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Efficient Computation of Spectral Bounds

for Hessian Matrices on Hyperrectangles

for Global Optimization1

Moritz Schulze Darup, Martin Kastsian, Stefan Mross
and Martin Mönnigmann2

Abstract. We compare two established and a new method for the calculation of spectral
bounds for Hessian matrices on hyperrectangles by applying them to a large collection of 1522
objective and constraint functions extracted from benchmark global optimization problems.
Both the tightness of the spectral bounds and the computational effort are assessed. Specifi-
cally, we compare eigenvalue bounds obtained with the interval variant of Gershgorin’s circle
criterion [2, 6], Hertz and Rohn’s [7, 16] method for tight bounds of interval matrices, and a
recently proposed Hessian matrix eigenvalue arithmetic [12], which deliberately avoids the com-
putation of interval Hessians.

Keywords. Eigenvalue bounds, spectral bounds, Hessian, interval matrix, global optimiza-
tion

1 Introduction

We compare a recently proposed method [10] for the calculation of spectral bounds for Hessian
matrices on hyperrectangles to existing ones. We begin with a concise problem statement. Let
ϕ : U ⊆ R

n → R be a twice continuously differentiable function on an open set U ⊆ R
n and let

B = [x1, x1]× · · · × [xn, xn] be a closed hyperrectangle in U . The problem of interest reads as
follows.

Find λ ∈ R, λ ∈ R such that

λ ≤ λ ≤ λ for all eigenvalues λ of all matrices H ∈ H(ϕ,B),
(1)

where H(ϕ,B) is the set of Hessian matrices of ϕ on B

H(ϕ,B) =
{

∇2ϕ(x) |x ∈ B
}

. (2)

A bound λ (resp. λ) is called tight if there exists at least one matrix H in the matrix set with
an eigenvalue λ = λ (resp. λ = λ). Note that the bounds λ, λ in (1) may or may not be tight.

Problem (1) appears in various applications. It is crucial, for example, to establish the
convexity of nonlinear functions in nonlinear optimization, since methods for solving nonconvex
optimization problems are much less efficient than those for their convex counterparts. If (1)
results in λ ≥ 0 then ϕ is convex on the interior of the hyperrectangle B [4, 15]. If, in contrast,
λ < 0 results from (1), then ϕ(x) may or may not be convex on B, but

ϕ̆(x) = ϕ(x) − 1

2
λ

n
∑

i=1

(xi − xi) (xi − xi) (3)
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is a convex function that underestimates ϕ on B and coincides with ϕ at the vertices of B [2, 3].
Underestimators of this type are employed in nonconvex global optimization to bound the global
minimum from below. Essentially, B is bisected into smaller and smaller hyperrectangles B̃ in
these approaches to obtain tighter and tighter convex underestimators. This requires solving
(1) repeatedly for different domains B̃ ⊂ B but the same function ϕ. As a result, a considerable
fraction of the total computational time is spent on the calculation of convex underestimators [1].
Consequently, fast methods for solving (1) are of interest in this field. Problem (1) also arises in
automatic control and systems theory. We refer to [11] for a simple example, where eigenvalue
bounds for Hessian matrix sets are used to prove the positive or negative invariance of regions
in the state space of nonlinear dynamical systems.

Problem (1) is commonly solved in two steps: (i) The interval Hessian matrix is calculated.
(ii) One out of several existing methods that provide bounds on the eigenvalues of symmetric
interval matrices [2, 7, 16] is applied. Interval Hessian matrices can efficiently be computed by
combining interval arithmetics (IA for short; see, e.g., [13]) and automatic differentiation (see,
e.g., [14, 5]). This results in intervals [∇2ϕ

ij
,∇2ϕij ] ⊂ R, i = 1, . . . , n, j = 1, . . . , n, such that

(

∇2ϕ(x)
)

ij
∈ [∇2ϕ

ij
,∇2ϕij ] (4)

for all x ∈ B, where ∇2ϕ
ij
= ∇2ϕ

ji
and ∇2ϕij = ∇2ϕji due to symmetry of ∇2ϕ(x). We refer

to the set of matrices

HIA(ϕ,B) =
{

H ∈ R
n×n

∣

∣

∣Hij ∈ [∇2ϕ
ij
,∇2ϕij ], H = HT

}

(5)

as the interval Hessian of ϕ on B. After calculating HIA(ϕ,B), the spectral bounds can be
found by solving the following problem.

Find λ ∈ R, λ ∈ R such that

λ ≤ λ ≤ λ for all eigenvalues λ of all matrices H ∈ HIA(ϕ,B).
(6)

The calculation of HIA(ϕ,B) requires O(n2)N(ϕ) operations if the forward mode of automatic
differentiation [5] is used, where N(ϕ) denotes the number of operations needed to evaluate ϕ
at a point in its domain. With the backward mode of automatic differentiation, this complexity
can be reduced to O(n)N(ϕ) [5].

There exist a number of approaches to solving (6). Assuming the interval Hessian HIA(ϕ,B)
is available, the computational complexity of these methods varies betweenO(n2) for the interval
variant of Gershgorin’s circle criterion [2, 6] and O(2n n3) for Hertz and Rohn’s method [7, 16],
which provides tight spectral bounds for HIA(ϕ,B) (see Sect. 2.1 and 2.3 for details). However,
sinceH(ϕ,B) ⊆ HIA(ϕ,B), problem (6) is conservative compared to the original problem (1). In
[12], we introduced a method for solving (1) that does not require the interval HessianHIA(ϕ,B)
and therefore avoids the conservatism inherent in (6). The major advantage of this method is
the low computational complexity, which was shown to be of order O(n)N(ϕ) [12]. Note that
the total numerical effort of the approaches mentioned before is the sum of the complexity for
calculating HIA(ϕ,B) and solving (6). At least O(n)N(ϕ) + O(n2) operations are needed in
these cases, and typical implementations based on forward mode automatic differentiation and
Gershgorin’s circle criterion require O(n2)N(ϕ) +O(n2) operations.

It is the purpose of this paper to compare spectral bounds obtained with the recently pro-
posed method [12] to those calculated by applying Gershgorin’s circle criterion and Hertz and
Rohn’s method to the interval Hessian. Since the motivation for developing a new method was
the application of Hessian eigenvalue bounds in global optimization, we apply the three com-
pared methods to a large set of test functions generated from a collection of benchmark global
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optimization problems. Specifically, we extract 1522 objective and constraint functions from the
COCONUT collection [17]. For each function, we randomly generate 100 hyperrectangles in its
domain and compute the associated lower and upper eigenvalue bounds with the three methods.
We compare both the resulting spectral bounds and the number of operations required by each
of the approaches.

After introducing some notation in the remainder of this section, the three methods are
summarized in Sect. 2. The central benchmark, which constitutes the main result of the paper,
is stated in Sect. 3. Finally, conclusions are given in Sect. 4.

