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Abstract In this work we derive explicit descriptions for the convex envelope of nonlinear
functions that are component-wise concave on a subset of the variables and convex on the
other variables. These functions account for more than 30 % of all nonlinearities in common
benchmark libraries. To overcome the combinatorial difficulties in deriving the convex enve-
lope description given by the component-wise concave part of the functions, we consider
an extended formulation of the convex envelope based on the Reformulation–Linearization-
Technique introduced by Sherali and Adams (SIAM J Discret Math 3(3):411–430, 1990).
Computational results are reported showing that the extended formulation strategy is a useful
tool in global optimization.

Keywords Convex envelope · Edge-concave functions · Extended formulation ·
Reformulation–Linearization-Technique · Simultaneous convexification

1 Introduction

Many state-of-the-art global optimization algorithms (e.g., see BARON [39], COUENNE [7],
SCIP [25]) rely on the ability to construct and solve convex relaxations. A key step in the
construction is to determine a strong convex underestimator of a nonconvex function f :
D ⊆ Rn → R. The best possible convex underestimator is called the convex envelope of f
over D (e.g., see [22,37]), and is denoted by vexD[ f ], in the following.
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The value of vexD[ f ] at x ∈ D is given by (e.g., [24])

inf

{ n+1∑
i=1

λi f (xi )

∣∣∣∣ x =
n+1∑
i=1

λi x i ,

n+1∑
i=1

λi = 1, λi ≥ 0, xi ∈ D

}
. (1)

In general, problem (1) is a nonconvex problem which is extremely difficult to solve. Over
the last decade, many articles dealing with the computation of envelopes for several classes
of functions have been published (e.g., see [5,14–16,20,21,35,37]). Usually, analytical and
geometric properties of the functions are used to reduce the complexity and to derive alterna-
tive formulations of problem (1) that are much more tractable. We point out that the alternative
formulations do not necessarily lead to explicit formulas for the convex envelope. Although
favorable when designing global optimization algorithms, this is somehow not surprising due
to the high complexity of problem (1).

The goal of this paper is to provide explicit formulas for the convex envelope of two classes
of nonlinear functions in an extended space. Both classes consist of continuous functions

f : [lx , ux ] × [l y, uy] ⊆ Rnx +ny → R, (x, y) �→ f (x, y), (2)

that are component-wise concave in the x-variables over [lx , ux ] for each fixed y ∈ [l y, uy],
and that satisfy for each fixing of x to one of the vertices of [l x , ux ] the following assumptions:

Class 1: ny ≤ 1, and f is convex or concave along the y-direction. This behavior may be
different for different fixings of the x-variables.

Class 2: ny ∈ Z≥0 and f is convex on the space of the y-variables.

For example, the function f (x, y) := xy2 over [−1, 1] × [0, 2] belongs to Class 1 but
not to Class 2 since f (−1, y) is concave in y and f (1, y) is convex in y. The func-
tion f (x, y1, y2) := x(y2

1 + y2
2 ) over the nonnegative orthant is contained in Class 2 but

not in Class 1. The importance of the two classes of functions is reflected by their fre-
quent occurrence in the benchmark libraries GLOBALLib [11] and MINLPLib [9]. In fact,
Classes 1 and 2 account for more than 30 % of all nonlinear functions in these libraries
[15, p. 392].

Convex envelopes are only known for subclasses and have been recently deduced by
Khajavirad and Sahinidis [15,16]. They further assume that f (x, y) is decomposable into
the form g(x) · h(y), and that g is submodular and convex-extendable from the vertices of
[lx , ux ]. The latter assumption implies that an explicit description of the convex envelope
of g over [lx , ux ] is given by the Lovász extension of g restricted to vertices of [l x , ux ]
(see also [35]). The knowledge of vex[lx ,ux ][g] is then used to determine the analytical
formulas for vex[l,u][ f ]. In fact, it turns out that the ability to derive an explicit formula for
vex[l,u][ f ] requires at least a complete characterization of vex[lx ,ux ][g] (see [36, Thm. 10] and
[15,16]).

