕ admits a local minimum at x̄, then 0 ∈ ∂f(x̄) + ∂ϕ(x̄).

Examples. The Clarke subdifferential [4], the Michel-Penot subdifferential [9], the Ioffe A-
subdifferential [7] satisfy the Separation Principle in any Banach space. The limiting versions
of the elementary subdifferentials (proximal, Fréchet, Hadamard, Gâteaux, . . . ) satisfy the
Separation Principle in appropriate Banach spaces (see, e.g., [8, 2, 10] and the references
therein).

The link between the directional derivative and the subdifferential is described via the
following ε-enlargement of the subdifferential:

∂̆εf(x̄) := {x∗ε ∈ X∗ : x∗ε ∈ ∂f(xε) with ‖xε − x̄‖ ≤ ε, |f(xε)− f(x̄)| ≤ ε, 〈x∗ε, xε − x̄〉 ≤ ε}.

Theorem 2.1 Let X be a Banach space, f : X → ]−∞,+∞] be lower semicontinuous, x̄ ∈
dom f and d ∈ X. Then, for every ε > 0, the sets ∂̆εf(x̄) are nonempty and

f ′(x̄; d) ≤ inf
ε>0

sup〈∂̆εf(x̄), d〉. (1)

Proof. We first show that the sets ∂̆εf(x̄) are nonempty. The arguments are standard, we
give them for completeness. Since f is lower semicontinuous at x̄, there is λ ∈]0, ε[ such that

f(x̄) ≤ inf f(x̄+ λBX) + ε. (2)

Applying Ekeland’s variational principle [6], we find xε ∈ X such that

‖xε − x̄‖ < λ, f(xε) ≤ f(x̄), and (3a)

y 7→ f(y) + (ε/λ)‖y − xε‖ admits a local minimum at xε. (3b)

In view of (3b), we may apply the Separation Principle at point xε with the convex Lipschitz
function ϕ : y 7→ (ε/λ)‖y − xε‖ to obtain a subgradient x∗ε ∈ ∂f(xε) such that −x∗ε ∈ ∂ϕ(xε).
From (3a) and (2), we derive that ‖xε−x̄‖ ≤ ε and |f(xε)−f(x̄)| ≤ ε, while from −x∗ε ∈ ∂ϕ(xε)
we get ‖x∗ε‖ ≤ ε/λ, so combining with (3a) we find 〈x∗ε, xε − x̄〉 ≤ (ε/λ)λ = ε. This completes
the proof of the nonemptiness of the sets ∂̆εf(x̄).

We now proceed to the proof of formula (1). Let d 6= 0 and let λ < f ′(x̄; d). It suffices to
show that there exists a sequence ((xn, x

∗
n))n ⊂ ∂f verifying

xn → x̄, f(xn) → f(x̄), lim sup
n

〈x∗n, xn − x̄〉 ≤ 0, and (4a)

λ ≤ lim inf
n

〈x∗n, d〉. (4b)
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Let t0 ∈ ]0, 1] such that

0 ≤ f(x̄+ td)− f(x̄)− λt, ∀t ∈ [0, t0] (5)

and let z∗ ∈ X∗ such that

〈z∗, td〉 = −λt, ∀t ∈ R and ‖z∗‖ = |λ|/‖d‖. (6)

Set K := [x̄, x̄+ t0d] and g := f + z∗. Then, (5) can be rewritten as

g(x̄) ≤ g(x), ∀x ∈ K.

Let δ > 0 such that g is bounded from below on Bδ(K). For each positive integer n such that
1/n < δ, let rn > 0 such that

g(x̄)− 1/n2 < inf
Brn (K)

g

and let then αn > 0 such that

inf
Brn (K)

g ≤ inf
Bδ(K)

g + αnrn.

It readily follows from these inequalities that

g(x̄) ≤ g(x) + αndK(x) + 1/n2, ∀x ∈ Bδ(K). (7)

Applying Ekeland’s variational principle to the function x 7→ g(x) +αndK(x), we obtain a
sequence (xn)n ⊂ Bδ(K) such that

‖x̄− xn‖ < 1/n, (8a)

g(xn) + αndK(xn) ≤ g(x̄) (8b)

x 7→ g(x) + αndK(x) + (1/n)‖x − xn‖ admits a local minimum at xn. (8c)

In view of (8c), we may apply the Separation Principle with the given f and ϕ = z∗+αndK +
(1/n)‖. − xn‖ to obtain x∗n ∈ ∂f(xn), ζ

∗
n ∈ ∂dK(xn) and ξ∗ ∈ BX∗ such that

x∗n = −z∗ − αnζ
∗
n − (1/n)ξ∗. (9)

We show that the sequence ((xn, x
∗
n))n ⊂ ∂f satisfies (4a) and (4b).