Notation. Pairs of lower and upper bounds such as λ ≤ λ ≤ λ are denoted by intervals,
i.e. λ ∈ [λ, λ] ⊂ R, for short. Intervals [a, a] are further abbreviated by [a] := [a, a]. Interval
equality [a] = [b] is understood as a = b and a = b. Calculations with intervals are carried out
with standard interval arithmetics rules, which are collected in Fact 1 without proof (see, e.g.,
[13]).

Fact 1 (basic interval arithmetics) Let [a] and [b] be intervals and a ∈ [a], b ∈ [b] and c ∈ R be
arbitrary real numbers. Then

a+ b ∈ [a] + [b] := [a+ b, a+ b], (7)

a b ∈ [a] [b] := [min
(

a b, a b, a b, a b
)

,max
(

a b, a b, a b, a b
)

]. (8)

1/b ∈ 1/[b] := [1/b, 1/b] (9)

a+ c ∈ [a] + c := [a+ c, a+ c] (10)

c a ∈ c [a] :=

{

[c a, c a] if c ≥ 0
[c a, c a] if c < 0,

(11)

where 0 /∈ [b, b] is assumed (9). Furthermore, the power of natural numbers m ∈ N, the square
root, the exponential and the natural logarithm of an interval are defined as follows.

am ∈ [am] :=







[am, am] if a > 0 or m odd
[am, am] if a < 0 and m even
[0,max (−a, a)

m
] if 0 ∈ [a] and m even

(12)

√
a ∈

[

√

[a]
]

:= [
√
a,
√
a], (13)

exp(a) ∈ [exp([a])] := [exp(a), exp(a)], (14)

ln(a) ∈ [ln([a])] := [ln a, ln a], (15)

where a ≥ 0 are assumed in (13) and (15), respectively.

By a slight abuse of notation we denote both a real interval [x] = [x, x] ⊂ R and a hyperrectangle
[x] = [x, x] = [x1, x1]× · · ·× [xn, xn] ⊂ R

n, n ≥ 2 by a lower case letter surrounded by brackets.
As a generalization of Eqs. (12)–(15), interval extensions of functions f(x), f : U ⊆ R

n → R,
n ≥ 1, are denoted by [f([x])]. We denote gradients and the Hessian matrices of a function
f : U ⊆ R

n → R by ∇f(x) and ∇2f(x), respectively, if they exist. Whenever ∇f
i
, ∇f i ∈ R,

i = 1, . . . , n are known, then these bounds define an interval vector denoted by [∇f ] = [∇f,∇f ].

Lower and upper bounds ∇2f
ij
, ∇2f ij ∈ R, i = 1, . . . , n and j = 1, . . . , n define an interval

matrix of the type (5), which is denoted by [∇2f ] = [∇2f,∇2f ]. Intervals vectors and matrices
are added component by component. The multiplication of an interval vector or matrix by an

interval is understood componentwise. Finally, let e(i) ∈ R
n be defined by e

(i)
j = δij , where δij

is Kronecker’s δ, and let Z denote the zero matrix of dimension n× n.

3



2 Numerical calculation of eigenvalue bounds of Hessian

matrices on hyperrectangles

In this section we introduce the methods for the calculation of eigenvalue bounds that are
applied to the collection of test cases in Sect. 3. We give only a short introduction, since these
methods have been explained in detail elsewhere [2, 6, 7, 10, 12].

The compared methods have in common that they are based on a codelist. A codelist results
if a function ϕ is broken down into a sequence of elementary unary and binary operations. More
specifically, let ϕ : U ⊆ R

n → R denote a twice continuously differentiable function. Assume ϕ
can be evaluated at an arbitrary point x ∈ U by carrying out a finite sequence of operations of
the form

y1 = x1

...
yn = xn

yn+1 = Φn+1(y1, . . . , yn)
yn+2 = Φn+2(y1, . . . , yn, yn+1)

...
yn+t = Φn+t(y1, . . . , yn, yn+1, . . . , yn+t−1)

ϕ = yn+t

(16)

where each Φn+k, k = 1, . . . , t, represents one of the elementary operations listed in the first
column of Tab. 1. The codelist lines yk for the example ϕ(x1, x2, x3) = exp(x1 − 2 x2

2 + 3 x3
3)

are given in the second column in (17) below. The interval extension of a function ϕ can be
evaluated by replacing the operations in each line of (16) by their interval variants listed in
Fact 1. For the example this results in replacing the yk from the second column by the [yk] from
the third column of (17).

Table 1: Rules for the calculation of yk, [yk], [y
′
k] and [y′′k ] in the k-th line of the codelist (16).

[y′k] refers to the interval gradient of line k with respect to x. The operations Φk shown here have
been selected more or less arbitrarily to accommodate a reasonably large collection of examples
ϕ treated in Sect. 3. The list of Φk can easily be extended [12].

op Φk yk [yk] [y′k] [y′′k ]

var xk [xk] [e(k), e(k)] [Z,Z]
addConst yi + c [yi] + [c, c] [y′i] [y′′i ]
mulByConst c yi c [yi] c [y′i] c [y′′i ]
add yi + yj [yi] + [yj ] [y′i] + [y′j] [y′′i ] + [y′′j ]
mul yi yj [yi] [yj] [yi] [y

′
j ] + [yj ] [y

′
i] [yi] [y

′′
j ] + [yj ] [y

′′
i ] + [y′i] [y

′
j]
T + [y′j ] [y

′
i]
T

oneOver 1/yj 1/[yj] −[yk]
2 [y′j ] [yk]

2 (2 [yk] ([y
′
j ] [y

′
j ]
T )− [y′′j ])

square y2j [yj ]
2 2 [yj] [y

′
j] 2 ([y′j] [y

′
j ]
T + [yj ] [y

′′
j ])

cube y3j [yj ]
3 3 [yj]

2 [y′j ] 3 [yj] (2 ([y
′
j ] [y

′
j])

T + [yj ] [y
′′
j ])

powNat ymj [yj ]
m m [yj]

m−1 [y′j ] m [yj]
m−2 ((m− 1) ([y′j ] [y

′
j ]
T ) + [yj ] [y

′′
j ])

sqrt
√
yj [

√

[yj ]] 1/(2 [yk]) [y
′
j ] 1/(2 [yk])([y

′′
j ] + 1/(−2 [yj]) ([y

′
j ] [y

′
j]
T ))

exp exp(yj) [exp([yj ])] [yk] [y
′
j ] [yk] ([y

′
j ] [y

′
j]
T + [y′′j ])

ln ln(yj) [ln([yj ])] 1/[yj] [y
′
j ] 1/[yj] ([y

′′
j ]− 1/[yj] ([y

′
j ] [y

′
j ]
T ))
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2.1 Interval Hessians, Hertz and Rohn’s method, and Gershgorin’s

circle criterion

Just as for the calculation of the interval extension of a function, a codelist can be extended
to calculate gradients ∇ϕ and Hessians ∇2ϕ and their interval extensions [∇ϕ] and [∇2ϕ] by
combining automatic differentiation (see, e.g., [5, 14]) and interval arithmetics (see, e.g., [13]).
The required results are summarized in the following lemma, which summarizes results from
[5]. We recall that Z denotes the zero matrix of dimension n× n.