The convex envelope of a component-wise concave function g over a box [l x , ux ] is
polyhedral, i.e., it can be expressed as a maximum of a finite number of linear functions (e.g.,
see [32]). Moreover, the corresponding optimization problem (1) reduces to a linear program
(e.g., see [23,35]). However, a complete characterization is only available up to dimension
three [23], and for some special cases in higher dimensions (e.g., [35]). This is caused by the
fact that the determination of these convex envelopes corresponds to an investigation of all
possible triangulations of the box [lx , ux ] (cf. [35]). In dimension four, this is already hard
to analyze as the box can exhibit up to 879,594,48 possible regular triangulations which can
be subdivided into 235,277 different symmetry classes [12, Thm. 2].
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To avoid such impracticable case distinctions, workarounds are available for particular as
well as general classes of functions. For the special case of multilinear functions, a cutting-
plane algorithm that computes parts of the envelopes was suggested in Bao et al. [5]. This
requires the solution of a linear program in each step of the algorithm whose size grows
exponentially in the number of variables of the multilinear function (see also [35]). For
the general class of decomposable functions, a generic approach is to reformulate a higher-
dimensional function as the composition of lower-dimensional functions for which the convex
envelopes are known (e.g., [22,38]). Such reformulations lead to relaxations in an extended
space that are, in general, weaker than the convex envelope of the original function. We refer
to the work [10] for a study of reformulation strategies for quadrilinear terms.

In order to handle the combinatorial variety given by the component-wise concave part
of our functions f (x, y), we consider an extended formulation based on the Reformulation–
Linearization-Technique (RLT) by Sherali and Adams (e.g., see [2,26–28]). We will link
f (x, y) with a vector φ(x, y) = (

φ1(x, y), . . . , φK (x, y)
)

that consists of all monomials∏
j∈J x j and yk

∏
j∈J x j , for J ⊆ {1, . . . , nx }, and k = 1, . . . , ny . An extended formulation

for the convex envelope is then given by the following convex hull object

conv
({

(x, y, z, μ) ∈ Rnx +ny+K+1 | zi = φi (x, y), i = 1, . . . , K ,

μ ≥ f (x, y), x ∈ [lx , ux ], y ∈ [l y, uy]
})

. (3)

By construction, the projection of the convex hull object in Eq. (3) onto the (x, y, μ)-space
equals the epigraph of vex[l,u][ f ]. It can therefore be interpreted as an extended formulation
for vex[l,u][ f ]. For our classes of functions f , we show in Theorems 4 and 5 that the extended
formulation for vex[l,u][ f ] is completely given by the polytope P := conv({(x, y, z) ∈
Rnx +ny+K | zi = φi (x, y), i = 1, . . . , K } whose facet-description is known, and an
additional cut μ ≥ Φ(x, y, z) that links the function f with the introduced monomials φi .

We remark that the extended formulation in Eq. (3) describes the simultaneous convex-
ification of the epigraph of f with all graphs of the involved monomials φi . Such simulta-
neous convexifications usually lead to tighter relaxations than the individual relaxation of
the involved functions by convex envelopes. Explicit formulas for the simultaneous convex
hull are, however, only known for special sets of functions. As one important example, we
mention the case when the set of functions consists of the set of all quadratic monomials in
a given number of variables (e.g., see [3,8]). In particular, Burer and Letchford [8] give in
their work a characterization of valid linear inequalities and provide conditions under which
a given linear inequality is irredundant or dominated by others.

In a recent work, Tawarmalani [34] analyzes structural properties of the simultaneous
convex hull of finitely many general functions. The author gives necessary conditions on the
extreme points of such sets and shows that a certain part of the simultaneous convex hull is
already described by all convex hulls of the single functions provided that each function is
submodular.

The paper is structured as follows. In Sect. 2, we consider the special case when f is a
component-wise concave function, i.e., ny = 0. We will, in particular, discuss conditions
on f under which the corresponding extended formulation (3) is polyhedral and relate these
to existing literature. In Sect. 3, we deal with general functions f (x, y) of Classes 1 and
2 and derive an explicit description for their convex envelopes in an extended space. In
Sect. 4, computational results are presented that demonstrate the usefulness of the extended
formulation. Parts of this paper were presented in Ballerstein and Michaels [4].
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2 RLT-based formulations for the convex envelope of component-wise concave
functions

In this section, we focus on component-wise concave functions f : [l, u] ⊆ Rn → R (i.e.,
ny = 0). Thus, f belongs to Classes 1 and 2. In Sect. 2.1, we link f with all multilinear
monomials in the x-variables to obtain an extended formulation for its convex envelope. We
then present conditions on f such that the extended formulation is polyhedral and refer to
existing literature. In Sect. 2.2, the extended formulation is applied to reduce the size of
relaxations, based on the Reformulation Linearization Technique, for polynomial programs
including component-wise concave monomials.

