
Benson type algorithms for linear vector optimization and

applications

Andreas H. Hamel Andreas Löhne Birgit Rudloff

February 11, 2013 (update: July 28, 2013)

Abstract

New versions and extensions of Benson’s outer approximation algorithm for solving
linear vector optimization problems are presented. Primal and dual variants are provided
in which only one scalar linear program has to be solved in each iteration rather than two
or three as in previous versions. Extensions are given to problems with arbitrary pointed
solid polyhedral ordering cones. Numerical examples are provided, one of them involving
a new set-valued risk measure for multivariate positions.

Keywords: Vector optimization, multiple objective optimization, linear programming,
duality, algorithms, outer approximation, set-valued risk measure, transaction costs.

MSC 2010 Classification: 90C29, 90C05, 90-08, 91G99.

1 Introduction

Set-valued approaches to vector optimization are promising in theory and applications. A
duality theory in this framework is important for algorithms, and the dual problems can be
interpreted in certain applications, see e.g. [9, 12, 13, 14, 15, 20, 22, 23, 26, 33]. Benson’s
outer approximation algorithm is a fundamental tool for solving linear (and also convex)
vector optimization problems [3, 4, 9, 32, 33]. It is also important for solving set-valued
problems [28]. Recent applications of linear vector optimization concern financial markets
with frictions (transaction costs). For such applications, one obtains optimization problems
which are genuinely set-valued. The need to compute the values of a set-valued risk measure
for multi-variate random variables was a driving force for this work.

In this article, we introduce a primal and a dual algorithm of Benson type where only one
LP has to be solved in each iteration step1. In contrast, previous versions [3, 4, 9, 32, 33]
require at least two different LPs in each step. As the main effort of Benson type algorithms in
typical applications is caused by the LPs, the computational time can be reduced considerably
by the new algorithms. Another advantage is that all LPs have a very similar structure and
therefore the impact of warm starts can be improved. A further benefit is an improvement
of the error estimation given in [32, 33], i.e., in approximate variants of the algorithms: The
same approximation error can be achieved with fewer iteration steps (compare Remark 4.10
and Example 6.1 below). For both the primal and dual algorithm two variants (‘break’ and
‘no break’) are presented and compared (compare Example 6.1). Another novelty of this
article is that linear vector optimization problems with arbitrary polyhedral solid pointed

1A similar variant has been developed independently in [6].

1

ar
X

iv
:1

30
2.

24
15

v3
 [

m
at

h.
O

C
]

 2
8

Ju
l 2

01
3

ordering cones are treated, whereas in all other references [3, 4, 9, 10, 26, 32, 33] only the
special case of the usual ordering cone Rq+ is considered. This feature will be exploited in
applications involving set-valued risk measures for multi-variate random variables in markets
with transaction costs. In such situations, ordering cones are usually different from Rq+ and
generated by a large number of directions. A short introduction into this topic and several
(numerical) examples are given. Examples 5.2 and 6.6 involve a new type of a set-valued risk
measure which we baptized the ‘relaxed’ worst case risk measure.

This article is organized as follows. In Section 2 we provide some basic notations and
results. The next three sections start with short introductions. Section 3 contains an overview
on the set-valued approach to linear vector optimization and related duality results where, in
contrast to most of the literature, we allow ordering cones more general than Rq+. In Sections
4 we introduce the new variants of Benson’s algorithm. We also give a detailed description of
the two-phase-method to treat unbounded problems. Section 5 provides an introduction to
applications involving set-valued risk measures, and in Section 6 several numerical examples
are reported.

2 Preliminaries

Let A ⊆ Rq. We denote by clA, intA, bdA the closure, interior and boundary of A, re-
spectively. The set A is called solid if its interior is non-empty. A convex polyhedron or a
polyhedral convex set A in Rq is defined to be the intersection of finitely many half spaces,
that is

A =
r⋂
i=1

{
y ∈ Rq| (zi)T y ≥ γi

}
where z1, . . . , zr ∈ Rq\ {0} and γ1, . . . , γr ∈ R. As polyhedra considered in this article are
always convex, we will not mention convexity explicitly. Every non-empty polyhedron A ⊆ Rq
can be expressed by means of a finite number of points y1, . . . , ys ∈ Rq (s ∈ N \ {0}) and
directions k1, . . . , kt ∈ Rq \ {0} (t ∈ N) through

A =

{ s∑
i=1

λiy
i +

t∑
j=1

µjk
j

∣∣∣∣ λi ≥ 0, i = 1, . . . , s,
s∑
i=1

λi = 1, µj ≥ 0, j = 1, . . . , t

}
,

where k ∈ Rq \ {0} is called a direction of A if A+ {µ · k} ⊆ A for all µ > 0. This can be also
written as

A = conv
{
y1, . . . , ys

}
+ cone

{
k1, . . . , kt

}
. (1)

Note that we set cone ∅ = {0}. The polyhedron A is bounded if and only if the cone-part in
the above formula is {0}. The vectors

{
y1, . . . , ys

}
and directions

{
k1, . . . , kt

}
are called the

generators of A. The set A∞ := cone
{
k1, . . . , kt

}
is the recession cone of A. A finite set of

half spaces defining a polyhedron A is called H-representation (or inequality representation)
of A, whereas a finite set of points and directions defining A is called V-representation (or
generator representation) of A. A bounded polyhedron is called a polytope. A convex subset
F of a convex set A is called a face of A if (ȳ, ŷ ∈ A ∧ λ ∈ (0, 1) ∧ λȳ + (1− λ)ŷ ∈ F) implies
y, ŷ ∈ F . A set F is a proper (i.e. ∅ 6= F 6= A) face of a polyhedron A if and only if there is a
supporting hyperplane H to A with F = H ∩ A. The proper (r − 1)-dimensional faces of an
r-dimensional polyhedral set A are called facets of A. A point y ∈ A is called a vertex of A if

2

{y} is a face of A. If k ∈ Rq \ {0} belongs to a half-line face of a polyhedral set A, then k is
called extreme direction of A.

A polyhedral convex cone C ⊆ Rq is called pointed if it contains no lines. Of course, a solid
and pointed convex cone is non-trivial, that is, {0} (C (Rq. A non-trivial convex pointed
cone C ⊆ Rq defines a partial ordering ≤C on Rq by y1 ≤C y2 if and only if y2−y1 ∈ C. If C =
Rq+ := {y ∈ Rq| y1 ≥ 0, . . . , yq ≥ 0}, then the component-wise ordering ≤Rq

+
is abbreviated to

≤. A point y ∈ Rq is called C-minimal in A if y ∈ A and ({y}−C \ {0})∩A = ∅. The set of
C-minimal elements of A is denoted by MinC A. If C is additionally solid (but not necessarily
pointed), a point y ∈ Rq is called weakly C-minimal in A if y ∈ A and ({y} − intC)∩A = ∅.
Likewise, by replacing C by −C, C-maximal and weakly C-maximal points in a set A ⊆ Rq
are introduced and we write MaxC A for the set of C-maximal elements of A. The dual cone
of a cone C ⊆ Rq is the set C+ :=

{
y∗ ∈ Rq| ∀y ∈ C : (y∗)T y ≥ 0

}
. The i-th canonical unit

vector in Rq is denoted by ei.

3 Linear vector optimization

In this section we outline the set-valued approach to linear vector optimization including
duality theory and establish a more general setting where arbitrary polyhedral ordering cones
C ⊆ Rq rather than C = Rq+ are supposed. A comprehensive exposition for the case of the
ordering cone C = Rq+ can be found in [26]. The origin of this approach is discussed in [26,
Section 4.8]. A related duality theory and an overview on other approaches to duality for
linear vector optimization problems can be found in a recent paper by Luc [29].

3.1 Problem setting and solution concepts

The solution concepts defined in this section are based on the idea that in vector optimization
(in contrast to scalar optimization), minimality and infimum attainment are no longer equiv-
alent concepts. In order to have an appropriate complete lattice where an infimum is defined
and exists, a set-valued reformulation of the vector optimization problem is necessary. Here
we just introduce the solution concepts that result from these ideas. We motivate these con-
cepts from an application oriented viewpoint only. More details and a theoretical motivation
can be found in [18, 21, 26].

Let matrices B ∈ Rm×n, P ∈ Rq×n, a vector b ∈ Rm and a solid pointed polyhedral cone
C ⊆ Rq be given. The following linear vector optimization problem is considered:

minimize P : Rn → Rq with respect to ≤C subject to Bx ≥ b. (P)

Define
S = {x ∈ Rn | Bx ≥ b} and Sh = {x ∈ Rn | Bx ≥ 0} .

Of course, we have Sh = S∞, that is, the non-zero points in Sh are exactly the directions of
S. A point x̄ ∈ S is said to be a minimizer for (P) if there is no x ∈ S with Px ≤C Px̄ and
Px 6= Px̄, that is, Px̄ is C-minimal in P [S] := {Px| x ∈ S}. The set of minimizers of (P) is
denoted by Min (P).

A direction k ∈ Rn \ {0} of S is called a minimizer for (P) if the corresponding point
k ∈ Sh \ {0} is a minimizer of the homogeneous problem

minimize P : Rn → Rq with respect to ≤C subject to Bx ≥ 0. (Ph)

3

Definition 3.1. A set S̄ ⊆ S is called a set of feasible points for (P) and, whenever S 6= ∅,
a set S̄h ⊆ Sh \ {0} is called a set of feasible directions for (P).

A pair of sets
(
S̄, S̄h

)
is called a finite infimizer for (P) if S̄ is a non-empty finite set of

feasible points for (P), S̄h is a (not necessarily non-empty) finite set of feasible directions for
(P), and

convP [S̄] + coneP [S̄h] + C = P [S] + C. (2)

An infimizer can be understood as a feasible element for a set-valued extension of problem
(P) (lattice extension) where the infimum (which is well defined for this lattice extension) is
attained, i.e., condition (2) stands for the infimum attainment.