Lemma 1 [5] Assume ϕ is twice continuously differentiable on U and can be written as a
codelist. Let B ⊂ U be a hyperrectangle. Then, for all x ∈ B, we have ϕ(x) ∈ [ϕ], ∇ϕ(x) ∈ [∇ϕ],
and ∇2ϕ(x) ∈ [∇2ϕ], where [ϕ], [∇ϕ], and [∇2ϕ] are calculated by the following algorithm.

1. For k = 1, . . . , n, set [yk] = [xk, xk], [y
′
k] = [e(k), e(k)], and set [y′′k ] = [Z,Z].

2. For k = n+ 1, . . . , n+ t, calculate [yk], [y
′
k] and [y′′k ] according to columns 3−5 of Tab. 1,

respectively.

3. Set [ϕ] = [yn+t], [∇ϕ] = [y′n+t], and [∇2ϕ] = [y′′n+t].

We refer to a codelist (16), that has been extended by additional operations for the calcu-
lation of interval extensions or derivatives, as an extended codelist for short. The codelist (16)
and the extended codelist that results from Lemma 1 are illustrated with an example.

Example 1 (interval Hessian for exp(x1 − 2 x2
2 + 3 x3

3)) Let B ⊂ R
3 be an arbitrary closed

hyperrectangle and consider ϕ : B → R, ϕ(x1, x2, x3) = exp(x1 − 2 x2
2 + 3 x3

3). Lemma 1 results
in the following expressions for [yk], [y

′
k], and [y′′k ], which are first stated in a table for brevity.

The expressions for yk stated in (17) do not result from Lemma 1, but are given for illustration
of the codelist (16) of ϕ.

k yk [yk] [y′k] [y′′k ]

1 x1 [x1] ([1, 1], [0, 0], [0, 0])T [Z,Z]
2 x2 [x2] ([0, 0], [1, 1], [0, 0])T [Z,Z]
3 x3 [x3] ([0, 0], [0, 0], [1, 1])T [Z,Z]
4 y22 [y2]

2 2 [y2] [y
′
2] 2 ([y′2] [y

′
2]

T + [y2] [y
′′
2 ])

5 y33 [y3]
3 3 [y3]

2 [y′3] 3 [y3] (2 ([y
′
3] [y

′
3])

T + [y3] [y
′′
3 ])

6 −2 y4 −2 [y4] −2 [y′4] −2 [y′′4 ]
7 3 y5 3 [y5] 3 [y′5] 3 [y′′5 ]
8 y1 + y6 [y1] + [y6] [y′1] + [y′6] [y′′1 ] + [y′′6 ]
9 y7 + y8 [y7] + [y8] [y′7] + [y′8] [y′′7 ] + [y′′8 ]

10 exp(y9) [exp([y9])] [y10] [y
′
9] [y10] ([y

′
9] [y

′
9]

T + [y′′9 ])
ϕ = y10 [ϕ] = [y10] [∇ϕ] = [y′10] [∇2ϕ] = [y′′10]

(17)

The codelist for ϕ of the form (16) results from rewriting the second column of (17) as y1 = x1,
y2 = x2, y3 = x3, y4 = y22, . . . , y10 = exp(y9), ϕ = y10. The extended codelist for [y′′k ] can be
constructed by carrying out the expressions for [yk], [y

′
k], and [y′′k ] and storing the results line

by line, i.e.,

[y1] = [x1] , [y′1] = ([1, 1], [0, 0], [0, 0])T, [y′′1 ] = [Z,Z],
...

...
...

[y10] = [exp([y9])] , [y′10] = [y10] [y
′
9], [y′′10] = [y10] ([y

′
9] [y

′
9]

T + [y′′9 ]),

(18)
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where the interval Hessian [∇2ϕ] reads as [y′′10] in the codelist notation. Note that the interme-
diate interval function values [yk] and the derivatives [y′k] are needed to calculate [∇2ϕ], while
the intermediate function values yk of the original codelist for ϕ are not.

After calculating the interval Hessian [∇2ϕ] with Lemma 1, the relaxed problem (6) can
be solved with a number of methods (see [8] for an overview). As pointed out in Sect. 1, we
choose Gershgorin’s circle criterion for its favorable computational complexity (see Sect. 2.3).
In addition, we apply Hertz and Rohn’s method, because it provides the tight eigenvalue bounds
that solve (6). The interval variant of Gershgorin’s circle criterion and Hertz and Rohn’s method
are summarized in the following two lemmas.

Lemma 2 (interval Gershgorin [2, 6]) Let [∇2ϕ
ij
,∇2ϕij ], i, j = 1, . . . , n be intervals that

define a symmetric interval matrix of the form (5). Then

λ = min
i∈{1,...,n}

∇2ϕ
ii
− ri , λ = max

i∈{1,...,n}
∇2ϕii + ri (19)

where the Gershgorin-radii ri are defined by ri =
∑n

j=1,j 6=i max(−∇2ϕ
ij
,∇2ϕij), solve problem

(6).

Lemma 3 (Hertz [7] and Rohn [16]) Let [∇2ϕ
ij
,∇2ϕij ], i, j = 1, . . . , n be intervals that

define a symmetric interval matrix of the form (5). Define the matrices S(k) ∈ R
n×2n for

k = 1, . . . , n recursively by

S(k) =

(

S(k−1) S(k−1)

1 . . . 1 −1 . . . −1

)

, S(1) =
(

1 −1
)

.

Define the symmetric matrices L(k) ∈ R
n×n and U (k) ∈ R

n×n for k = 1, . . . , 2n−1 according to

L
(k)
ij =

{

∇2ϕ
ij

if i = j or S
(n)
ik · S(n)

jk = 1

∇2ϕij otherwise
, U

(k)
ij =

{

∇2ϕij if L
(k)
ij = ∇2ϕ

ij

∇2ϕ
ij

otherwise
.

Then
λ = min

k∈{1,...,2n−1}
λmin(L

(k)) , λ = max
k∈{1,...,2n−1}

λmax(U
(k)), (20)

where λmin(A) and λmax(A) denote the smallest and largest (real) eigenvalue of any symmetric
real matrix A = AT , respectively, solve problem (6).

We briefly illustrate Lemmas 2 and 3 by applying them to the sample function from Example
1.