2.1 Polyhedral extended formulations for component-wise concave functions

Let f : [l, u] ⊆ Rn → R be a continuous function. We link f with the vector

F (n) :=
(

x1, . . . , xn, x1x2, . . . , xn−1xn, x1x2x3, . . . ,

n∏
i=1

xi

)

of all multilinear monomials. The extended formulation for vex[l,u][ f ] is obtained by the
simultaneous convexification of the epigraph of f with the graphs of all monomials F (n)

U f := conv({(z, μ) ∈ R2n | μ ≥ f (x), z = F (n)(x), x ∈ [l, u]}),
where z J ∈ R is a newly introduced variable associated with the monomial

∏
j∈J x j , for

each ∅ 	= J ⊆ N := {1, . . . , n}, and the variable μ ∈ R is associated with f . A crucial part
of the description of U f is given by the following convex hull object

S (n)

[l,u] := conv
({

z ∈ R2n−1 | z = F (n)(x), x ∈ [l, u]}).
Sherali and Adams showed in [2,27] that S (n)

[l,u] forms a simplex whose facets are given by the
linearized version of the so-called bound-factor product constraints, i.e., by

⎡
⎣∏

i∈I

(xi − li )
∏

i∈N\I

(ui − xi )

⎤
⎦

L

(z) ≥ 0, for all I ⊆ N , (4)

where the operator [·]L(z) substitutes each monomial
∏

j∈J x j by a new variable z J , e.g.,
[−3x1 + 5x1x2]L(z) denotes the linear function −3z{1} + 5z{1,2}.

In expanded form, the facet-defining system in Eq. (4) yields (e.g., cf. [2])

ev(z) ≥ 0, for all v ∈ vert([l, u]), (5)

where ev denotes the linear function ev : R2n−1 → R given by

z �→ ev(z) :=
∑
J⊆N

(−1)α(v)+|J | F (n)

N\J (v) z J , (6)

and α(v) denotes the number of components of v which attain their lower bound, i.e., α(v) :=
# {i ∈ N | vi = li }. It is easy to verify that any facet of S (n)

[l,u] is also a facet of U f (see Lemma 2
in the “Appendix”). Thus, (z, μ) ∈ U f implies that z ∈ S (n)

[l,u].
Our second ingredient to derive a polyhedral description for U f is the following known

lemma.
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Lemma 1 (e.g., Cor. 6 in [37]) Let f : [l, u] ⊆ Rn → R be a continuous function. There
exists a unique multilinear function m f : [l, u] ⊆ Rn → R which coincides with f at each
vertex of the box [l, u]. This multilinear function reads m f (x) = ∑

J⊆N aJ
∏

j∈J x j with
coefficients

aJ =
∑

v∈vert([l,u])(−1)α(v)+|J | F (n)(v)N\J f (v̂)∏
i∈N (ui − li )

. (7)

The vector v̂ denotes the vector opposite to v in the box, i.e., v̂ j = l j , if v j = u j , and
v̂ j = u j , otherwise.

The RLT theory [2,26–28] implies the following necessary and sufficient conditions on
f such that U f is a polyhedral set defined by the vertices of [l, u].
Theorem 1 Let f : [l, u] ⊆ Rn → R be a continuous function. Then,

U f =
⎧⎨
⎩(z, μ) ∈ R2n | z ∈ S (n)

[l,u], μ ≥ [m f ]L(z) =
∑
J⊆N

aJ z J

⎫⎬
⎭ (8)

with coefficients aJ according to Eq. (7), if and only if f (x) ≥ m f (x) :=∑J⊆N aJ
∏

j∈J x j

for all x ∈ [l, u]. In particular, this condition is fulfilled for component-wise concave func-
tions f .

Proof We have already remarked that the facet-description of S (n)

[l,u] is irredundant for
U f (cf. Lemma 2 of the “Appendix”). It remains to discuss the additional inequality
μ ≥ [m f ]L(z). If f = m f , the description for U f in the theorem follows easily from
the fact that m f can be uniquely represented as a linear combination of all multilinear mono-
mials (see Lemma 1) and the RLT-theory [2,26–28]. If f (x) ≥ m f (x) for all x ∈ [l, u], then
U f = Um f as f and m f coincide at the vertices of the box which correspond to the extreme
points of the set U f (cf. [26,34]).

To prove the converse direction assume that there is an x̄ ∈ [l, u] with f (x̄) < m f (x̄).
Then, for (z, μ) = (F (n)(x̄), f (x̄)) ∈ U f , the relation

μ = f (x̄) < m f (x̄) =
∑
J⊆N

aJ F (n)

J (x̄) =
∑
J⊆N

aJ z J

holds. This implies that (z, μ) /∈ {(z, μ) ∈ R2n | z ∈ S (n)

[l,u], μ ≥ ∑J⊆N aJ z J }. Thus, U f is
not given by Eq. (8). 
�

The ‘if”-part in Theorem 1 has been already discussed by Sherali [26]. In that work, the
author used a description for the set Um associated with a multilinear function m : Rn → R
on [0, 1]n to provide a theoretical framework for projecting the extended space representation
onto the (x, μ)-space. For some classes of multilinear functions, explicit formulas for the
convex envelope are obtained this way. He further mentioned that U f = Um f if f ≥ m f over
[l, u]. We also refer to Tawarmalani [34] in which this relation is indicated.