The set P := P [S] +C is called upper image of (P). Clearly, if (S̄, S̄h) is a finite infimizer
and ({0} , Y) is a V-representation of the cone C, then (P [S̄], P [S̄h]∪Y) is a V-representation
of the upper image P.

The following solution concept is based on a combination of minimality and infimum
attainment.

Definition 3.2. A finite infimizer (S̄, S̄h) of (P) is called a solution to (P) if S̄ and S̄h

consist of only minimizers.

In practice, the upper image P is one of the most important information for a decision
maker. This is due to the fact that in typical applications the dimension n of the decision
space is considerably larger than the dimension q of the outcome (or criteria) space. The
problem to calculate all the minimizers is usually not tractable. Moreover, the overwhelming
set of all minimizers is in general not suitable to support a decision. It is more natural and
easier in practice to compare the criteria rather than decisions. Furthermore, also in scalar
programming it is often not necessary to know all optimal solution. A solution as introduced
above can be seen as an outcome set based concept which provides the information to describe
the upper image P.

3.2 Duality

If vector optimization is considered in a set-valued framework, it is very natural to consider a
dual problem with a hyperplane-valued objective function. First, we note that this is also the
case in scalar optimization as in R a point and a hyperplane are the same thing. Secondly,
we have in mind the well-known dual description of a convex set by hyperplanes. The upper
image P of a linear vector optimization problem (P) is a convex polyhedron which can be
interpreted as an infimum of the lattice extension of problem (P), see [26]. It is therefore
natural to ask for a dual description of this convex set which is obtained as the supremum
of a suitable dual problem. As a third argument, we want to mention that there is a lack of
applications of the classical approaches to duality theory in vector optimization. For instance,
Ehrgott [7] pointed out that “dual algorithms could not be developed because of the absence
of a duality theory for MOLP that could be algorithmically exploited.”

The idea of geometric duality [20] is to transform the hyperplane-valued dual problem
into a vector optimization problem. This idea is taken from the theory of convex polytopes,
where an H-representation of a polytope A defines a V-representation of a dual polytope. For
instance, if A is solid and contains zero in its interior, an H-representation of the form

A =
{
x ∈ Rq| Bx ≤ (1, . . . , 1)T

}
4

exists. The row vectors of the matrix B yield a V-representation of the polar set A◦ := {y∗ ∈
Rq| ∀y ∈ A : y∗T y ≤ 1} of A, which is a dual polytope to the polytope A. The duality relation
between A and the dual polytope A◦ is given by an inclusion reversing one-to-one map Ψ
between the set of all faces of A and the set of all faces of A◦.

A similar duality map can be used to transform a hyperplane-valued optimization prob-
lem into a vector-valued problem, which is called the geometric dual problem. We assume
throughout that there exists a vector

c ∈ intC such that cq = 1, (3)

and we fix such a vector c. As C was assumed to be a solid cone, there always exists some
c ∈ intC such that either cq = 1 or cq = −1. In the latter case we can consider the problem
where C and P are replaced by −C and −P , which is equivalent to (P) and fulfills (3).

Consider the dual problem

maximize D∗ : Rm × Rq → Rq with respect to ≤K over T, (D∗)

with (linear) objective function

D∗ : Rm × Rq → Rq, D∗(u,w) :=
(
w1, ..., wq−1, b

Tu
)T
,

ordering cone
K := R+ · (0, 0, . . . , 0, 1)T ,

and feasible set

T :=
{

(u,w) ∈ Rm × Rq| u ≥ 0, BTu = P Tw, cTw = 1, Y Tw ≥ 0
}
,

where Y is the matrix whose columns are generators of the ordering cone C.
A point (ū, w̄) ∈ T is said to be a maximizer for (D∗) if there is no (u,w) ∈ T with

D∗(u,w) ≥K D∗(ū, w̄) and D∗(u,w) 6= D∗(ū, w̄). The set of maximizers of (D∗) is denoted
by Max (D∗).

Definition 3.3 ([17, 18, 21, 26]). A non-empty finite set T̄ of points being feasible for (D∗)
is called a finite supremizer of (D∗) if

convD∗[T̄]−K = D∗[T]−K. (4)

The set D∗ = D∗[T]−K is called lower image of (D∗). Similarly to above, a finite suprem-
izer yields a V-representation of D∗. Condition (4) can be interpreted as the attainment of
the supremum in a suitable complete lattice, see e.g. [26]. The combination of maximality
and supremum attainment leads to a solution.

Definition 3.4. A finite supremizer T̄ of (D∗) is called a solution to (D∗) if it consists of
only maximizers.

Note that, in contrast to (2), we do not need directions in (4). This is due to the simplicity
of the cone K in contrast to C.

A duality mapping Ψ for the vector optimization problems (P) and (D∗) is now introduced.
The bi-affine function

ϕ : Rq × Rq → R, ϕ(y, y∗) :=

q−1∑
i=1

yiy
∗
i + yq

(
1−

q−1∑
i=1

ciy
∗
i

)
− y∗q

5

is used to define the following two injective hyperplane-valued maps

H : Rq ⇒ Rq, H(y∗) := {y ∈ Rq| ϕ(y, y∗) = 0} ,

H∗ : Rq ⇒ Rq, H∗(y) := {y∗ ∈ Rq| ϕ(y, y∗) = 0} .

The mapping H yields the duality map

Ψ : 2R
q → 2R

q
, Ψ(F ∗) :=

⋂
y∗∈F ∗

H(y∗) ∩ P.

By setting

w(y∗) :=

(
y∗1, . . . , y

∗
q−1, 1−

q−1∑
i=1

ciy
∗
i

)
(5)

and
w∗(y) := (y1 − yqc1 , . . . , yq−1 − yqcq−1 , −1) ,

we can write
ϕ(y, y∗) = w(y∗)T y − y∗q = w∗(y)T y∗ + yq, (6)

which is useful for the geometric interpretation of duality.
Weak duality reads as follows.

Theorem 3.5 ([20, 26]). The following implication is true:

[y ∈ P ∧ y∗ ∈ D∗] =⇒ ϕ(y, y∗) ≥ 0.

Note that weak duality implies the inclusions

D∗ ⊆ {y∗ ∈ Rq| ∀y ∈ P : ϕ(y, y∗) ≥ 0} and P ⊆ {y ∈ Rq| ∀y∗ ∈ D∗ : ϕ(y, y∗) ≥ 0} ,

whereas the following strong duality theorem yields even equality.

Theorem 3.6 ([20, 26]). Let the feasible sets S of (P) and T of (D∗) be non-empty. Then

[∀y∗ ∈ D∗ : ϕ(y, y∗) ≥ 0] =⇒ y ∈ P,
[∀y ∈ P : ϕ(y, y∗) ≥ 0] =⇒ y∗ ∈ D∗.

Remark 3.7. Theorems 3.5 and 3.6 are formulated and proved in the mentioned references
only for the special case C = Rq+ and c = (1, . . . , 1)T . However, using the generalized variants
of scalarized problems (P1(w)), (D1(w)), (P2(y)) and (D2(y)) as stated below, the general
case can be obtained in the same way.

The following geometric duality theorem provides a third type of duality relation. It takes
into account the facial structure of the sets P and D∗. Note that geometric duality does not
play any role in scalar optimization because the structure of polyhedra in the objective space
R is very simple.

6

Theorem 3.8 ([19, 20]). Ψ is an inclusion reversing one-to-one map between the set of all
K-maximal proper faces of D∗ and the set of all proper faces of P. The inverse map is given
by

Ψ−1(F) =
⋂
y∈F

H∗(y) ∩ D∗.

Moreover, if F ∗ is a K-maximal proper face of D∗, then

dimF ∗ + dim Ψ(F ∗) = q − 1.

Remark 3.9. The proof of the special case c = (1, ..., 1)T and C = Rq+ can be found in [20].
The general case can be proved in the same way using the generalized versions of (P1(w)),
(D1(w)), (P2(y)) and (D2(y)) as defined below. Theorem 3.8 (in the general setting) is also a
special case of geometric duality theorem for convex vector optimization problems, see Example
3 in [19].

Remark 3.10. Non-K-maximal proper facets (faces of dimension q− 1) of D∗ correspond to
the extreme directions of P by a similar duality relation, where the coupling function ϕ has to
be replaced by ϕ̂ : Rq×Rq → R, ϕ̂(y, y∗) := ϕ(y, y∗)+y∗q . The case C = Rq+, c = (1, . . . , 1)T

has been studied in [26] and the general case is obtained likewise using the generalized variants
of (P1(w)), (D1(w)), (P2(y)) and (D2(y)) as defined below.

The following scalarization techniques are fundamental for the algorithms described in
the next section. As mentioned in Remarks 3.7, 3.9 and 3.10, they can also be used to prove
weak, strong and geometric duality. The weighted sum scalarized problem for a parameter
vector w ∈ C+ satisfying cTw = 1 is

minwTPx subject to Bx ≥ b. (P1(w))

Its dual problem is

max bTu subject to

{
BTu = P Tw

u ≥ 0.
(D1(w))

The translative scalarization (or scalarization by reference variable) is based on problem

min z subject to

{
Bx ≥ b

ZTPx ≤ ZT y + z · ZT c, (P2(y))

where Z is the matrix whose columns are the generating directions of the dual cone C+ of
the ordering cone C. The dual program is

max bTu− yTZv subject to


BTu− P TZv = 0

cTZv = 1
(u, v) ≥ 0.

(D̄2(y))

This problem can be equivalently expressed as

max bTu− yTw subject to


BTu− P Tw = 0

cTw = 1
Y Tw ≥ 0

u ≥ 0,

(D2(y))

where Y is the matrix of generating directions of the ordering cone C. The equivalence of
(D̄2(y)) and (D2(y)) is a consequence of the following assertion. For vectors w ∈ Rq, we have

Y Tw ≥ 0 ⇐⇒ ∀y ∈ C : yTw ≥ 0 ⇐⇒ w ∈ C+ ⇐⇒ ∃v ≥ 0 : w = Zv.