Example 2 (Gershgorin and Hertz/Rohn applied to exp(x1 − 2 x2
2 + 3 x3

3)) Without detailing
the calculations we claim that substituting B = [−0.3, 0.2] × [−0.1, 0.6] × [−0.4, 0.5] into the
extended codelist (18) yields

[∇2ϕ] = [y′′10] =





[0.298, 1.777] [−4.265, 0.7109] [0.000, 3.999]
[−4.265, 0.7109] [−7.109, 3.128] [−9.597, 1.599]
[0.000, 3.999] [−9.597, 1.599] [−12.795, 24.991]



 .

Applying Lemma 2 yields the n = 3 Gershgorin radii r1 = 4.265 + 3.999 = 8.264, r2 = 4.265 +
9.597 = 13.862 and r3 = 3.999+9.597 = 13.596. Upon substitution into (19) the spectral bounds

[λG] = [λG, λG] = [−12.795− 13.596, 24.991+ 13.596] = [−26.391, 38.587] (21)

6



result, where the subscript G is short for Gershgorin. Hertz and Rohn’s method requires to
calculate 2 · 2n−1 = 2n = 8 vertex matrices L(1), . . . , L(4) and U (1), . . . , U (4) and the sign matrix
S(3) defined in Lemma 3. Equation (20) yields

[λH] = [λH, λH] = [λmin(L
(2)), λmax(U

(3))] = [−20.597, 29.603] (22)

with L(2) =





0.298 0.711 3.999
0.711 −7.109 −9.597
3.999 −9.597 −12.795



 and U (3) =





1.777 −4.265 3.999
−4.265 3.128 −9.597
3.999 −9.597 24.991



, where

the subscript H is short for Hertz and Rohn. We only list the matrices L(2) and U (3) that
are selected in the minimization and maximization in (20) and omit the remaining six vertex
matrices for brevity.

2.2 Eigenvalue arithmetic

We summarize the eigenvalue arithmetic in Lemma 4 and Tab. 2 and refer the reader to [10, 12]
for details. Lemma 4 implies that the eigenvalue arithmetic does not require the interval Hessian,
but interval gradients suffice. The functions Λs and Λt used in Lemma 4 and Tab. 2 are defined
as

[Λs([a])] =

[

0,

n
∑

i=1

max(a2i , a
2
i )

]

(23)

and

[Λt([a], [b])] = [−β, β] +

n
∑

i=1

[ai, ai] [bi, bi] (24)

where β =

√

(
∑n

i=1 max(a2i , a
2
i ))(

∑n

i=1 max(b2i , b
2

i )). We refer to [12] for a detailed discussion

of the meaning of [Λs([a])] and [Λt([a], [b])].

Table 2: Rules for the calculation of [λk] in the k-th line of the codelist (16). We assume that
[yi], [y

′
i] and [yj ], [y

′
j] for all previous lines i ≤ k, j ≤ k have been calculated according to the

rules from Tab. 1 and can be reused in line k. Rules for yk are repeated here for convenience.
The functions [Λs]([a]) and [Λt]([a], [b]) are defined in (23) and (24).

op Φk yk [λk]

var xk [0, 0]
addConst yi + c [λi]
mulByConst c yi c [λi]
add yi + yj [λi] + [λj ]
mul yi yj [yj ] [λi] + [yi] [λj ] + [Λt([y

′
i], [y

′
j ])]

oneOver 1/yj [yk]
2 (2 [yk] [Λs([y

′
j ])]− [λj ])

square y2j 2 ([Λs([y
′
j ])] + [yj] [λj ])

cube y3j 3 [yj] (2 [Λs([y
′
j ])] + [yj] [λj ])

powNat ymj m[yj ]
m−2((m−1)[Λs([y

′
j ])] + [yj ] [λj ])

sqrt
√
yj 1/(2 [yk])([λj ] + 1/(−2 [yj])[Λs([y

′
j ])])

exp exp(yj) [yk] ([Λs([y
′
j ])] + [λj ])

ln ln(yj) 1/[yj] ([λj ]− 1/[yj] [Λs([y
′
j ])])

7



Lemma 4 (eigenvalue arithmetic [12]) Assume ϕ is twice continuously differentiable on U
and can be written as a codelist. Let B ⊂ U be a hyperrectangle. Then, for all x ∈ B, we have
ϕ(x) ∈ [ϕ], ∇ϕ(x) ∈ [∇ϕ], and λϕ ∈ [λϕ] for all eigenvalues of ∇2ϕ(x), where [ϕ], [∇ϕ], and
[λϕ] are calculated by the following algorithm.

1. For k = 1, . . . , n, set [yk] = [xk, xk], [y
′
k] = [e(k), e(k)], and set [λk] = [0, 0].

2. For k = n + 1, . . . , n + t, calculate [yk], [y′k] and [λk] according to columns 3 and 4 of
Tab. 1 and column 3 of Tab. 2, respectively.

3. Set [ϕ] = [yn+t], [∇ϕ] = [y′n+t], and [λϕ] = [λn+t].

Lemma 4 is illustrated with the sample function from Example 1 and 2.

Example 3 Let B and ϕ : B → R be as in Example 1. Applying Lemma 4 to ϕ results in the
expressions for [yk], [y

′
k], and [λk] listed in (25), which we state in a table first for brevity. Note

that [yk] and [y′k] are equal to those in (17). These expressions are repeated here, since the [λk]
depend on them.

k [yk] [y′k] [λk]

1 [x1] ([1, 1], [0, 0], [0, 0])T [0, 0]
2 [x2] ([0, 0], [1, 1], [0, 0])T [0, 0]
3 [x3] ([0, 0], [0, 0], [1, 1])T [0, 0]
4 [y2]

2 2 [y2] [y
′
2] 2 ([Λs([y

′
2])] + [y2] [λ2])

5 [y3]
3 3 [y3]

2 [y′3] 3 [y3] (2 [Λs([y
′
3])] + [y3] [λ3])

6 −2 [y4] −2 [y′4] −2 [λ4]
7 3 [y5] 3 [y′5] 3 [λ5]
8 [y1] + [y6] [y′1] + [y′6] [λ1] + [λ6]
9 [y7] + [y8] [y′7] + [y′8] [λ7] + [λ8]

10 [exp([y9])] [y10] [y
′
9] [y10] ([Λs([y

′
9])] + [λ9])

[ϕ] = [y10] [∇ϕ] = [y′10] [λϕ] = [λ10]

(25)

The extended codelist for [λϕ] results from evaluating and storing the expressions listed in
(25) line by line, i.e.,

[y1] = [x1] , [y′1] = ([1, 1], [0, 0], [0, 0])T, [λ1] = [0, 0],
...

...
...

[y10] = [exp([y9])] , [y′10] = [y10] [y
′
9], [λ10] = [y10] ([Λs([y

′
9])] + [λ9]),

(26)

Without detailing the calculations we claim that applying (26) to the particular hyperrectangle
B = [−0.3, 0.2]× [−0.1, 0.6]× [−0.4, 0.5] from Example 2 results in

[λA] = [λϕ] = [−19.904, 37.004], (27)

where the subscript A is short for arithmetic.