The condition f ≥ m f on [l, u] in Theorem 1 implies that f must have a so-called vertex-
polyhedral convex envelope, i.e., the set of extreme points of the epigraph of vex[l,u][ f ] corre-
sponds to the set of vertices of the underlying polyhedral domain (see [32,33]). In fact, we have
that vex[l,u][ f ] = vex[l,u][m f ] ([37, Cor. 6]). Furthermore, it has been shown in Tardella [33,
Thm. 2] that vex[l,u][ f ] is vertex-polyhedral if and only if f (x) ≥ vexvert([l,u])[ f ](x), for
all x ∈ [l, u]. This means that for any function f on [l, u] with a vertex-polyhedral convex
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envelope, its convex envelope is identical to vex[l,u][m f ]. However, the extended formulation
in Theorem 1 is only correct in the more restrictive case of f (x) ≥ m f (x) for all x ∈ [l, u].
To illustrate this, we consider the following example.

Example 1 Consider f : R2 → R, x �→ f (x) := (x3
1 − 2x1)(x2

2 − 0.5), on [l, u] :=
[−2, 1] × [−0.75, 0.95]. The corresponding multilinear function reads m f (x) = −0.425 +
0.2125x1 − 0.4x2 + 0.2x1x2, and vex[l,u][ f ] ≡ vex[l,u][m f ] is given by

max
{ 1

80 (5x1 − 64x2 − 58), 1
400 (161x1 − 80x2 − 246)

}
.

For the point x̄ = (−0.74,−0.25), we have that f (x̄) ≈ −0.470 < −0.44525 = m f (x̄). It
follows that the point

(x̄1, x̄2, x̄1 x̄2, f (x̄)) = (−0.74,−0.25, 0.185,−0.470) ∈ U f

does not satisfy the additional inequality μ ≥ −0.425 + 0.2125z{1} − 0.4z{2} + 0.2{1,2}.

Next, we give the explicit description of U f for two important classes of component-wise
concave functions.

Example 2 For d ∈ Zn≥0, consider the negative of a monomial xd := ∏n
j=1 xdi

i over a
nonnegative box [l, u] ⊆ Rn≥0. Then,

U−xd =
⎧⎨
⎩(z, μ) ∈ R2n | z ∈ S (n)

[l,u], μ ≥
∑
J⊆N

aJ z J

⎫⎬
⎭,

where for all J ⊆ N , the coefficient aJ is equal to

(−1)n−|J |+1
∏

j∈N\J

l j u j

∏
j∈J

⎛
⎝

d j −1∑
r=0

l
d j −1−r
j ur

j

⎞
⎠ ∏

j∈N\J

⎛
⎝

d j −2∑
r=0

l
d j −2−r
j u j

r

⎞
⎠.

Example 3 Consider the bivariate function f (x) := a20xd1
1 + a11x1x2 + a02xd2

2 , where
di ∈ Z>0, a20, a11, a02 ∈ R. If f is component-wise concave over a box [l, u] ⊆ R2, then
a facet-description of U f is given by the description of S (2)

[l,u] and the additional inequality
(

a20

d1−1∑
i=0

ld1−1−i
1 ui

1

)
z{1} +

(
a02

d2−1∑
i=0

ld2−1−i
2 ui

2

)
z{2} + a11 z{1,2} − μ

≤ a20

d1−1∑
i=1

ld1−i
1 ui

1 + a02

d2−1∑
i=1

ld2−i
2 ui

2.

2.2 Reduced RLT relaxations for polynomial programs

Theorem 1 can be used to reduce the size of relaxations for certain polynomial programs
based on the RLT [27,31].