7

4 Benson’s algorithm and its dual variant

Benson [3, 4] motivated his outer approximation algorithm by practical problems that typi-
cally involve a huge number of variables and constraints and just a few objective functions.
He proposed three advantages of “outcome set-based approaches” in comparison to “decision
set-based approaches”. First, he observed that the set of minimal elements (in the outcome
space Rq) has a simpler structure than the set of minimizers (in the decision space Rn) be-
cause, typically, q � n. This is beneficial for computational reasons but also for the decision
maker. Second, in practice, decision makers prefer to base their decisions (at least in a first
stage) on objectives rather than directly on a set of efficient decisions. Third, it is generic
that many feasible points are mapped on a single image point which may lead to redundant
calculations of “little or no use to the decision maker” [4].

Comparing this motivation with the notions of the previous section, we see that the solu-
tion concepts are based on exactly the same motivation (but additionally there is a theoretical
motivation, see [21, 26]). It is therefore not surprising that the variants of Benson’s algorithm
presented here just compute solutions in the sense of the previous section.

The dual variant of the algorithm (based on geometric duality) has been established in
[8, 9]. It was followed by approximating variants [32, 33] and by a generalization of the primal
algorithm to convex problems [10]. Unbounded problems have been first treated in [26].

Definition 4.1. Problem (P) is said to be bounded, if

∃y ∈ Rq : P [S] ⊆ {y}+ C.

The generalization from Rq+ to arbitrary pointed solid polyhedral convex cones is new in
this article but has already been used in [27]. We will present simplified variants where only
one linear program (rather than two or three) has to be solved in one iteration2.

The idea of the primal algorithm is to evaluate the upper image P = P [S] +C of problem
(P) by constructing appropriate cutting planes. This leads to an iterative refinement of an
outer approximation T ⊇ P by a decreasing sequence of polyhedral supersets

T 0 ⊇ T 1 ⊇ . . . ⊇ T k = P.

Both an H-representation and a V-representation of the approximating supersets T i are
stored. The algorithm terminates after finitely many steps (say k steps) when the outer
approximation coincides with P.

Unbounded problems are treated by a two-phase method. First, one solves the homoge-
neous problem (Ph) (which is unbounded, too) and its dual problem

maximize D∗h : Rm × Rq → Rq with respect to ≤K over T (D∗h)

with objective function

D∗h : Rm × Rq → Rq, D∗h(u,w) := (w1, ..., wq−1, 0)T .

2This simplification was initiated by an idea of Kevin Webster. During a lecture in the Ph.D. course in
spring 2011 at ORFE, Princeton University, where the classical variant of Benson’s algorithm was introduced,
he proposed a variant with the two LPs (P2(y)) and (D2(y)). The advantage over the classical version is that
(P2(y)) and (D2(y)) are dual to each other. All further improvements of this article are based on this idea.

8

To this end, (Ph) is transformed into an equivalent bounded problem

minimize P : Rn → Rq with respect to ≤C subject to Bx ≥ 0, ηTPx ≤ 1, (Pη)

where η ∈ int (D∗h +K) with cT η = 1 (D∗h denotes the lower image of (D∗h)).
In the second phase, a primal and dual solution of the homogeneous problem (Ph) are

used to calculate a primal and dual solution of the original (inhomogeneous and unbounded)
problem (P). The two-phase method requires an algorithm that works whenever an H-
representation of an initial outer approximation T 0 ⊇ P with T 0

∞ = P∞ is known. If an
H-representation of P∞ is known, that is

P∞ =
{
y ∈ Rq| (wi)T y ≥ 0, i = 1, . . . , r

}
,

and if γi denotes the optimal value of (P1(w
i)) for i = 1, . . . , r, then

T 0 =
{
y ∈ Rq| (wi)T y ≥ γi, i = 1, . . . , r

}
is the desired outer approximation of P satisfying T 0

∞ = P∞.
If problem (P) is bounded, we have C = P∞, i.e., an H-representation of the ordering C

is required. Otherwise, whenever (P) is feasible, the upper image Ph := P [Sh] + C of the
homogeneous problem (Ph) coincides with P∞. By geometric duality, a dual solution to (Ph)
yields an H-representation of Ph = P∞.

The idea of such an algorithm can be explained geometrically. Let T 0 ⊇ P be an initial
outer representation of P, i.e., T 0

∞ = P∞. First, the vertices of T 0 are computed from its
H-representation. This can be realized by vertex enumeration, which is a standard method
in Computational Geometry, see e.g. [2, 5]. Secondly, for a vertex t0 ∈ T 0, problem (P2(t

0))
is solved. Usually, LP solvers yield simultaneously a solution of both the primal and the dual
problem. If the optimal value of (P2(t

0)) is zero, then t0 belongs to P and one proceeds with
the next vertex of T 0. If every vertex of T 0 belongs to P, we have T 0 = P. Otherwise, for
t0 6∈ P, a solution of (P2(t

0)) yields a point s0 ∈ bdP∩ int T 0, see Proposition 4.2 below. The
solution of the dual problem, defines a supporting hyperplane H0 of P that contains s0. The
corresponding halfspace H0

+ contains P but not t0. An H-representation of an improved outer
approximation T 1 := T 0∩H0

+ is obtained immediately. This procedure is repeated until, after
finitely many steps, T k = P. A solution (S̄, S̄h) of (P) is obtained by collecting those points
x that arise during the procedure from a solution (x, z) of (P2(t

i)) with zero optimal value.
In this case we have t = Px for some vertex t of T i. Hence Px is a vertex of P which implies
that x is a minimizer for (P). In the unbounded case, S̄h contains directions that originate
from a solution to the homogeneous problem. A solution of the dual vector optimization
problem (D∗) is obtained by collecting those dual solutions of (P2(t

i)) with non-zero optimal
value.

Proposition 4.2. Let S 6= ∅, C ⊆ Rq a solid pointed polyhedral cone and let c ∈ intC.
For every t ∈ Rq, there exist optimal solutions (x̄, z̄) to (P2(t)) and (ū, w̄) to (D2(t)). Each
solution (ū, w̄) to (D2(t)) defines a supporting hyperplane H :=

{
y ∈ Rq| w̄T y = bT ū

}
of P

such that s := t+ z̄ · c ∈ H ∩ P. We have

t 6∈ P ⇐⇒ z̄ > 0, t ∈ wMinP ⇐⇒ z̄ = 0, t ∈ intP ⇐⇒ z̄ < 0.

9

Proof. Fix t ∈ Rq. Since S 6= ∅ and c ∈ intC, (P2(t)) is feasible. Assuming (P2(t)) is
not bounded, we obtain t + (z − n)c − Px ∈ C for all n ∈ N. Dividing by n and letting
n → ∞, we conclude −c ∈ C. As c ∈ intC, convexity of C implies 0 ∈ intC. Thus C = Rq,
a contradiction. Consequently, (P2(t)) and, by duality, also (D2(t)) have optimal solutions
(x̄, z̄) and (ū, w̄), respectively. Duality yields bT ū − tT w̄ = z̄ and thus s = t + z̄c belongs to
H. Of course, H is a hyperplane as the constraint w̄T c = 1 of (D2(t)) implies w̄ 6= 0. From
Px̄ ≤C t + z · c we conclude that s = t + z̄c belongs to P. For arbitrary y ∈ P, there exists
x ∈ S such that y ≥C Px. Hence (x, 0) is feasible for (P2(y)). Weak duality between (P2(y))
and (D2(y)) implies that yTw ≥ bTu for every (u,w) ∈ T , in particular, yT w̄ ≥ bT ū. Hence
H =

{
y ∈ Rq| yT w̄ = bT ū

}
is a supporting hyperplane to P. The remaining statements are

now obvious, where the fact wMinP = bdP can be used.

Proposition 4.3. Every vertex of P is minimal.

Proof. Let y ∈ P = P [S]+C be not minimal for P. Then there are z ∈ P and k ∈ C\{0} such
that z = y− k. The points y− k and y+ k belong to P and we have y = 1

2(y− k) + 1
2(y+ k).

Hence y is not a vertex of P.

Two functions are used in the following algorithm. The function dual() computes a V-
representation of an outer approximation T from an H-representation of T , i.e., this function
consists essentially of vertex enumeration. This H-representation of T , however, is stored in a
dual format, namely, as a V-representation of an inner approximation T ∗ of the lower image
D∗ of (D∗), where

T ∗ = {y∗ ∈ Rq| ϕ(y, y∗) ≥ 0, y ∈ T } . (7)

The following duality relation holds.

Proposition 4.4. If ∅ 6= T (Rq is closed and convex and T∞ ⊇ C, then

T = {y ∈ Rq| ϕ(y, y∗) ≥ 0, y∗ ∈ T ∗} . (8)

Proof. The inclusion ⊆ is obvious. Assume that the inclusion ⊇ does not hold, i.e., there
exists ȳ ∈ Rq \ T with ϕ(ȳ, y∗) ≥ 0 for all y∗ ∈ T ∗. Applying separation arguments, we
get η ∈ C+ \ {0} with ηT ȳ < infy∈T η

T y := γ. By (3), we can assume ηT c = 1. Setting
ȳ∗ := (η1, . . . , ηq−1, γ), we get w(ȳ∗) = η and ϕ(y, ȳ∗) = w(ȳ∗)− ȳ∗q = ηT y− γ. For all y ∈ T ,

we have ηT y − γ ≥ 0, i.e., ȳ∗ ∈ T ∗. But ϕ(ȳ, ȳ∗) = ηT ȳ − γ < 0, a contradiction.