By comparing the spectral bounds (21), (22) and (27), we find the relations λG < λH < λA

and λH < λA < λG for the discussed example. Note that the lower bound from the eigenvalue
arithmetic is tighter than the tight bound for the interval Hessian obtained with Hertz and
Rohn’s method. We stress that these relations do not hold in general. It is the very point of
Section 3 to analyze these relations for a large collection of examples.
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2.3 Computational complexities

The discussed methods do not only differ with respect to the tightness of the eigenvalue bounds,
but also with respect to computational cost. Calculating the interval Hessian matrix with
forward mode automatic differentiation and applying Hertz and Rohn’s method requires

O(n2)N(ϕ) +O(2nn3) (28)

operations [12], where N(ϕ) denotes the number of operations needed for the evaluation of ϕ
at a point. Calculating the interval Hessian and applying Gershgorin’s circle criterion takes

O(n2)N(ϕ) +O(n2) (29)

operations [12]. Note that O(n2)N(ϕ) operations are needed for the calculation of the interval
Hessian in both (28) and (29). Calculating eigenvalue bounds with the arithmetic from [12]
requires

O(n)N(ϕ) (30)

operations [12]. Due to the O(2n n3) term in (28) the computational cost of Hertz and Rohn’s
grows drastically compared to (29) and (30). The complexities (29) and (30), however, differ
only by one order of magnitude. We therefore compare the computational effort of these two
methods more precisely in the present and subsequent section.

We denote the eigenvalue bounds calculated with the arithmetic proposed here and Ger-
shgorin’s circle criterion [λA] and [λG], respectively. The number of operations required to
calculate [λA] and [λG] for a specific function ϕ are denoted NA(ϕ) and NG(ϕ), respectively.

Table 3: Number of operations necessary to calculate yk, [yk], [y
′
k], [λk] and [y′′k ] for each type

of line of a codelist (16). N([y′k]) denotes the number of operations necessary to compute [y′k]
assuming that [yk] is already available. N([λk]) and N([y′′k ]) denote the number of operations
necessary to compute [λk] and [y′′], respectively, assuming [yk] and [y′k] are available. Listed
numbers apply for n > 1.

op Φk N(yk) N([yk]) N([y′k]) N([λk]) N([y′′k ])

var 1 0 0 0 0
addConst 1 2 0 0 0
mulByConst 1 2 2n 2 n (n+ 1)
add 1 2 2n 2 n (n+ 1)
mul 1 8 18n 18n+ 21 19n (n+ 1)
oneOver 1 2 8n+ 7 4n+ 26 14n (n+ 1) + 7
square 1 5 8n+ 2 4n+ 11 10n (n+ 1)
cube 1 2 8n+ 7 4n+ 21 14n (n+ 1) + 2
powNat 1 5 8n+ 7 4n+ 26 14n (n+ 1) + 7
sqrt 1 2 8n+ 4 4n+ 25 13n (n+ 1) + 8
exp 1 2 8n 4n+ 9 9n (n+ 1)
ln 1 2 8n+ 2 4n+ 21 13n (n+ 1) + 4

The exact number of operations needed to calculate eigenvalue bounds for a specific function
can be determined for any of the discussed methods by counting operations in the extended
codelist of ϕ. Table 3 lists the exact number of operations needed in each codelist line by line
type. An operation counted towards N(yk), N([yk]), N([y′k]), N([λk]), or N([y′′k ]) in Tab. 3 may
either be an addition, multiplication or comparison of two real numbers, or the application of
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one of the functions oneOver, square, cube, powNat, sqrt, exp or ln. Note that this way of
counting operations is coarse but a standard approach in the field of automatic differentiation
[5, 14].

Before applying Tab. 3 to specific examples in Sect. 3, we derive some general statements.
From the last two columns of Tab. 3 we infer N([λk]) ≤ N([y′′k ]) for all codelist line types
(assuming n > 1). Since the [y′′k ] are required for the calculation of eigenvalue bounds with
Gershgorin’s circle criterion, N([λk]) ≤ N([y′′k ]) for all Φk implies

NA(ϕ) ≤ NG(ϕ) (31)

for any function ϕ that can be stated as a codelist with lines of the types from Tab. 3. Fur-
thermore, inspection of Tab. 3 shows that the eigenvalue arithmetic can be applied at little
additional computational effort, whenever eigenvalue bounds are calculated by applying Ger-
shgorin’s method to the interval Hessian. This statement holds, since the [y′k] required for the
arithmetic are available as an intermediate result to the interval Hessian calculation. More
specifically,

∆NA(ϕ) =

t
∑

k=1

N([λn+k]) (32)

additional operations are needed to calculate eigenvalue bounds with the arithmetic, if they are
calculated by applying Gershgorin’s circle criterion to the interval Hessian matrix. We infer
from Tab. 3 that ∆NA(ϕ) as defined in (32) amount to O(n) operations.

Example 4 (number of operations for Examples 1, 2 and 3) Table 4 lists the particular numbers
of operations necessary to evaluate [yk], [y′k], [λk] and [y′′k ] for the sample function ϕ(x) =
exp(x1 − 2 x2

2 + 3 x3
3) according to the codelist (17). We find NA(ϕ) = N([λA]) = N([λϕ]) =

17 + 73 + 73 = 163 and NG(ϕ) = N([∇2ϕ]) + N([λG]) = 17 + 73 + 222 + 12 = 324, where
N([λG]) = 12. The additional effort for calculating λA given the intermediate results [yk] and
[y′k] yields ∆NA(ϕ) = 73.

Table 4: Numbers of operations for the codelist lines of Example 1.

k op Φk N([yk]) N([y′k]) N([λk]) N([y′′k ])

4 square 5 18 19 60
5 cube 2 23 29 86
6 mulByConst 2 4 2 6
7 mulByConst 2 4 2 6
8 add 2 4 2 6
9 add 2 4 2 6
10 exp 2 16 17 54
∑

17 73 73 222

3 Benchmark: Arithmetic versus Gershgorin and Hertz

We apply the eigenvalue arithmetic to a large collection of examples and compare results to
those obtained by applying Gershgorin’s circle criterion and Hertz and Rohn’s method to the
interval Hessian. Sections 3.1 and 3.2 describe the test examples and the scheme of comparison.
The actual results are summarized in Sect. 3.3
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3.1 Collection of test cases

The test cases are extracted from the COCONUT collection of optimization problems [17].
We consider all COCONUT problems with 1 < n ≤ 10 variables and extract those cost and
constraint functions that can be decomposed into the operations listed in Tabs. 1 and 2 respec-
tively. This results in a set of 1522 sample functions ϕ : Rn → R with 1 < n ≤ 10. For each
ϕ, we generate 100 random hyperrectangles B ⊆ D ⊂ R

n in the domain D of ϕ specified in
the respective COCONUT problem. Each of the three methods introduced in Lemmas 2–4 is
applied to the resulting 1522 · 100 sample problems.