Proof of (4a). Combining (6) and (8b) we get

f(xn) ≤ f(x̄) + 〈z∗, x̄− xn〉 ≤ f(x̄) + (|λ|/‖d‖)‖x̄− xn‖. (10)

Since f is lower semicontinuous, (8a) and (10) show that xn → x̄ and f(xn) → f(x̄). On the
other hand, since 〈ζ∗n, x− xn〉 ≤ dK(x)− dK(xn) ≤ 0 for all x ∈ K, it follows from (6) and (9)
that

〈x∗n, x̄− xn〉 ≥ 〈z∗, xn − x̄〉 − (1/n)〈ξ∗, x̄− xn〉 ≥ −(|λ|/‖d‖)‖xn − x̄‖ − (1/n)‖xn − x̄‖,

showing that lim supn〈x
∗
n, xn − x̄〉 ≤ 0.
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Proof of (4b). From (6) and (9) we derive

〈x∗n, d〉 = 〈−z∗, d〉 − (1/n)〈ξ∗, d〉 − αn〈ζ
∗
n, d〉 ≥ λ− (1/n)‖d‖ − αn〈ζ

∗
n, d〉. (11)

We claim that 〈ζ∗n, d〉 ≤ 0. Indeed, let PKxn ∈ K such that ‖xn − PKxn‖ = dK(xn). We have
PKxn 6= x̄+ t0d for large n since xn → x̄, so there exists tn > 0 such that t0d = x̄+ t0d− x̄ =
tn(x̄+ t0d− PKxn). It follows that

(t0/tn)〈ζ
∗
n, d〉 = 〈ζ∗n, x̄+ t0d− PKxn〉 = 〈ζ∗n, x̄+ t0d− xn〉+ 〈ζ∗n, xn − PKxn〉

≤ −dK(xn) + ‖xn − PKxn‖ = 0.

Hence 〈ζ∗n, d〉 ≤ 0. We therefore conclude from (11) that λ ≤ lim infn 〈x
∗
n, d〉. This completes

the proof.

Remarks. 1. For convex functions, the inequality in (1) becomes an equality, and the formula
is due to Taylor [11] and Borwein [1].

2. For elementary subdifferentials, formula (1) was proved to hold in appropriate Banach
spaces, see [8]. The arguments there were based on a specific property of these subdifferentials
with respect to exact inf-convolutions of two functions. Such an argument is avoided here:
formula (1) is valid in a Banach space X as soon as the subdifferential satisfies the Separation
Principle in this space.

3 First-Order Tests for Optimality

The following lemma comes from our paper [8]. It establishes a mean value inequality using
the directional derivative. For the sake of completeness, we recall the proof.

Lemma 3.1 Let X be a Hausdorff locally convex space, f : X → ]−∞,+∞] be lower semi-
continuous, x̄ ∈ X and x ∈ dom f . Then, for every real number λ ≤ f(x̄) − f(x), there exist
t0 ∈ [0, 1[ and x0 := x+ t0(x̄− x) ∈ [x, x̄[ such that λ ≤ f ′(x0; x̄− x) and f(x0) ≤ f(x) + t0λ.

Proof. Let λ ∈ R such that λ ≤ f(x̄) − f(x) and define g : [0, 1] → ]−∞,+∞] by g(t) :=
f(x + t(x̄ − x)) − tλ. Then g is lower semicontinuous on the compact [0, 1] and g(0) =
f(x) ≤ f(x̄) − λ = g(1). Hence g attains its minimum on [0, 1] at a point t0 6= 1. Let
x0 := x+t0(x̄−x) ∈ [x, x̄[. Then, f(x0)−t0λ = g(t0) ≤ g(0) = f(x) and, since g(t0+t) ≥ g(t0)
for every t ∈ ]0, 1 − t0], we derive that

∀t ∈ ]0, 1 − t0],
f(x0 + t(x̄− x))− f(x0)

t
≥ λ.

Passing to the lower limit as t ց 0, we get f ′(x0; x̄− x) ≥ λ. The proof is complete.

We deduce easily from Lemma 3.1 a first-order necessary and sufficient condition for opti-
mality of lower semicontinuous functions in terms of the directional derivative:

Proposition 3.2 Let X be a Banach space, f : X → ]−∞,+∞] be lower semicontinuous,
C ⊂ X be convex and x̄ ∈ C. Then, the following are equivalent:

(a) f(x̄) ≤ f(y) for every y ∈ C,

(b) f(x̄) ≤ f(y) for every y ∈ C such that f ′(y; x̄− y) > 0.
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Proof. Obviously, (a) implies (b). We prove that ¬(a) implies ¬(b). Assume there exists
x ∈ C such that f(x̄) > f(x). We must show that there exists x0 ∈ C such that f(x̄) > f(x0)
and f ′(x0; x̄ − x0) > 0. Applying Lemma 3.1 with 0 < λ < f(x̄)− f(x), we derive that there
exist x0 ∈ [x, x̄[⊂ C and t0 ∈ [0, 1[ such that

f ′(x0; x̄− x) ≥ λ > 0 and f(x0) ≤ f(x) + t0λ.