In the following algorithm, a V-representation of a polyhedron T (that contains no lines)
is denoted by (Tpoints, Tdirs), i.e., T = conv Tpoints + cone Tdirs. We assume further that a V-
representation returned by the function dual() is minimal, i.e., Tpoints consists of only vertices
of T and Tdirs consists of only extreme directions of T .

The function solve() returns an optimal solution (x, z) of (P2(t)) and an optimal solution
(u,w) of (D2(t)). Since (D2(t)) is, up to a substitution, the dual program of (P2(t)), only one
linear program has to be solved.

The variables in the following algorithm are arrays of vectors. By |A| we denote the
number of vectors in an array A and by A[i] we refer to the i-th vector in A. The command
break exits the inner-most loop.

10

Algorithm 1.

Input:
B, b, P, Z (data of (P));
a solution ({0} , S̄h) to (Ph);
a solution T̄ h to (D∗h);

Output:
(S̄, S̄h) ... a solution to (P);
T̄ ... a solution to (D∗);
(Tpoints, Tdirs) ... a V-representation of P;
(T ∗points, {−eq}) ... a V-representation of D∗;

T̄ ←
{(

solve(D1(w)), w
)∣∣ (u,w) ∈ T̄ h

}
;

repeat
flag ← 0;
S̄ ← ∅;
T ∗points ←

{
D∗(u,w)| (u,w) ∈ T̄

}
;

(Tpoints, Tdirs)← dual (T ∗points, {−eq});
for i = 1 to |Tpoints| do

t← Tpoints[i];
(x, z, u, w)← solve(P2(t)/D2(t));
if z > 0 then

T̄ ← T̄ ∪ {(u,w)};
flag ← 1;
break; (optional)

else
S̄ ← S̄ ∪ {x};

end if;
end for;

until flag = 0;

Theorem 4.5. Let S 6= ∅, suppose Ph has a vertex and assume that the command

(Tpoints, Tdirs)← dual (T ∗points, T ∗dirs)

generates a minimal V-representation of T from a given V-representation of T ∗ according to
(7). Then Algorithm 1 is correct and finite.

Proof. As T̄ h is non-empty (by the definition of a solution), we can choose some (u,w) ∈ T̄ h.
Then D∗h(u,w) = (w1, . . . , wq−1, 0) is K-maximal in D∗h. Hence u solves the homogeneous
variant (i.e., we set b = 0) of (D1(w)). Consequently, (D1(w)) (for arbitrary b) is feasible.
Since S 6= ∅, (P1(w)) is feasible, too. Thus, by linear programming duality, (D1(w)) has a
solution.

The set T ∗ := conv T ∗points+ cone {−eq} is a non-empty subset of D∗. Hence, by Theorem
3.5, after calling the function dual(), T := conv Tpoints + cone Tdirs is a superset of P.

As T̄ h solves the dual of the homogeneous problem, we have T∞ = P∞ = Ph, see [26,
Section 4.6] for more details. As Ph is assumed to have a vertex, T must have a vertex, hence
the array Tpoints is non-empty.

11

By Proposition 4.2, solutions to (P2(t)) and (D2(t)) exist. The vectors x ∈ S̄ are mini-
mizers of (P). Indeed, x is added to S̄ only if z = 0. In this case, we have t ∈ P, where t is
a vertex of T ⊇ P because, by assumption, Tpoints contains only vertices of T . Hence t is a
vertex of P and, by Proposition 4.3, t is a minimizer for (P).

The algorithm terminates if all vertices of T belong to P. Since P∞ = T∞, we conclude
P = T , i.e., (S̄, S̄h) is an infimizer of (P) and (Tpoints, Tdirs) is a V-representation of P.

A solution (u,w) to (D2(t)) is always a maximizer of (D∗), i.e., T̄ consists of only maximiz-
ers. Since at termination T = P, Theorem 3.6 implies T ∗ = D∗ and thus T̄ is a supremizer
for (D∗) and (T ∗points, {−eq}) is a V-representation of D∗.

Finally we show that the algorithm terminates after a finite number of steps. The point
sk := tk+zk ·c computed in iteration k (consider the ‘repeat’ loop) by solving (P2(t

k)/D2(t
k))

belongs to int T k−1 whenever zk > 0. We have T k := T k−1 ∩ {y ∈ Rq| (wk)T y ≥ (uk)T b} and
by Proposition 4.2 we know that F := {y ∈ P| (wk)T y = (uk)T b} is a face of P with sk ∈ F ,
where F ⊆ bd T k. This means for the next iteration that sk+1 6∈ F (because sk+1 ∈ int T k),
and therefore sk+1 belongs to another face of P. Since P is polyhedral, it has a finite number
of faces, hence the algorithm is finite.

We now turn to the dual variant of Algorithm 1. An analogous construction is now applied
to the lower image D∗, i.e., a finite sequence of polyhedral sets

T ∗0 ⊇ T ∗1 ⊇, . . . ,⊇ T ∗k = D∗

is calculated. Using the upper image Ph (which is a polyhedral cone) of the homogeneous
problem (Ph), we define the set

∆ :=
{
y∗ ∈ Rq| w(y∗) ∈ (Ph)+

}
.

The counterpart of Proposition 4.2 is the following.

Proposition 4.6. Let S 6= ∅ and t∗ ∈ ∆. For w := w(t∗), (P1(w)) has a solution and for
every such solution x̄, H∗(Px̄) is a supporting hyperplane of D∗ that contains

s∗ := (t∗1, . . . , t
∗
q−1, w

TPx̄) ∈ MaxK D∗. (9)

Moreover, we have

t∗ 6∈ D∗ ⇐⇒ wTPx̄ < t∗q , t∗ ∈ MaxK D∗ ⇐⇒ wTPx̄ = t∗q .

Proof. Since t∗ ∈ ∆, for all k ∈ Ph, we have wTk ≥ 0. This means that the homogeneous
variant of the linear program (P1(w)) (i.e., we set b = 0 in (P1(w))) is bounded (and feasible,
as 0 is feasible). Consequently, the dual program is feasible, even for arbitrary b, i.e., (D1(w))
is feasible. On the other hand, (P1(w)) is feasible, since we assumed S 6= ∅. Altogether this
implies that both (P1(w)) and (D1(w)) have optimal solutions denoted, respectively, by x̄
and ū. Strong duality implies wTPx̄ = bT ū. Thus, (9) holds. We have s∗ ∈ H∗(Px̄) because
this can be written as w(s∗)TPx̄ = s∗q where we have w = w(t∗) = w(s∗). Together with
Theorem 3.5, we obtain that H∗(Px̄) is a supporting hyperplane of D∗ that contains s∗. The
remaining statements are now obvious.

The following consequence of Proposition 4.4 is useful to characterize the condition t∗ ∈ ∆.

12

Corollary 4.7. Let the assumptions of Proposition 4.4 be satisfied. Then, w(y∗) ∈ (T∞)+

for all y∗ ∈ T ∗.

Proof. Assuming the contrary, there is ȳ∗ ∈ T ∗ and k ∈ T∞ with w(y∗)Tk < 0. Let ȳ ∈ T . For
sufficiently large λ > 0, using (6), we obtain ϕ(ȳ+λk, ȳ∗) < 0, which contradicts Proposition
4.4.

The following dual algorithm has the same input and output as Algorithm 1. Similar func-
tions are used. The function dual() computes a V-representation of an outer approximation
T ∗ of D∗ from a V-representation of an inner approximation T of P. In contrast to Algorithm
1, it is not necessary that dual() returns a minimal V-representation. The recession cone of
sets T ∗ occurring in the algorithm is known, in fact, we always have T ∗∞ = −K = R+ {−eq}.
Therefore we denote the return of the function dual() by (T ∗points,∼) indicating that the second
return value (the array containing the extreme directions of T ∗) is not used.

The function solve() returns an optimal solution x of (P1(w)) and an optimal solution u
of (D1(w)). Again, only one linear program has to be solved.

Algorithm 2.

Input:
B, b, P, Y (data of Problem (P));
a solution ({0} , S̄h) to (Ph);
a solution T̄ h to (D∗h);

Output:
(S̄, S̄h) is a solution to (P);
T̄ is a solution to (D∗);
(Tpoints, Tdirs) ... a V-representation of P;
(T ∗points, {−eq}) ... a V-representation of D∗;

Tdirs ←
{
Px| x ∈ S̄h

}
∪ {y| y is a column of Y };

w̄ ← mean
{
w| (u,w) ∈ T̄ h

}
;

S̄ ← {solve(P1(w̄))};
repeat

flag ← 0;
T̄ ← ∅;
Tpoints ←

{
Px| x ∈ S̄

}
(T ∗points,∼)← dual (Tpoints, Tdirs);
for i = 1 to

∣∣∣T ∗points∣∣∣ do

t∗ ← T ∗points[i];
w ← w(t∗);
(x, u)← solve(P1(w)/D1(w));
if t∗q − bTu > 0 then

S̄ ← S̄ ∪ {x};
flag ← 1;
break; (optional)

else
T̄ ← T̄ ∪ {(u,w)};

13

end if;
end for;

until flag = 0;
delete points x ∈ S̄ whenever Px is not a vertex of T ;

Remark 4.8. The last line in the algorithm is easy to realize, for instance, by computing a
minimal V-representation using the command

(Tpoints, Tdirs)← dual (T ∗points, T ∗dirs)

from Algorithm 1 by standard vertex enumeration methods. Then one has to test if for x ∈ S̄,
Px belongs to Tpoints, if not, x is deleted from S̄. In particular, it is not necessary to solve a
linear program.

Theorem 4.9. Let S 6= ∅ and assume that Ph has a vertex. Then, Algorithm 2 is correct
and finite.

Proof. By similar arguments as in the proof of Theorem 4.5 one can show that P1(w̄)) has a
solution.