We omit examples with n = 1, since the three methods yield identical spectral bounds and
require the same numerical effort. The upper bound n ≤ 10 is arbitrary. The comparison in
Sect. 3.3 corroborates that the eigenvalue arithmetic benefits more and more from its favorable
computational complexity as n increases, which was anticipated in the comparison of computa-
tional complexities in Sect. 2.3. While the eigenvalue arithmetic and Gershgorin’s circle criterion
could be applied well beyond n = 10, it becomes tedious to calculate the exact Hessian matrix
eigenvalue bounds for comparison, due to the O(2n n3) complexity of this problem.

Table 5: Excerpt of the set of examples taken from the COCONUT-benchmark.

name n function ϕ

ex8_1_6-1 2 1
(x1−4)2+(x2−4)2+0.1 + 1

(x1−1)2+(x2−1)2+0.2 + 1
(x1−8)2+(x2−8)2+0.2

ex7_2_6-2 3 1− 0.01 x2

x3
− 0.01 x1 − 0.0005 x1 x3

ex14_2_2-6 4 10.208− 2755.642
x3+219.161 − 0.192 x1

x1+0.192x2
− x2

0.316x1+x2
− ln(0.316 x1 + x2) + x4

Table 5 lists three sample functions from the COCONUT collection for illustration. We refer
to all examples by their COCONUT name, for example ex8_1_6. The suffix -i, as in ex8_1_6-1

for example, uniquely identifies the function in the respective COCONUT optimization problem,
where i = 1 corresponds to the objective function and i = 2, . . . ,m corresponds to the (i−1)-th
constraint function3.

We stress that we use the described set of test functions without further modifications.
There exist functions in the collection treated here that contain convex terms, or terms for
which tight convex under- or tight concave overestimators are known (e.g., bilinear, trilinear,
linear fractional terms) [2, 9] . Depending on the application it may be advisable to separate
these terms from the given function ϕ, and to calculate Hessian eigenvalue bounds only for the
remaining terms of ϕ. Here we choose not to apply any preprocessing for the sake of an unbiased
comparison.

3.2 Evaluation of results

We introduce a simple rating scheme that assigns each result to one of a finite set of classes.
Specifically, we distinguish between the cases listed in Tab. 6, which reflect that a bound from

3Ordering is as in the GAMS code provided in the COCONUT library.
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the eigenvalue arithmetic may be

(−) worse than the bounds from the other two methods,
(◦) equal to the one from Gershgorin’s method, but equal to or worse than

the one from Hertz and Rohn’s method,
(+) better than the one from Gershgorin’s method, and equal to or worse

than the one from Hertz and Rohn’s method,
(++) better than the one from Hertz and Rohn’s method.

Note that bounds calculated with Hertz and Rohn’s method are never worse than those from
Gershgorin’s circle criterion, since Hertz and Rohn’s method provides the tight eigenvalue
bounds for an interval matrix. Consequently, the bounds from Gershgorin’s method do not
play a role in our definition of the (++) category. Furthermore note that we do not distinguish
between λG = λH and λG < λH (resp. λG = λH and λG > λH) in the case λA ≤ λG (resp.
λA ≥ λG).

Table 6: Classes used to aggregate results in Sect. 3.3. Symbols [λA] = [λA, λA], [λG] = [λG, λG],
and [λH] = [λH, λH] denote the eigenvalue bounds calculated with the eigenvalue arithmetic,
Gershgorin’s circle criterion, and Hertz and Rohn’s method, respectively.

bound class
(−) (◦) (+) (++)

upper (λA) λA > λG ≥ λH λA = λG ≥ λH λG > λA ≥ λH λG ≥ λH > λA

lower (λA) λA < λG ≤ λH λA = λG ≤ λH λG < λA ≤ λH λG ≤ λH < λA

Table 7 lists some numerical results. These examples illustrate that the classes introduced
in Tab. 6 are meaningful. In particular it is evident that eigenvalue bounds of the same function
may fall into different classes for different hyperrectangles B.

Table 7: Illustration of the classes (−), (◦), (+), (++) introduced in Tab. 6.

example illustrative-1 illustrative-2

ϕ exp(x1 − 2 x2
2 + 3 x3

3)
x1

x1+0.2x2
2

− 2 x2

x2+0.3x3
3

[x1, x1] [−0.3, 0.2] [−0.198, 0.177] [1.043, 1.535] [1.5, 1.6]
B [x2, x2] [−0.1, 0.6] [−0.473, 0.2] [0.6, 1.969] [0.6, 1.1]

[x3, x3] [−0.4, 0.5] [−0.392, 0.39] [0.555, 0.772] [1.0, 1.6]

A [λA, λA] [−19.904, 37.004] [−15.767, 19.27] [−43.934, 27.391] [−45.014, 17.624]

G [λG, λG] [−26.391, 38.587] [−15.767, 18.443] [−44.907, 27.391] [−40.725, 19.507]

H [λH, λH] [−20.597, 29.603] [−12.603, 14.278] [−34.743, 26.399] [−33.691, 18.897]

class λA (+) (−) (◦) (++)
λA (++) (◦) (+) (−)

3.3 Results

Table 8 summarizes the results obtained for the 1522 sample functions. The numbers listed
in the columns labeled λA state for how many of 100 randomly generated hyperrectangles the
lower bounds calculated with the three methods fall into the classes (−), (◦), (+) and (++)
defined in Tab. 6. The numbers listed in the columns labeled λA state the corresponding results
for the upper bounds.
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Table 8: Summary of results for the 1522 sample functions extracted from the COCONUT
collection. For each example, lower and upper bounds on Hessian matrix eigenvalues were
calculated with the three methods introduced in Lemmas 2–4 for 100 random hyperrectangles.
Numbers state for how many out of the 100 random hyperrectangles the bounds belonged to
the classes (−), (◦), (+) and (++) defined in Tab. 6. Shaded cells highlight empty classes.
Horizontal lines divide characteristic groups, e.g. examples with an empty class (++) (rank
212 ≤ r ≤ 854). The averages listed in the last row take all 1522 examples into account,
including the ones not shown here.

rank example benchmark λ
A

benchmark λA

r name n (−) (◦) (+) (++) (−) (◦) (+) (++)

1 box3-1 3 2 50 32 16 0 0 2 98
2 box2-1 3 0 56 26 18 0 0 6 94
3 cliff-1 2 22 54 1 23 0 10 1 89
4 chaconn1-1 3 29 45 0 26 0 14 0 86
5 chaconn2-1 3 19 63 0 18 0 11 0 89
6 cb3-1 3 18 62 0 20 0 14 0 86
7 polak6-1 5 0 0 100 0 0 0 0 100
8 polak6-2 5 0 0 100 0 0 0 0 100
9 polak6-3 5 0 0 100 0 0 0 0 100

10 polak6-4 5 0 0 100 0 0 0 0 100
11 growth-1 3 0 0 96 4 0 0 4 96
12 alsotame-1 2 0 0 100 0 0 0 0 100
13 vardim-1 10 0 0 0 100 0 0 100 0
14 vardim-2 10 0 0 100 0 0 0 0 100
15 alsotame-2 2 0 0 100 0 0 0 0 100
16 brownden-1 4 1 0 99 0 0 0 0 100
17 price-1 2 3 0 97 0 0 0 0 100
18 vanderm1-10 10 75 0 25 0 0 0 0 100
19 ex8_1_7-1 5 99 0 1 0 0 0 0 100
20 hs026-2 3 0 100 0 0 0 0 0 100
...