Since f(x)+λ < f(x̄), λ > 0 and t0 ∈ [0, 1[, we have f(x0) < f(x̄), and, since x̄−x0 = t(x̄−x)
for some t > 0, we have f ′(x0; x̄− x0) = tf ′(x0; x̄− x) > 0.

The following first-order sufficient condition is a straightforward consequence. It clearly
contains the result quoted in the introduction. We refer to [5] for a characterization of the
solution set of Minty variational inequalities governed by directional derivatives.

Corollary 3.2.1 Let X be a Banach space, f : X → ]−∞,+∞] be lower semicontinuous,
C ⊂ X be convex and x̄ ∈ C. Then:

∀y ∈ C, f ′(y; x̄− y) ≤ 0 =⇒ ∀y ∈ C, f(x̄) ≤ f(y).

Now, coming back to our objective, we combine Lemma 3.1 with Theorem 2.1 to establish a
first-order necessary and sufficient condition for optimality of lower semicontinuous functions
in terms of any subdifferential satisfying the Separation Principle. This complements our
previous result [8, Theorem 4.2] which concerned only the elementary subdifferentials.

Theorem 3.3 Let X be a Banach space, f : X → ]−∞,+∞] be lower semicontinuous, U ⊂ X
be open convex and x̄ ∈ U . Then, the following are equivalent:

(a) f(x̄) ≤ f(y) for every y ∈ U ,

(b) f(x̄) ≤ f(y) for every y ∈ U such that sup〈∂f(y), x̄− y〉 > 0.

Proof. Obviously, (a) implies (b). Conversely, we show that ¬(a) implies ¬(b). We know
from Proposition 3.2 that ¬(a) implies the existence of x0 ∈ U such that f(x̄) > f(x0) and
f ′(x0; x̄−x0) > 0. Let ε > 0 such that x0+εBX ⊂ U , f(x0)+ε < f(x̄) and f ′(x0; x̄−x0) > ε,
and apply formula (1) at point x0 and direction d = x̄ − x0. We obtain a pair (yε, y

∗
ε) ∈ ∂f

such that

‖yε − x0‖ < ε, f(yε) < f(x0) + ε, 〈y∗ε , yε − x0〉 < ε, 〈y∗ε , x̄− x0〉 > ε,

from which we derive that yε ∈ U , f(yε) < f(x̄) and 〈y∗ε , x̄− yε〉 > 0.

As above, the following first-order sufficient condition is a straightforward consequence:

Corollary 3.3.1 Let X be a Banach space, f : X → ]−∞,+∞] be lower semicontinuous,
U ⊂ X be open convex and x̄ ∈ U . Then:

∀y ∈ U, sup〈∂f(y), x̄− y〉 ≤ 0 =⇒ ∀y ∈ U, f(x̄) ≤ f(y). (12)

We recall from [8] an interpretation of the sufficient condition (12) in terms of the monotonic
behaviour of the subdifferential operator. Given a set-valued operator T : X ⇒ X∗, or graph
T ⊂ X ×X∗, we let

T 0 := {(x, x∗) : 〈y∗ − x∗, y − x〉 ≥ 0 ∀(y, y∗) ∈ T}

5



be the set of all pairs (x, x∗) ∈ X × X∗ monotonically related to T . The operator T is said
to be monotone provided T ⊂ T 0, monotone absorbing provided T 0 ⊂ T , maximal monotone
provided T = T 0.

Theorem 3.4 Let X be a Banach space and let f : X → ]−∞,+∞] be lower semicontinuous.
Then, the operator ∂f : X ⇒ X∗ is monotone absorbing. In particular, for convex f , ∂f is
maximal monotone.

Proof. Let (x, x∗) ∈ (∂f)0. Then, 〈y∗ − x∗, y − x〉 ≥ 0 for every (y, y∗) ∈ ∂f . Since
∂(f − x∗)(y) = ∂f(y)− x∗, this can be written as

∀(y, y∗) ∈ ∂(f − x∗), 〈y∗, y − x〉 ≥ 0,

so, by Corollary 3.3.1, (f − x∗)(x) ≤ (f − x∗)(y) for every y ∈ X. We then conclude from the
Separation Principle that x∗ ∈ ∂f(x). Thus, (∂f)0 ⊂ ∂f .

For convex f , ∂f is monotone, hence maximal monotone from what precedes.
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