The set T := conv Tpoints + cone Tdirs is a subset of P. Hence, by Theorem 3.5, after
calling the function dual(), T ∗ := conv T ∗points + cone T ∗dirs is a superset of D∗. Since T 6= Rq,
c ∈ intC and T∞ ⊇ C, we have cone T ∗∞ = R+ · {−eq}, i.e., we can set T ∗dirs = {−eq} and we
know that T ∗points 6= ∅.

The array ({0} , Tdirs) provides a V-representation of Ph, i.e., T∞ = Ph. Corollary 4.7
yields that T ∗points ⊆ ∆. Hence, by Proposition 4.6, solutions to (P1(w)) and (D1(w)) exist. It

can be easily shown that the vectors (u,w) ∈ T̄ are maximizers of (D∗), see also [26, Lemma
4.51].

The algorithm terminates, if T ∗points ⊆ D∗. Since D∗∞ = T ∗∞ = R+ {−eq}, we conclude

D∗ = T ∗, i.e., T̄ is a supremizer of (D∗) and (T ∗points, {−eq}) is a V-representation of D∗. Since
at termination T ∗ = D∗, Theorem 3.6 implies T = P. Thus (Tpoints, Tdir) is a (not necessarily
minimal) V-representation of P. A solution x to (P1(w)) is in general not a minimizer for
(P) (but only “weakly efficient”, compare e.g. [26, Theorem 4.1]). Therefore, in the last
line of the algorithm, x is deleted from S̄, whenever Px is not a vertex of T . According to
Proposition 4.3, the remaining set S̄ consists of only minimizers. It is non-empty because,
by assumption, Ph has a vertex and hence T = P must have a vertex. As non-vertex points
are redundant in a V-representation of a set which has a vertex, the property of S̄ being an
infimizer for (P) is maintained by deleting the non-minimizers in S̄.

Finally we show that the algorithm terminates after finitely many steps. We consider
the ‘repeat’ loop in iteration k. We set w = wk and t∗ = t∗k and denote the solutions
of (P1(w

k)) and (D1(w
k)) by xk and uk, respectively. The point s∗k := t∗k + z∗k · {−eq},

where z∗k := (t∗kq − bTuk) belongs to T ∗(k−1) \MaxK T ∗(k−1) whenever z∗k > 0. We have

T ∗k := T ∗(k−1) ∩ {y∗ ∈ Rq| ϕ(Pxk, y∗) ≥ 0} and by Proposition 4.6 we know that F ∗ :=
{y∗ ∈ D∗ | ϕ

(
Pxk, y∗

)
= 0} is a face of D∗ with s∗k ∈ F ∗. Likewise to [26, Lemma 4.48],

we see that F ∗ ⊆ MaxK T ∗k. This means for the next iteration that s∗(k+1) 6∈ F ∗ (because
s∗(k+1) ∈ T ∗k \MaxK T ∗k), and therefore s∗(k+1) belongs to another face of D∗. Since D∗ is
polyhedral, it has a finite number of faces, hence the algorithm is finite.

14

Let us summarize the two-phase method for solving unbounded problems. We consider an
arbitrary linear vector optimization problem, where we only assume that C is a solid pointed
polyhedral cone. We fix some c according to (3), which is always possible in the way described
after (3). In phase 1, we first try to compute some η ∈ int (D∗ +K) with ηT c = 1. This can
be realized by Algorithm 3 in [26, Section 5.5], where the set T has to be adapted to the more
general setting of this article. Note that c has a different meaning in [26, Section 5.5]. The
first LP solved by the mentioned algorithm is

min 0Tw + 0Tu s.t. (u,w) ∈ T.

If this linear program is infeasible, then (D∗) is infeasible. Otherwise one obtains either some
η ∈ int (D∗+K) or the algorithm indicates that int (D∗+K) is empty. In the latter case, we
know that Ph has no vertex. This means that P, if non-empty, contains a line. This case has
not been treated so far. Since cq = 1 according to (3), the condition ηT c = 1 can be always
realized by an appropriate choice of ηq.

Next, we solve (Pη) by either Algorithm 1 or Algorithm 2. Since (Pη) is bounded, a
solution of the primal and dual homogeneous problem of (Pη) can be easily obtained. However,
this is not necessary as the u-components of (u,w) ∈ T̄ h are not used in Algorithms 1 and 2.
Therefore we can use

S̄h = ∅ and T̄ h =

{(
0,

z

zT c

) ∣∣∣∣ z is a column of Z

}
as an input of Algorithm 1 or 2 to solve (Pη), compare also [26, Theorem 5.20]. Let (S̄η, S̄

h
η)

be a solution of (Pη) and let T̄η be a solution of the dual problem of (Pη). Then, a solution
of (Ph) is obtained by setting

(S̄, S̄h) := ({0} , S̄η \ {0}),

compare [26, Theorem 5.23]. A solution T̄ h of (D∗h) can be obtained from T̄η but again only
the w-components are required by Algorithms 1 or 2 in phase 2. As a consequence of [26,
Theorem 5.25], we can use

T̄ h :=
{

(0, w(y∗)) | y∗ ∈ T ∗points, y∗q = 0
}

as an input of Algorithm 1 or 2 in the second phase, where T ∗points is the result from the
first phase, i.e., (T ∗points, {−eq}) is a V-representation of the lower image D∗η of the dual
problem of (Pη). In the second phase, the first LP to be solved in Algorithm 1 is (D1(w)).
If (D1(w)) turns out to be unbounded, we know that (P) is infeasible. Likewise, if the first
LP in Algorithm 2, namely (P1(w̄)), is infeasible, we know that (P) is infeasible. Otherwise,
according to Theorems 4.5 and 4.9, solutions of (P) and (D∗) are computed.

Remark 4.10. In practice the condition z > 0 in Algorithm 1 is replaced by z > ε for some
ε > 0. Assume that the results of the first phase are always exact. Then, in the second phase,
Algorithm 1 yields an ε-solution of (P) in the sense that in Definition 3.2 the finite infimizer
is replaced by a finite ε-infimizer, i.e., condition (2) is replaced by

convP [S̄] + coneP [S̄h] + C − ε {c} ⊇ P [S] + C. (10)

Taking into account that (using the assumption cq = 1 in (3))

ϕ(y − εc, y∗) = ϕ(y, y∗ + εeq),

15

we see that Algorithm 1 yields an ε-solution of (D∗) in the sense that in Definition 3.4 a
finite supremizer is replaced by a finite ε-supremizer, i.e., condition (4) is replaced by

convD∗[T̄]−K + ε {eq} ⊇ D∗[T]−K. (11)

Likewise, in Algorithm 2 the condition t∗q − bTu > 0 is replaced by t∗q − bTu > ε for some
ε > 0. Consequently, Algorithm 2 yields an ε-solution of (D∗). It also yields an ε-infimizer
of (P), but in general not an ε-solution of (P). The reason is that the last line in Algorithm
2 only works for the exact algorithm.

Note further that an ε-solution (S̄, S̄h) of (P) refers to an inner and an outer approxima-
tion of the upper image P in the sense that

convP [S̄] + coneP [S̄h] + C ⊆ P ⊆ convP [S̄] + coneP [S̄h] + C − ε {c} .

Likewise, an ε-solution T̄ of (D∗) refers to an inner and an outer approximation of the lower
image D∗ in the sense that

convD∗[T̄]−K ⊆ D∗ ⊆ convD∗[T̄]−K + ε {eq} .

Note that the approximation error of the classical variant of Benson’s algorithm and its dual
variant has been studied in [32, 33].

5 Computation of polyhedral set-valued risk measures

Set-valued risk measures evaluate the risk of multi-variate random portfolios X : Ω→ Rd the
components Xi (ω) of which represent the number of units of the i-th asset in the portfolio,
i = 1, . . . , d. If transaction costs are present, such risk measures are more appropriate than
real-valued functions, which always represent a complete risk preference and thus cannot
account for incomparable portfolios.

The theory of set-valued risk measures was initiated in [24] and systematically developed
in [13] and [15]. We refer the reader to these references for further motivation and information.
Here, we restrict ourself to the case of finite probability spaces and the question how the values
of a set-valued risk measure can be computed. It will turn out that this leads to problems of
type (P), hence one can apply the algorithm presented in Section 4.

The basic idea is as follows. The value of a set-valued risk measure at some random future
portfolio X consists of initial deterministic portfolios u which can be given as deposits for
the ‘risky payoff’ X, thus making the overall position ‘risky payoff plus deposit’ a non-risky
one. It usually is not possible to use all assets as deposits, but rather a small subset including
cash in a few currencies, bonds, gold or similar risk-free or low-risk assets. These ‘eligible’
assets are assumed to span the linear subspace M of Rd with 1 ≤ dimM = m ≤ d. A typical
example, already used in [24], is Rm × {0}d−m, i.e. the first m assets are eligible.

Let (Ω, P) be a finite probability space and N ≥ 2 be the number of elements in Ω =
{ω1, . . . , ωN}. We assume pn = P ({ωn}) > 0 for all n ∈ {1, . . . , N}. The space of all
multi-variate random variables X : Ω → Rd is denoted by L0

d (Ω, P). A random variable
X ∈ L0

d (Ω, P) can be identified with an element x̂ ∈ RdN through

x̂ = (X1 (ω1) , . . . , Xd (ω1) , X1 (ω2) , . . . , Xd (ωN))T ∈ RdN

16

and vice versa. Thus, the function T : L0
d (Ω, P) → RdN defined by TX = x̂ is a linear

bijection. If A ⊆ L0
d (Ω, P) then we set Â =

{
x̂ ∈ RdN | x̂ = TX, X ∈ A

}
.