We adapt the notation in [29,31] and consider the polynomial program

min φ0(x) s.t. φi (x) ≤ 0, ∀ i = 1, . . . , m, x ∈ [l, u] ⊆ Rn≥0, (PP)

where φi (x) = ∑
t∈Ti

αi t
∏

j∈Jit
x j , for i = 0, . . . , m. The index set Ti , i = 0, . . . , m,

indicates the monomials occurring in φi (x). Let δ denote the largest degree of a monomial
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occurring in (PP), and let N := {1, . . . , n} be the index set of variables. By N we denote
the multiset which consists of δ copies of N , i.e., N = {N , N , . . . , N }. Then, Jit ⊆ N and
|Jit | ≤ δ for all t ∈ Ti and i = 0, 1, . . . , m. For instance, the multiset {1, 1, 2} corresponds
to the monomial x2

1 x2. The classical RLT relaxation of (PP) reads (cf. [29,31])

min [φ0(x)]L(z, w)

s.t. [φi (x)]L(z, w) ≤ 0, ∀ i =1, . . . , m, (z, w) ∈ RRLT, (PPRLT)

where the operator [·]L(z, w) denotes the linearization of an expression such that all mul-
tilinear monomials defined by a multiset J are substituted by a new variable z J ∈ R,
and all nonmultilinear monomials are substituted by a variable wJ ∈ R. For example,

[−x3
1 x2 + 5x1x2]L(z, w) = −w{1,1,1,2} + 5z{1,2}. The vector (z, w) ∈ R

(
n + δ

δ

)
−1

corre-

sponds to all monomials
∏

j∈J x j with ∅ 	= J ⊆ N and |J | ≤ δ. The set RRLT ⊆ R

(
n + δ

δ

)
−1

is defined as

RRLT :=
{
(z, w) ∈ R

(
n + δ

δ

)
−1∣∣∣∣ ∀(J1 ∪ J2) ⊆ N , |J1 ∪ J2| = δ :

[ ∏
j∈J1

(x j − l j )
∏
j∈J2

(u j − x j )
]

L
(z, w) ≥ 0

}
.

Example 4 Let (PP) be given as min{x1 − x3
1 | x1 ∈ [0, 1]}. Then, δ = 3, N = {1, 1, 1},

and (PPRLT) reads min{z{1} − w{1,1,1} | (z, w) ∈ RRLT}, where

RRLT =
{
(z, w)

∣∣∣∣ 1 − 3z{1} + 3w{1,1} − w{1,1,1} ≥ 0, w{1,1} − w{1,1,1} ≥ 0
z{1} − 2w{1,1} + w{1,1,1} ≥ 0, w{1,1,1} ≥ 0

}
.

For example, w{1,1} − w{1,1,1} ≥ 0 is obtained from [(x1 − 0)2(1 − x1)
1]L(z, w) = [x2

1 −
x3

1 ]L(z, w) ≥ 0.

The RLT relaxation is a strong tool to relax polynomial programs. However, it can lead
to an explosion in the problem size for problems with many variables and a high degree δ.

One possibility to reduce the size of RLT relaxations is given in Sherali et al. [30], where
the existence of a linear subsystem is exploited. Theorem 1 offers another possibility to
reduce the relaxation size. If the coefficient αi t of a nonmultilinear monomial is negative,
the corresponding term αi t

∏
j∈Jit

x j is component-wise concave and can be underestimated
with the help of Theorem 1. We show that this term can be excluded from the determination
of the largest degree δ of the program, yet yielding the same relaxation quality.

Example 5 (Example 4 cont’d) The component-wise concave term −x3 is replaced by
w{1,1,1}. Let f (x) := −x3. Theorem 1 yields the underestimator −w{1,1,1} ≥ [m f ]L(z) =
−z{1}. Excluding the term −x3, the largest degree is δ = 1 and the RLT-relaxation is
z{1} ∈ S (1)

[0,1] = [0, 1]. We will show that the relaxation min{z{1}−w{1,1,1} | (z, w1,1,1) ∈ R�
mod}

with

R�
mod = { (z, w{1,1,1}) −z{1} + w{1,1,1} ≤ 0, z{1} ≥ 0, z{1} ≤ 1

}
is as strong as the RLT-relaxation in Example 4 although the relaxation based on R�

mod needs
one variable and one constraint less.
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We consider the extreme case with αi t < 0 for all t ∈ Ti and i = 0, . . . , m such
that Jit 	⊆ N , that is the coefficients of the nonmultilinear monomials are negative. Recall
that we consider nonnegative domains [l, u] ⊆ Rn≥0 so that all summands of the involved
functions φi (x) = ∑

t∈Ti
αi t
∏

j∈Jit
x j are component-wise concave. We refer to this class

of polynomial programs as component-wise concave polynomial programs (PP−). Further,
we assume that δ > n. Otherwise, we consider the subset of monomials involved in the
nonmultilinear monomial with the largest degree, e.g., for the monomials x2