209 ex14_1_7-5 10 4 0 95 1 25 0 75 0
210 ex14_1_7-9 10 25 0 75 0 4 0 95 1
211 nonmsqrt-1 9 100 0 0 0 96 0 3 1

212 brkmcc-1 2 0 0 100 0 0 0 100 0
213 ship-15 10 1 0 99 0 1 0 99 0

...
...

...
852 butcher-4 7 100 0 0 0 99 0 1 0
853 i5-3 10 100 0 0 0 99 0 1 0
854 cohn3-1 4 100 0 0 0 99 0 1 0

855 ex4_1_8-1 2 0 100 0 0 0 100 0 0
856 sample-3 4 0 100 0 0 0 100 0 0

...
...

...
...

...
1391 womflet-1 3 100 0 0 0 97 3 0 0
1392 reimer5-2 5 98 2 0 0 99 1 0 0
1393 reimer5-5 5 98 2 0 0 99 1 0 0

1394 ex7_2_9-4 10 100 0 0 0 100 0 0 0
1395 ex7_2_9-2 10 100 0 0 0 100 0 0 0

...
...

...
...

...
...

...
...

...
1518 cohn2-2 4 100 0 0 0 100 0 0 0
1519 cohn2-3 4 100 0 0 0 100 0 0 0
1520 cohn2-4 4 100 0 0 0 100 0 0 0
1521 boon-2 6 100 0 0 0 100 0 0 0
1522 boon-4 6 100 0 0 0 100 0 0 0

arithmetic average 24.17 60.85 12.48 2.50 23.52 60.33 10.63 5.52
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The examples are ranked in Tab. 8 by, loosely speaking, the quality of the bounds found
with the eigenvalue arithmetic. More precisely, an example is ranked the higher, the higher the
sum of the figures in its two (++) columns. If this sum is equal for several examples, they are
sorted according to the sum of the figures in their two (+) columns. Subsequently, the sums of
the two (◦) columns and the two (−) columns are used for the ranking whenever necessary.

Table 8 shows the 20 best and 5 worst rated examples and characteristic ranks in between.
Ranks 213−209, for example, are shown, because they mark the boundary between those ϕ for
which some eigenvalue bounds still fall into class (++), and the highest ranking examples for
which class (++) no longer occurs. These transitions in the ranking are marked with horizontal
lines and shaded areas.

Just as for the illustrative examples given in Tab. 7, all classes (−), (◦), (+), (++) occur
for the sample functions extracted from the COCONUT collection. In particular there exist
cases for which the eigenvalue arithmetic provides tighter bounds than the tight bounds for the
interval Hessian. An analysis of the data given in Tab. 8 reveals that 2.50% and 5.52% of the
examples belong to the (++) class for the lower bound and upper eigenvalue bound, respectively.
Furthermore, in 12.48% of the cases the eigenvalue arithmetic provides tighter lower bounds than
Gershgorin’s circle criterion applied to the interval Hessian matrix. In 10.63% of the cases the
upper bound from the eigenvalue arithmetic is tighter than the upper Gershgorin bound. In
60.85% (60.33%) of the cases the lower (upper) bounds from the eigenvalue arithmetic and those
from Gershgorin’s circle criterion are equal. We stress, however, that the Gershgorin bounds
outperform those of the eigenvalue arithmetic in 24.17% (lower bound) and 23.52% (upper
bound) of the cases, respectively. Overall, there exist 40 examples for which the eigenvalue
arithmetic provides better bounds than Gershgorin’s circle criterion for all random boxes (e.g.
7 ≤ r ≤ 15 or r = 212). On the other hand, there exist 129 examples for which the arithmetic
results in less tight spectral bounds for all random boxes (r ≥ 1394).

For 854 out of the 1522 examples (i.e., 56.11%) the eigenvalue arithmetic provides tighter
bounds than Gershgorin for at least one of the random boxes. Finally, we note that the ranking
r does not correlate with the dimension n, i.e., we find both low and high values of n in any
part of the ranking shown in Tab. 8. The dependency on n is analyzed in more detail at the
end of this section with Tab. 10.

We discussed in Sect. 2.3 that the compared methods do not only differ with respect to the
tightness of eigenvalue bounds, but also with respect to their computational complexity. Table
9 lists the operation numbers for the examples from Tab. 8. All figures in Tab. 9 are based on
the total number of operations needed for the respective method. Specifically, NA(ϕ) denotes
the total number of operations for calculating [λA] with the eigenvalue arithmetic, including
the operations for the intermediate results [yk] and [y′k]. NG(ϕ) denotes the total number of
operations for calculating [λG] with Gershgorin’s circle criterion, including the operations for the
intermediate results [yk], [y

′
k] and [y′′k ]. We also list ∆NA(ϕ) defined in (32), i.e. the additional

effort to calculate [λA], if [λG] and its intermediate results [yk] and [y′k] have been determined.
As predicted by relation (31), the eigenvalue arithmetic always requires fewer operations than
the interval variant of Gershgorin’s circle criterion. On average the computational effort for
the eigenvalue arithmetic amounts to 37.40% of that of applying Gershgorin’s circle criterion
to the interval Hessian, where this figure ranges from 10.45% (example r = 18 in Tab. 9) to
60.06% (example r = 161). The average additional effort ∆NA(ϕ) for the eigenvalue arithmetic
amounts to 17.35%, with a minimum and maximum of 3.26% (example r = 14) and 29.96%
(example r = 838).