Let K0 ⊆ Rd be a finitely generated convex cone satisfying Rd+ ⊆ K0 6= Rd. Such a
‘solvency’ cone models the market at initial time. We set KM

0 = K0 ∩M and P
(
M,KM

0

)
={

D ⊆M | D = D +KM
0

}
. A risk measure is a function R : L0

d (Ω, P)→ P
(
M,KM

0

)
satisfy-

ing
∀u ∈M, ∀X ∈ L0

d (Ω, P) : R (X + u1I) = R (X)− u (12)

where 1I : Ω→ R with 1I (ω) = 1 for all ω ∈ Ω is the uni-variate random variable with constant
value 1.

With R, we associate a risk measure R̂ : RdN → P
(
M,KM

0

)
by means of R̂ (x̂) = R (X)

for x̂ = TX. Consequently, R̂ satisfies

∀u ∈M, ∀x̂ ∈ RdN : R̂
(
x̂+ Îdu

)
= R̂ (x̂)− u (13)

where

Îd =

 Id
...
Id

 ∈ RdN×d and Id =


1 0 . . . 0
0 1 . . . 0
...

. . .
...

0 . . . 0 1

 ∈ Rd×d.

The most common way to generate a risk measure is by means of a set A ⊆ L0
d (Ω, P) of

random variables which are considered to be ‘acceptable’ by the decision maker. The value of
a risk measure generated by A then consists of all deterministic (available at time 0) portfolios
u ∈M ⊆ Rd which, when added to the uncertain future position X, make the overall position
acceptable. Thus,

RA (X) = {u ∈M | X + u1I ∈ A} .

This functions indeed satisfies (12). Correspondingly,

RÂ (x̂) =
{
u ∈M | x̂+ Îdu ∈ Â

}
satisfies (13), and we have RÂ = R̂A. Vice versa, with risk measures R : L0

d (Ω, P) →
P
(
M,KM

0

)
and R̂ : RdN → P

(
M,KM

0

)
we associate the sets

AR =
{
X ∈ L0

d (Ω, P) | 0 ∈ R (X)
}

and AR̂ =
{
x̂ ∈ RdN | 0 ∈ R̂ (x̂)

}
,

respectively. A basic fact about risk measures is a one-to-one correspondence between closed
acceptance sets A ⊆ L0

d (Ω, P) which satisfy A+KM
0 1I ⊆ A and risk measures R : L0

d (Ω, P)→
P
(
M,KM

0

)
with a closed graph by means of the above formulas. In particular, the relation-

ships Â = ARÂ
and R̂ = RAR̂

hold true. See [15] for further details.

A risk measure R is called polyhedral if the associated risk measure R̂ is polyhedral, i.e.,
if

gr R̂ =
{

(x̂, u) ∈ RdN ×M | u ∈ R̂ (x̂)
}

is a polyhedral subset of RdN × Rd. The one-to-one correspondence between risk measures
and their acceptance sets extends to the polyhedral case: Â ⊆ RdN is polyhedral if, and only
if, RÂ is polyhedral, and R̂ is polyhedral if and only if ÂR is polyhedral.

The above discussion leads to the following conclusion.

17

Remark 5.1. Since each polyhedral risk measure R̂ has the representation

R̂ (x̂) =
{
u ∈M | x̂+ Îdu ∈ AR̂

}
where AR̂ is a polyhedral set, the set R̂ (x̂) is the upper image of a linear vector optimization

problem. Indeed, if AR̂ ⊆ RdN has the H-representation AR̂ =
{
ŷ ∈ RdN | B̂ŷ ≥ b̂

}
where B̂

and b̂ are matrices of appropriate dimension then

R̂ (x̂) =
{
u ∈M | B̂

(
x̂+ Îdu

)
≥ b̂
}

=
{
u ∈M | B̂Îdu ≥ b̂− B̂x̂

}
.

Let P ∈ Rd×m be a matrix with column vectors µ1, . . . , µm forming a basis of M and define
B = B̂ÎdP , b = b̂ − B̂x̂. Then, observing that R̂ (x̂) + KM

0 = R̂ (x̂) and substituting u = Pz
we obtain that R̂ (x̂) is the upper image of the problem

minimize P : Rm →M with respect to ≤KM
0

subject to Bz ≥ b.

However, this is just a theoretical result since in practice life is not as straightforward:
Usually, the constraints describing Â involve a large number of auxiliary variables, and u
is given as a linear function of those (see Example 5.3 below). Therefore, the algorithm
presented in Section 4 is an appropriate tool to compute the values of a polyhedral set-valued
risk measure because the dimension of the pre-image space usually is much greater than the
dimension of the image space which is dimM = m ≤ d. Compare Examples 5.2 and 5.3
below.

In the following, we will discuss two examples which will be used for the numerical com-
putations reported in Section 6.

Example 5.2. In worst case, the regulator/decision maker only accepts positions with
non-negative components. Thus, the acceptance set is A =

(
L0
d

)
+

which is the set of all
component-wise non-negative random variables. The market extension of the worst case risk
measure, i.e. when trading is allowed, is related to the set of superhedging portfolios, see [27].
Its acceptance set in a one-period market is A =

(
L0
d

)
+

+K01I + L0
d (KT) where the cone K0

and the random cone KT model market conditions with a potential bid ask price spread at
initial and terminal time, respectively, and L0

d (KT) =
{
X ∈ L0

d | ∀ω ∈ Ω: X (ω) ∈ KT (ω)
}

.
The cones KT (ω) are also finitely generated convex cones satisfying Rd+ ⊆ KT (ω) 6= Rd for
all ω ∈ Ω.

The market extension of the worst case risk measure still is very conservative since a
payoff X is acceptable only if there is a trading strategy such that its result, when added to
X, is non-negative in all components in all possible scenarios, even those with a very small
probability. Therefore, we introduce a ‘relaxed’ variant as follows.

Let G ⊆ Rd be a finitely generated convex cone with Rd+ ⊆ G 6= Rd and consider the
following acceptance set

ARWC =
{
X ∈ L0

d (Ω, P) | ∀ω ∈ Ω: X (ω) ∈
(
−ε+ Rd+

)
∩G

}
+K01I + L0

d (KT)

where ε ∈ Rd such that εi ≥ 0 for all i ∈ {1, . . . , d}. Compared to the ‘true’ worst case risk
measure, the set

(
L0
d

)
+

is replaced by ‘a little’ bigger set.
Thus, payoffs with ‘small’ negative components may still be considered acceptable, and

the size of the risk related to such payoffs is controlled by ε and G. The cone G may serve

18

as a conservative estimate of a market model which the regulator/supervisor thinks is robust
enough to cover most market scenarios. For example, G can be chosen such that P (G ⊆
KT) ≥ 1− α for some significance level α ∈ [0, 1]. Then, the probability of a loss is bounded
by α, and a potential loss (in physical units) is bounded by ε. Note that in the scalar case
d = m = 1, the relaxed worst case risk measure reduces to the scalar worst case risk measure.
The market extension of the relaxed worst case risk measure is given by

RWC (X) =
{
u ∈M | z ∈ K0, Z ∈ L0

d (KT) , ∀ω ∈ Ω:

X (ω)− z − Z (ω) + u ∈
(
−ε+ Rd+

)
∩G

}
(14)

and can be seen as a relaxation of the superhedging set and thus as a good deal price bound
of −X, see Example 6.6 for details. It is polyhedral (convex) as ARWC is polyhedral (convex),
but not sublinear. This is a new feature since the classical worst case risk measure is always
sublinear.

In order to describe RWC (x̂), let g1, . . . , gL be the generating vectors of the cone G and
let Ĝ be the dN × LN matrix which contains N blocks on its diagonal, where each block
consists of the matrix with g1, . . . , gL as columns. Then

∀n ∈ {1, . . . , N} : X (ωn) ∈ G ⇔ ∃γ ∈ RLN+ : x̂ = Ĝγ.

Similarly, let K̂T be the dN × J matrix which contains N blocks on its diagonal, where
the first block consists of the matrix with the generating vectors of KT (ω1) as columns, the
second block contains the generating vectors of KT (ω2) and so forth to the last block with
the generating vectors of KT (ωN). J is the sum of the number of generating vectors of all
KT ’s. Let K̂0 denote the matrix containing the I generating vectors of K0 as columns. Then,

RWC (x̂) = {Pz | x̂+ Îd

(
Pz + ε− K̂0r

)
− K̂T s ∈ RdN+ ,

Îd

(
Pz − K̂0r

)
− K̂T s− Ĝγ = −x̂, z ∈ Rm, γ ∈ RLN+ , r ∈ RI+, s ∈ RJ+},

with ordering cone KM
0 . Thus, the dimension of the pre-image space is m + LN + I + J

whereas the dimension of the image space is just m.

Example 5.3. The following set-valued function is a generalization of the scalar average value
at risk (see [11, p. 210]) which is probably the most important and most studied example of
a sublinear coherent measure of risk as introduced by [1]. Let α ∈ (0, 1]d. Define for X ∈ L0

d

AV@Rα (X) =
{

diag (α)−1E [Z]− z | Z ∈
(
L0
d

)
+
,

X + Z − z1I ∈ K01I + L0
d (KT) , z ∈ Rd

}
∩M (15)

where diag (α)−1 is the inverse of the diagonal matrix with the components of α on its main
diagonal and zero elsewhere, and the cones K0,KT (ω) modeling the market conditions are as
described above. Therefore this risk measure is also called the market extension of a simpler
‘regulator’ version, see [16]. We also refer to this paper for further motivation, interpretation
and more details. It is immediately clear that AV@Rα is not given in the form of RA above,
but it is a polyhedral convex (even sublinear) risk measure.

19

Its ‘hat’ variant can be derived as follows. Replace Z by ẑ ∈ RdN and introduce auxiliary
variables which admit to write x̂+ ẑ− Îdz as non-negative linear combination of the generating
vectors of the cones K0 and KT (ωn). Transform the objective into matrix form and get

AV@Rα (x̂) = {Px | Bx ≥ b}+KM
0 ,

with appropriate matrices B, b and P where KM
0 = K0 ∩M as before. The dimension of the

pre-image space is d(N + 1) + I + J whereas the dimension of the image space is just m. It
is worth mentioning that in the scalar case (i.e., without transaction costs) Rockafellar and
Uryasev observed that the AV@R can be computed by solving a linear optimization problem,
see [30].