1 x2, x1x2 and,
x1x2x3x4 we just consider the monomials x2

1 x2 and x1x2.
Technically, we proceed as follows. The index set of all nonmultilinear monomials,

for which a variable wJ is introduced is denoted by I := {J ⊆ N | 1 ≤ |J | ≤
δ,
∏

j∈J x j is nonmultilinear}. The index set of nonmultilinear monomials which actually
occur in (PP−) is given by I � := {Jit | Jit ∈ I for t ∈ Ti , i = 0, 1, . . . , m} and the
corresponding subvector of w is denoted by w�. The modified RLT relaxation reads

min [φ0(x)]L(z, w�)

s.t. [φi (x)]L(z, w�) ≤ 0, ∀ i =1, . . . , m, (z, w�) ∈ R�
mod, (PP−

mod)

where

R�
mod :=

{
(z, w�) ∈ R(2n−1)+|I �| | z ∈ S (n)

[l,u],−w�
J ≥ [m−x J (x)]L(z)∀J ∈ I �

}

with x J :=∏ j∈J x j .
The problem characteristics of the two sets RRLT and R�

mod in terms of number of variables
and constraints are compared in Table 1. Although the problem characteristics are quite
different, we prove that the two relaxations of (PP−) based on RRLT and R�

mod return the same
objective function value.

Theorem 2 min(PP−
RLT) = min(PP−

mod).

Proof The relation min(PP−
RLT) ≥ min(PP−

mod) can be derived as follows. Given (z̄, w̄) ∈
RRLT, assume that its subvector (z̄, w̄�) /∈ Rmod. As the RLT theory implies that z̄ ∈ S (n)

[l,u] (see
[31]), it follows that there is a J ∈ I � with −w̄�

J < [m−x J (x)]L(z̄). By Theorem 1, there exists
an x̄ ∈ [l, u] with

∏
j∈J x̄ j < mx J (x̄). This contradicts that −∏ j∈J x̄ j is component-wise

concave over the underlying positive domain and thus, we can conclude that (z̄, w̄�) ∈ Rmod.
For the converse relation let (z̄, w̄�) be an optimal solution of min(PP−

mod). We can assume
that −w̄�

J is at its lower bound for all J ∈ I �, i.e., −w̄�
J = ∑

S⊆N aJ,S z̄S for all J ∈ I �,
because −w̄�

J is not bounded from below by the constraints [φi (x)]L (z, w�) ≤ 0, i =

Table 1 Problem characteristics of RRLT and R�
mod. The formulas for RRLT are from Sherali and Tuncbilek [31]

RRLT R�
mod

# variables

(
n + δ

δ

)
− 1 (2n − 1) + |I �|

# constraints
∑δ

k=0

(
n + k − 1

k

)(
n + (δ − k) − 1

δ − k

)
2n + |I �|

Case: n = 4 and δ = 5

# variables 125 15 + |I �| ≤ 15 + 110 = 125

# constraints 792 16 + |I �| ≤ 16 + 110 = 126
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1, . . . , m, and the minimization of the objective function [φ0(x)]L(z, w�) attains its optimal
solution at the minimal −w̄�

J (if −w̄�
J occurs in the objective function). To construct a

solution (z̄, w̄) ∈ RRLT, we define −w̄J := ∑
S⊆N aJ,S z̄S for all J ∈ I \ I �. As z̄ ∈ S (n)

[l,u],
it can be represented as z̄ = ∑

v∈V λv F (n)(v), where V := vert([l, u]). Let G : Rn →
R|I |, with G J (x) := ∏

j∈J x j for all J ∈ I , be the vector of nonmultilinear monomials.

Then, −w̄J = ∑
S⊆N aJ,S(

∑
v∈V λv F (n)

S (v)) = ∑
v∈V λv

∏
j∈J v j = ∑

v∈V λvG J (v) for
all J ∈ I . Therefore, the point (z̄, w̄) can be represented as convex combination of points
(F (n)(v), G(v)) ∈ RRLT which shows that (z̄, w̄) ∈ RRLT. 
�

One can even show that the quality of the relaxations of (PP−) based on RRLT and R�
mod

is not only identical but best possible when dealing with polynomial programs and using a
relaxation which is based on the substitution of monomials by new variables. The desired
object in this context is given by the convex hull of all monomials with degree less or equal
to δ and reads

C := conv

⎛
⎝
⎧⎨
⎩(z, w) | z = F (n)(x), wJ =

∏
j∈J

x j ∀J ∈ I, x ∈ [l, u]
⎫⎬
⎭
⎞
⎠.

The description of C is not polyhedral and also not known in general. Let (PP−
C ) denote

the relaxation of component-wise concave polynomial programs (PP−) based on C. We can
prove the following statement using the same arguments as in the proof of Theorem 2.