We stress that NA(ϕ), NG(ϕ), ∆NA(ϕ) do not depend on the particular hyperrectangle B,
but can be determined for any function ϕ before eigenvalue bounds are actually calculated. It
may therefore be an option to determine these operation counts beforehand and to decide which
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Table 9: Computational effort for the evaluation of eigenvalue bounds for the examples taken
from the COCONUT-benchmark. NA(ϕ) and NG(ϕ) denote the total number of operations
necessary to calculate [λA] and [λG], respectively. ∆NA(ϕ) denotes the additional number of
operations needed to calculate [λA] assuming the Gershgorin bounds have already been com-
puted. The examples are listed in the same order as in Tab. 8. Shaded cells highlight minimal

and maximal values for the ratios NA(ϕ)
NG(ϕ) and ∆NA(ϕ)

NG(ϕ) , respectively. The averages stated in the

last row take all 1522 examples into account, including those not shown here.

example abs. complexity rel. complexity (%)

r name n NA(ϕ) NG(ϕ) ∆NA(ϕ)
NA(ϕ)
NG(ϕ)

∆NA(ϕ)
NG(ϕ)

1 box3-1 3 2270 5798 808 39.15 13.94
2 box2-1 3 2292 5820 808 39.38 13.88
3 cliff-1 2 159 289 56 55.02 19.38
4 chaconn1-1 3 87 242 29 35.95 11.98
5 chaconn2-1 3 87 242 29 35.95 11.98
6 cb3-1 3 87 242 29 35.95 11.98
7 polak6-1 5 1302 5526 456 23.56 8.25
8 polak6-2 5 1300 5524 456 23.53 8.25
9 polak6-3 5 1302 5526 456 23.56 8.25

10 polak6-4 5 1302 5526 456 23.56 8.25
11 growth-1 3 3470 8132 1546 42.67 19.01
12 alsotame-1 2 59 120 23 49.17 19.17
13 vardim-1 10 2828 21232 721 13.32 3.40
14 vardim-2 10 3118 22818 745 13.66 3.26
15 alsotame-2 2 61 122 23 50.00 18.85
16 brownden-1 4 5696 18610 1896 30.61 10.19
17 price-1 2 423 769 192 55.01 24.97
18 vanderm1-10 10 18188 174048 6618 10.45 3.80
19 ex8_1_7-1 5 685 2920 229 23.46 7.84
20 hs026-2 3 198 530 75 37.36 14.15
...

161 gold-1 2 961 1600 447 60.06 27.94
...

838 sendra-1 2 599 1038 311 57.71 29.96
...

1518 cohn2-2 4 3132 9296 1514 33.69 16.29
1519 cohn2-3 4 3132 9296 1514 33.69 16.29
1520 cohn2-4 4 5067 14578 2463 34.76 16.90
1521 boon-2 6 718 3298 350 21.77 10.61
1522 boon-4 6 718 3298 350 21.77 10.61

arithmetic average irrelevant 37.40 17.35

15



method to use. This may be an option in applications in which eigenvalue bounds need to be
calculated for the same function ϕ for many B such as branch-and-bound global optimization.

While we did not recognize a dependency of the tightness of the bounds on n, the ratios
NA(ϕ)/NG(ϕ) and ∆NA(ϕ)/NG(ϕ) clearly depend on n. This was anticipated in the discussion
of the complexity classes in Sect. 2.3. Table 10 shows that the relative number of operations
for the eigenvalue arithmetic NA(ϕ)/NG(ϕ) improves from about 54% for n = 2 to about
14% for n = 10. Similarly, the additional effort for the eigenvalue arithmetic decreases from
about 24% for n = 2 to about 6% for n = 10. Note that examples with n = 1 would yield
NA(ϕ)/NG(ϕ) = 1 = 100%.

Finally, we note that the large number of examples ϕ for n = 3 results from the COCONUT
optimization problem oet2. We did not omit any of these ϕ in order not to introduce bias.

Table 10: Aggregation of results by dimension n.

num. of mean: (%) mean: (%) std: (%)

n examples (−) (◦) (+) (++) NA(ϕ)
NG(ϕ)

∆NA(ϕ)
NG(ϕ)

NA(ϕ)
NG(ϕ)

∆NA(ϕ)
NG(ϕ)

2 62 57.89 15.47 14.68 11.97 54.16 24.41 3.01 3.17
3 1078 10.88 79.32 8.79 1.01 41.70 19.81 1.04 1.21
4 67 61.29 19.34 8.45 10.92 31.90 13.75 2.76 2.42
5 88 56.86 15.85 12.48 14.81 25.34 10.33 3.14 2.13
6 95 35.05 14.21 36.88 13.86 23.08 8.97 2.12 1.47
7 27 65.81 34.17 0.02 0.00 18.98 7.44 1.76 1.60
8 15 94.23 4.50 1.27 0.00 17.85 7.83 0.99 0.82
9 24 65.60 4.21 18.71 11.48 14.48 6.15 2.60 1.80

10 66 57.06 9.34 23.74 9.86 14.11 5.90 2.22 1.72
all 1522 23.84 60.59 11.55 4.01 37.40 17.35 9.56 5.17

4 Conclusion and Outlook

Our numerical experiments corroborate that the eigenvalue arithmetic always requires fewer op-
erations than Gershgorin’s circle criterion. While this result has been established by comparing
the complexity classes of the two methods (see Sect. 2.3 and [12]), it was analyzed quantitatively
with a large set of examples here for the first time. Specifically, 10.45% (n = 10) to 60.06%
(n = 2) of the number of operations of the Gershgorin based approach are necessary for the
eigenvalue method. The average over all examples for all n amounts to 37.40%. As anticipated
in the complexity analysis in Sect. 2.3, the eigenvalue method benefits from its favorable com-
plexity as n increases (see Tab. 9 for details). We recall that a comparison to the computational
effort of Hertz and Rohn’s method is not reasonable, since Hertz and Rohn’s method belongs
to a very different complexity class (see Sect. 2.3).

Gershgorin’s circle criterion provides tighter lower (upper) bounds in 24.17% (23.52%) of
the examples. In 60.85% (60.33%) of the cases the lower (upper) bounds from both methods
are equal. In 12.48% (10.63%) of the examples the eigenvalue arithmetic results in tighter lower
(upper) bounds than the Gershgorin based approach. Finally, our tests reveal that the number
of cases in which the eigenvalue arithmetic results in tighter bounds than the tight bounds of
the interval Hessian, which are obtained with Hertz and Rohn’s method, is small (2.50% and
5.52% for lower and upper bounds, respectively). On the other hand, these figures indicate that
these cases are not anecdotal or constructed, but they appear in global optimization problems.
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The eigenvalue arithmetic provides a tighter lower or upper bound than Gershgorin’s circle
criterion for at least one random box in 56.11% of the examples, where these occurencies are not
correlated with n. This figure suggests to combine the two methods. We claim the eigenvalue
arithmetic can be applied at an attractive additional cost for, say, n > 5, whenever the Gersh-
gorin bounds have already been calculated, since both methods involve the same intermediate
quantities ([yk] and [y′k], see Sect. 2). Specifically, the additional effort for applying the eigen-
value method after the intermediate quantities have been calculated in the Gershgorin based
approach ranges from 24% for n = 2 to about 6% for n = 10 (see Tab. 10). This figure decreases
for increasing n as anticipated from the abstract complexity analysis in Sect. 2.3. Note that
this combination of Gershgorin’s circle criterion and the eigenvalue method will provide tighter
bounds than Hertz and Rohn’s method for the interval Hessian whenever the eigenvalue method
does.
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