6 Numerical examples

The algorithms have been implemented with MATLAB using the GNU Linear Programming
Kit (GLPK) to solve the LPs and the CDDLIB package [5] for vertex enumeration. The
graphics have been generated by JavaView3 and OpenOffice (Figure 5). By a straightforward
extension of the above results we can also solve linear vector optimization problems with
constraints of the form

a ≤ Bx ≤ b lb ≤ x ≤ ub, (16)

where the components of a, b, lb, ub belong to R ∪ {−∞,+∞}. All examples were computed
on a MacBook Pro with 2.26 GHz clock and 8 GB memory. We made use of the fact that
all the LPs have a very similar form. This means that the matrix B does not need to be
changed during the algorithm (except one line because η is not yet known at the beginning).
This allows us to initialize LPs by appropriate basis solution of LPs solved in previous steps
(warm starts).

In the following examples we provide tables with a few computational data, such as the
total time and the number of LPs solved (# LPs). Note that we compute an ε-solution (S̄, S̄h)
of (P) and an ε-solution T̄ of (D∗), compare Remark 4.10. We provide the cardinality | . | of
the sets S̄, S̄h and T̄ . Recall that we have |Sh| = 0 whenever the problem is bounded. Note
that |S̄| and |T̄ | ‘correlate’ to the number of, respectively, vertices and facets of P (but do
not need to coincide exactly). One reason for possible differences is degeneracy as discussed
in [26, Section 5.6], another one is numerical inaccuracy.

Further we denote by tmax the maximum time used to solve one LP and by taver the
average time to solve one LP. The quotient tmax/taver indicates the impact of using warm
starts. We start with two numerical examples from the literature.

Example 6.1. Shao and Ehrgott [32] used extended variants of Benson’s algorithm to solve
linear vector optimization problems occurring in radio therapy treatment planning. We com-
pute Example (PL) in [32] which has three objectives and a matrix B of size 1211×1143 with
153 930 nonzeros. The ordering cone is C = R3

+, and the problem is known to be bounded,
which means that the first phase of our algorithms as well as the computation of η can be
skipped. Further we set c = (1, 1, 1)T .

The following table shows some results obtained by Algorithm 1. The second column in
the table concerns the optional break command in the algorithm. One can observe that more

3by Konrad Polthier, http://www.javaview.de

20

http://www.javaview.de

Figure 1: Illustration of the upper image P in Example 6.1; top left: primal algorithm, variant
‘break’, ε = 0.3; top right: primal algorithm, variant ‘no break’, ε = 0.3; bottom left: dual
algorithm, variant ‘break’, ε = 0.3; bottom right: primal algorithm, variant ‘break’, ε = 0.05.

LPs have to be solved when the break command is disabled. On the other hand, less vertex
enumerations are required. This explains why the variant ‘no break’ is becoming faster than
the ‘break’ variant when ε > 0 is small enough.

ε variant total time |S̄| |T̄ | # LPs tmax tmax/taver
0.3 break 47 secs 46 29 75 0.84 secs 1.8

0.1 break 91 secs 104 61 165 0.87 secs 2.0

0.05 break 144 secs 176 94 270 0.86 secs 2.0

0.005 break 1596 secs 1456 597 2053 0.84 secs 1.9

0.3 no break 54 secs 54 34 88 0.85 secs 1.8

0.1 no break 114 secs 134 78 212 0.84 secs 1.9

0.05 no break 205 secs 264 129 393 0.85 secs 1.9

0.005 no break 1411 secs 1945 804 2749 0.84 secs 1.9

Although we need less computational time than in [32], it is difficult to compare the
results as we use a faster computer, a different (open source) LP solver, and we utilize warm
starts. Moreover, in [32] an online vertex enumeration method is used, which is preferable

21

if the number of vertices and facets of P is large. Furthermore, our method yields the same
approximation error as in [32] by less vertices and facets of P. See Figure 1 for an illustration
of part of the results.

Figure 2: Illustration of the upper image P in Example 6.2 for ε/ ‖c‖ = 10−4 (inner and outer
approximation, left) and for ε/ ‖c‖ = 10−6 (right).

Example 6.2. Ruszczyński and Vanderbei [31] developed a specialized parametric method for
computing all minimizers of bi-criteria problems. Using intermediate results of the parametric
simplex method, they solved in [31], for instance, a mean-risk model with a dense matrix B
of size 6161×3799 having 4 435 919 nonzero entries. They pointed out that computing all the
5017 minimizers takes only a little more time than solving one single LP. As this problem is
known to be bounded, we can skip in our algorithms the first phase as well as the computation
of η. For c = (1, 1)T , our primal algorithm yields approximate solutions as shown in the
following table.

ε total time |S̄| |T̄ | # LPs tmax tmax/taver√
2 · 10−4 946 secs 6 7 13 347 secs 4.4√
2 · 10−5 1648 secs 22 23 45 304 secs 8.9√
2 · 10−6 3085 secs 62 63 125 310 secs 14.1

We see that a ‘good’ approximation with ε/ ‖c‖ = 10−6 can be obtained in about ten times
the time required to solve a single LP. This means our general method needs much more time
for an ε-solution (compare Remark 4.10) than the parametric method for bounded bi-criteria
problems in [31] needs for the exact solution. On the one hand, approximating solutions are
often sufficient for a decision maker in practice, compare Figure 2. On the other hand, we
think that the ideas of the algorithm by Ruszczyński and Vanderbei are promising for further
improvements of Benson type algorithms for arbitrary linear vector optimization problems.

The following three numerical examples refer to Example 5.3 in the previous section.

Example 6.3. Let us consider d = 12 assets, the first one is a risk-free USD bond with
annual interest rate 5%. Given is the vector of today’s asset prices, the vector of the expected
returns and a covariance matrix for the other 11 correlated risky assets denoted in USD.
Then, one can set up a one-period tree for the asset prices ST with time horizon T = 1 year

22

Figure 3: Illustration of the upper image P (left) and the lower image D∗ (right) in Example
6.3 for ε = 10−4.

as in [25] to reflect the drift and covariance structure. The resulting number of scenarios is
N = 2d−1 = 2048. We consider proportional transaction costs for the bond to be λ0 = 3% and
for the first risky assets (usually another currency) to be λ1 = 7%, the second risky asset to
be λ2 = 5% and all other risky assets to be 1%. Then, the bid and ask prices of the assets are
(Sat)i = (1 + λi)(St)i and (Sbt)i = (1− λi)(St)i for i = 0, . . . , 11 and t ∈ {0, T}. Furthermore,
let us assume an exchange between any two risky assets can not be made directly, only via
cash in USD by selling one asset and buying the other. Since the risk-free bond has strictly
positive transaction costs λ0, the cones K0 and KT (ωn) for n = 1, . . . , N have d(d− 1) = 132
generating vectors each. Thus I = 132 and J = 270 336.

We want to evaluate the risk of an outperformance option with physical delivery and
maturity T . This option gives the right to buy the asset that performed best out of a basket
of assets at a given strike price. Let the strike be K = (1 +λ1)(S0)1. To normalize to today’s
prices, let a vector g be defined as (Sa0)1 = gi(S

a
0)i for i ∈ {1, . . . , 11}. The payoff X of the

option is −K in the risk free asset, gi units of asset i for the smallest i satisfying gi(S
a
T)i =

maxj∈{1,...,11}(gj(S
a
T)j) ≥ K and zero in the other assets. If maxj∈{1,...,11}(gj(S

a
T)j) < K the

payoff is the zero vector.
Let us calculate AV@Rα(X) as described in Example 5.3 with significance levels

α = (0.1, 0.08, 0.09, 0.1, 0.05, 0.05, 0.04, 0.05, 0.03, 0.04, 0.03, 0.04)T .

As the space of eligible assets we choose the space spanned by the first and the second asset,
i.e. M = R2 × {0}10. Formula (15) leads to a linear vector optimization problem with 2
objectives and constraints of the form (16) where the matrix B is of size 24 586× 295 056. B
is sparse having 1 150 986 nonzero entries. The ordering cone is KM

0 , which is strictly larger
than R2

+ and is generated by 2 vectors. The vertices of AV@Rα(X) are minimal deposits in
the bond and the second asset that compensate for the risk of X measured by AV@Rα. The
following table shows some computational data of the primal algorithm.

ε total time |S̄| |S̄h| |T̄ | # LPs tmax tmax/taver
10−4 3529 secs 20 1 21 46 592 secs 8.4

10−5 4716 secs 47 1 48 100 671 secs 17.1

10−6 7905 secs 122 1 123 253 449 secs 22.0

23

We can see that the problem is unbounded. In Figure 3 the upper image P and the lower
image D∗ for ε = 10−4 are shown. We observe that the vertices of P are almost on a line and
the lower image D∗ is more suitable to illustrate the example.

Figure 4: The lower image D∗ in Example 6.4 for ε = 10−3, two different view points.

Example 6.4. Now consider d = 11 assets with a given correlation structure and all other
input parameters as for the first 11 assets in Example 6.3 above. We have N = 2d−1 =
1024 and the number of generating vectors of each cone K0 and KT (ωn) for n = 1, . . . , N
is d(d − 1) = 110. Consider a basket call option with physical delivery and strike price
K =

∑10
i=1(S0)i. If at maturity (T = 1 year) the value of the basket of risky assets is greater

or equal to the strike, i.e.,
∑10

i=1(ST)i ≥ K, then one would exercise the option and buy the
10 risky assets at strike K by delivering K times the bond, i.e. X = (−K, 1, . . . , 1)T in this
case. If the value is less, the payoff vector is the zero vector. As the space of eligible assets
we choose the space spanned by the first three assets, i.e. M = R3 × {0}8. The ordering
cone is KM

0 , which is strictly larger than R3
+ and generated by 6 vectors. The linear vector

optimization problem has 3 objectives and a matrix of size 11 272× 124 025, which is sparse
having 481 288 nonzero entries. For ε = 10−3, the computational time of the primal algorithm
was 1748 seconds. The result is illustrated in Figure 4. As the upper image P is difficult to
visualize (a polyhedron containing no lines but being ‘close’ to a halfspace) we only provide
the lower image D∗.