Theorem 3 min(PP−
C ) = min(PP−

RLT) = min(PP−
mod).

The strength of the RLT based relaxation for (PP−) provides a possible explanation for an
observation made by Sherali et al. in [29] for polynomial programs: The more the programs
are of the form (PP−), i.e., the more negative coefficients occur, the faster the computations.
The authors generated random instances which are dense and sometimes dominated by the
objective function, e.g., the place in the program files occupied by the objective function
varies from 15 to 90 %. In particular, all monomials occur in the objective function while
their occurrence in the constraints is determined randomly. The random instances are solved
by the classical RLT approach and additionally by a combined approach of RLT and linear cuts
derived from semidefinite programming (SDP). Table 2 displays their results and shows that
a higher percentage of negative coefficients in the objective function leads to a tremendous
acceleration of the computations. One reason for this acceleration is given by the tight RLT
based relaxation in this case.

Table 2 The table presents the average CPU time of an RLT and a combined RLT + SDP based algorithm
depending on the percentage of negative objective function coefficients. The figures are taken from Table 3 in
Sherali et al. [29]

Algorithm CPU time (depending on % of neg. obj. coef.)

10 % 50 % 90 %

RLT 1,173 1,850 138

RLT+SDP 674 1,055 45
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3 Extended formulation for the convex envelope of nonlinear functions

In this section we present closed-form expressions for extended formulations for the convex
envelope of functions f : [lx , ux ] × [l y, uy] ⊆ Rnx +ny → R, (x, y) �→ f (x, y) contained
in Classes 1 and 2 (see Sect. 1). Similar to the case of component-wise concave functions,
we show in Sects. 3.1 and 3.2 that the extended formulations are given by a polytope corre-
sponding to the convex hull of the graph of a particular collection of multilinear monomials
and one additional inequality. While this inequality is linear for component-wise functions,
it can be nonlinear for functions belonging to Classes 1 and 2. In Sect. 3.3, we compare
the extended formulations with available convex envelopes which are mainly due to recent
results by Khajavirad and Sahinidis [15,16].

3.1 Class 1

Let f : [lx , ux ]×[l y, uy] ⊆ Rnx +1 → R, (x, y) �→ f (x, y) be a function that is component-
wise concave in the x-variables, and that f is either convex or concave in y whenever x is
fixed to one of the vertices of [lx , ux ]. In the special case when f is concave in y for each
fixing of x , the description of U f is polyhedral and given by Theorem 1. Next, we show that
for functions belonging to Class 1, the description of U f is still given by the simplex S (n)

[l,u]
and one additional, possibly nonlinear restriction.

Theorem 4 Consider a function f : [lx , ux ]×[l y, uy] ⊆ Rnx ×R → R, (x, y) �→ f (x, y).
Let Vx := vert([lx , ux ]) and n := nx + 1. Assume that f (x, y) is component-wise concave
in x, and that Vx can be partitioned into V1 and V2 such that f (x, y) is convex but not linear
in y for each x ∈ V1 and concave in y for each x ∈ V2. Then,

U f =
{
(z, μ) ∈ R2n | z ∈ S (n)

[l,u] and μ ≥ φ(z)
}
,

where φ(z) := ∑
v∈V1

λv f (v, yv) + ∑
v∈V2

λv,l f (v, l y) + λv,u f (v, uy), and where for
v ∈ V1,

λv = ev̂(z
x )∏nx

j=1(u j − l j )
, yv =

∑
J⊆Nx

(−1)|J |+α(v̂) F (nx )

Nx \J (v̂)z J∪{n}
ev̂(zx )

, (9)

and for v ∈ V2

λv,l = e(v̂,uy)(z)∏n
j=1(u j − l j )

and λv,u = e(v̂,l y)(z)∏n
j=1(u j − l j )

. (10)

Here, v̂ denotes the vector opposite to v in [l x , ux ], zx denotes the subvector of z-variables
with entries z J , ∅ 	= J ⊆ Nx , and ev̂(z

x ) according to Eq. (6).

Proof Lemma 2 of the “Appendix” implies that the description of S (n)

[l,u] is necessary to charac-
terize U f . For the remaining constraint we can argue as follows. As f is component-wise con-
cave in the x-variables and the multilinear monomials

∏
j∈J x j are linear in the x-variables,

the set U f can be represented as follows (see [34,37]):

U f = conv

⎛
⎝⋃

v∈Vx

{
(F (n)(v, yv), μ) | μ ≥ f (v, yv), yv ∈ [l y, uy]}

⎞
⎠ .