Example 6.5. Consider d = 10 assets with a given correlation structure and all other input
parameters as in Example 6.4 above. Let X be the payoff of an outperformance option with
physical delivery as described in Example 6.3. As the space of eligible assets we choose
the space spanned by the first four assets, i.e. M = R4 × {0}6. The corresponding linear
vector optimization problem has 4 objectives and a matrix of size 5 126× 51 300 with 197 638
nonzero entries. The ordering cone is KM

0 , which is strictly larger than R4
+ and generated

by 12 vectors. Then, AV@Rα(X) with α as in Example 6.4, obtained as the upper image of
linear vector optimization problem computed with the primal algorithm and ε = 10−2, has
18 vertices and 12 extreme directions. The vertices of P are visualized by a radar chart in
Figure 5.

The following numerical example refers to Example 5.2 in the previous section.

24

Figure 5: Visualization of the 18 vertices of the upper image P ⊆ R4 in Example 6.5 by a
radar chart.

Example 6.6. Let us consider d = 9 assets with a given correlation structure, all other input
parameters as in Example 6.4 above (i.e. m = 3), and the same basket option (basket call)
with payoff X as in Example 6.4. We want to calculate RWC(−X), the relaxed worst case
risk measure at −X, as described in Example 5.2 with parameter εi = 500 for i ∈ {3, . . . , 9}
and zero otherwise. The cone G can be seen as a worst case solvency cone and is chosen
to be a conservative modification of K0, where λ is replaced by the larger transaction costs
λwc = λ+ 0.2.

Figure 6: The lower image D∗ in Example 6.6 for ε = 10−2 (left) and ε = 10−3 (right)
computed with the dual algorithm.

RWC(−X) corresponds to an upper good deal bound as it is a relaxed version of the
set of superhedging portfolios. By considering certain small risks controlled by ε and G as
acceptable, the scalar superhedging price of 34.942464 units of bond is reduced to 34.830995

25

units of bond for RWC(−X). The linear vector optimization problem to calculate RWC(−X)
has 3 objectives and a matrix B of size 4 608× 36 939, which is sparse with 185 856 nonzero
entries. The above prices in units of bond were obtained by solving linear vector optimization
problems with both the primal and dual algorithm for ε = 10−4.

The following table shows some computational data and a comparison of the primal and
dual algorithm. In Figure 6, parts of the results are visualized.

ε variant total time |S̄| |T̄ | # LPs tmax tmax/taver
10−2 primal 113 secs 13 12 37 8.8 secs 3.8

10−3 primal 239 secs 68 37 123 9.0 secs 6.8

10−4 primal 506 secs 153 82 308 8.8 secs 8.6

10−2 dual 86 secs 7 20 37 5.8 secs 3.8

10−3 dual 193 secs 30 73 113 8.2 secs 4.8

10−4 dual 404 secs 74 136 256 5.8 secs 5.1

Acknowledgements. We thank Dr Lizhen Shao for providing the data of Example 6.1 taken
from [32] and we thank Professor Robert Vanderbei for supplying the data of Example 6.2
taken from [31].

References

[1] P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath. Coherent measures of risk. Mathe-
matical Finance, 9(3):203–228, 1999.

[2] C. Barber, D. P. Dobkin, and H. Huhdanpaa. The quickhull algorithm for convex hulls.
ACM Transactions on Mathematical Software, 22(4):469–483, 1996.

[3] H. Benson. Further analysis of an outcome set-based algorithm for multiple-objective
linear programming. Journal of Optimization Theory and Applications, 97(1):1–10, 1998.

[4] H. Benson. An outer approximation algorithm for generating all efficient extreme points
in the outcome set of a multiple objective linear programming problem. Journal of Global
Optimization, 13:1–24, 1998.

[5] D. Bremner, K. Fukuda, and A. Marzetta. Primal-dual methods for vertex and facet
enumeration. Discrete Computational Geometry, 20(3):333–357, 1998.

[6] L. Csirmaz, Using multiobjective optimization to map the entropy region of four random
variables. http://eprints.renyi.hu/66/, March 2013

[7] M. Ehrgott. Solving multiobjective linear programmes - from primal methods in decision
space to dual methods in outcome space. Book of Abstracts, Second South Pacific
Conference on Mathematics, Noumea, New Caledonia, August 30th to September 3rd,
2010. http://pages.univ-nc.nc/∼bonnel/spcm-2010/confspcm10.htm.

[8] M. Ehrgott, A. Löhne, and L. Shao. A dual variant of Benson’s outer approximation
algorithm. Report 654, University of Auckland School of Engineering, 2007.

[9] M. Ehrgott, A. Löhne, and L. Shao. A dual variant of Benson’s outer approximation
algorithm. Journal of Global Optimization, 52(4):757–778, 2012.

26

http://pages.univ-nc.nc/~bonnel/spcm-2010/confspcm10.htm

[10] M. Ehrgott, L. Shao, and A. Schöbel. An approximation algorithm for convex multi-
objective programming problems. Journal of Global Optimization, 50(3):397–416, 2011.

[11] H. Föllmer and A. Schied. Stochastic finance. Walter de Gruyter & Co., Berlin, extended
edition, 2011.

[12] A. Hamel. A duality theory for set-valued functions I: Fenchel conjugation theory. Journal
of Set-valued and Variational Analysis, 17:153–182, 2009.

[13] A. Hamel and F. Heyde. Duality for set-valued measures of risk. SIAM Journal on
Financial Mathematics, 1:66–95, 2010.

[14] A. Hamel, F. Heyde, A. Löhne, C. Tammer, and K. Winkler. Closing the duality gap in
linear vector optimization. Journal of Convex Analalysis, 11(1):163–178, 2004.

[15] A. Hamel, F. Heyde, and B. Rudloff. Set-valued risk measures for conical market models.
Mathematics and Financial Economics, 5:1–28, 2011.

[16] A. Hamel, B. Rudloff, and M. Yankova. Set-valued average value at risk and its compu-
tation. Mathematics and Financial Economics, 7(2):229–246, 2013.

[17] A. H. Hamel. A Fenchel-Rockafellar duality theorem for set-valued optimization. Opti-
mization, 60(7-9):1023–1043, 2011.

[18] A. H. Hamel and A. Löhne. Lagrange duality in set optimization. submitted, 2012.
arXiv:1207.4433.

[19] F. Heyde. Geometric duality for convex vector optimization problems. submitted, 2011.
arXiv:1109.3592v1.

[20] F. Heyde and A. Löhne. Geometric duality in multiple objective linear programming.
SIAM Journal on Optimization, 19(2):836–845, 2008.

[21] F. Heyde and A. Löhne. Solution concepts in vector optimization: a fresh look at an old
story. Optimization, 60(12):1421–1440, 2011.

[22] F. Heyde, A. Löhne, and C. Tammer. Set-valued duality theory for multiple objec-
tive linear programs and application to mathematical finance. Mathematical Methods of
Operations Research, 69(1):159–179, 2009.

[23] F. Heyde, A. Löhne, and C. Tammer. The attainment of the solution of the dual program
in vertices for vectorial linear programs. Barichard, Vincent (ed.) et al., Multiobjec-
tive programming and goal programming. Theoretical results and practical applications.
Springer. Lecture Notes in Economics and Mathematical Systems 618, 13-24 (2009).,
2009.

[24] E. Jouini, M. Meddeb, and N. Touzi. Vector-valued coherent risk measures. Finance and
Stochastics, 8:531–552, 2004.

[25] R. Korn and S. Müller. The decoupling approach to binomial pricing of multi-asset
options. Journal of Computational Finance, 12(3):1–30, 2009.

27

http://arxiv.org/abs/1207.4433
http://arxiv.org/abs/1109.3592

[26] A. Löhne. Vector Optimization with Infimum and Supremum. Springer, 2011.

[27] A. Löhne and B. Rudloff. An algorithm for calculating the set of superhedging portfolios
and strategies in markets with transaction costs. submitted, 2011. arXiv:1107.5720v1.

[28] A. Löhne and C. Schrage. An algorithm to solve polyhedral convex set optimization
problems. Optimization, 62(1):131–141, 2013.

[29] D. T. Luc. On duality in multiple objective linear programming. European Journal of
Operations Research, 210:158–168, 2011.

[30] R. T. Rockafellar and S. P. Uryasev. Optimization of conditional value-at-risk. Journal
of Risk, 2:21–42, 2000.

[31] A. Ruszczyński and R. J. Vanderbei. Frontiers of stochastically nondominated portfolios.
Econometrica, 71(4):1287–1297, 2003.

[32] L. Shao and M. Ehrgott. Approximately solving multiobjective linear programmes in
objective space and an application in radiotherapy treatment planning. Mathematical
Methods of Operations Research, 68(2):257–276, 2008.

[33] L. Shao and M. Ehrgott. Approximating the nondominated set of an MOLP by ap-
proximately solving its dual problem. Mathematical Methods of Operations Research,
68(3):469–492, 2008.

28

http://arxiv.org/abs/1107.5720

	1 Introduction
	2 Preliminaries
	3 Linear vector optimization
	3.1 Problem setting and solution concepts
	3.2 Duality

	4 Benson's algorithm and its dual variant
	5 Computation of polyhedral set-valued risk measures
	6 Numerical examples