For each fixed v ∈ Vx the set U f (v,y) corresponds to the epigraph of the func-
tion vex[l y ,uy ][ fv], where fv(y) := f (v, y). If v ∈ V1, then f (v, y) is convex and
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vex[l y ,uy ][ fv](y) = f (v, y). If v ∈ V2, then f (v, y) is concave and vex[l y ,uy ][ fv](y) is
given by the secant connecting (l y, fv(ly)) and (uy, fv(uy)).

Disjunctive programming techniques imply that, for any given z̄ ∈ S (n)

[l,u], the corresponding
minimal value μ with (z̄, μ) ∈ U f can be computed by the following optimization problem

min
∑

v∈V1

λv f (v, yv) + ∑
v∈V2

(
λv,l f (v, l y) + λv,u f (v, uy)

)
s.t. z̄ = ∑

v∈V1

λv F (n)(v, yv) + ∑
v∈V2

(
λv,l F (n)(v, l y) + λv,u F (n)(v, uy)

)
1 = ∑

v∈V1

λv + ∑
v∈V2

(
λv,l + λv,u

)
λv ≥ 0, v ∈ V1, λv,l , λv,u ≥ 0, v ∈ V2, yv ∈ [l y, uy], v ∈ V1.

We infer from Lemma 3 of the “Appendix” that the solution given in Eqs. (9) and (10)
is optimal to the problem above, where λv ≥ 0, v ∈ V1, λv,l , λv,u ≥ 0, v ∈ V2, and
1 = ∑

v∈V1
λv +∑v∈V2

(λv,l + λv,u) follows from the fact that z̄ ∈ S (n)

[l,u]. This proves the
claim. 
�

Theorem 1 is a special case of Theorem 4, namely for V1 = ∅ and V2 = Vx . Even though
the two representations do not coincide at a first glance, it can be checked that the additional
inequality in Theorem 4 reduces to the one in Theorem 1 in this special case.

The next example illustrates Theorem 4 and emphasizes its potential for simultaneous
convexification purposes.

Example 6 Let f (x) = x1x2/y, x1 ∈ [−1, 1], x2 ∈ [0.1, 1], y ∈ [0.1, 1]. This is Example
2 in [15]. The convex envelope over the subdomain 0.9x1 + 2x2 ≥ 1.1 reads

vex[l,u][ f ](x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0.5x1 + 1.1x2 − 0.6)2

y + 0.05x1 + 0.11x2 − 0.16
+ 5x1 − 1.1x2 − 3.9, if 0.1 ≤ y ≤s1,

(0.5x1 + 0.76x2 − 0.26)2

y + 0.05x1 − 0.05
+ 5x1 − 5, if s1 ≤ y ≤ s2,

0.12(x2 − 1)2

y − 0.45x1 − 1.1x2 + 0.56
+ 5.5x1 + 1.1x2 − 5.6, if s2 ≤ y ≤ s3,

10y + x1 + x2 − 11, if s3 ≤ y ≤ 1,

where s1 = 10y + x1 + x2 − 11, s2 = 0.45x1 + 0.76x2 − 0.21, and s3 = 0.45x1 + 0.55.
The convex envelope over 0.9x1 + 2x2 ≤ 1.1 reads

vex[l,u][ f ](x, y) =

⎧⎪⎪⎨
⎪⎪⎩

0.5(x1 + 1)2

20y + x1 − 1
+ 0.5x1 − 10x2 + 0.5, if 0.1 ≤ y ≤ s3,

y + 0.1x1 − 10x2, if s3 ≤ y ≤ 1.1 − x2,

10y + 0.1x1 − x2 − 9.9, if 1.1 − x2 ≤ y ≤ 1.

The extended formulation U f is given by the facets of S (3)

[l,u] and the inequality μ ≥ φ(z)
with

φ(z) :=−5.5z{2} + 5.5z{1,2} + 5z{2,3} − 5z{1,2,3} − 101
81

+
(
1 + z{1} − z{2} − z{1,2}

)2
18
(
z{3}+ z{1,3} − z{2,3} − z{1,2,3}

)+
(
1 + z{1}−10z{2}−10z{1,2}

)2
180

(−z{3} − z{1,3}+10z{2,3}+10z{1,2,3}
) .

The set U f is the simultaneous convex hull of (z, μ) with μ ≥ f (x, y) and the seven multi-
linear monomials in the x- and y-variables over [l, u]. Let R denote the convex relaxation,
where f and each multilinear monomial are individually relaxed by their convex and concave
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envelope. We can bound component μ from above by max{ f (x, y) | (x, y) ∈ [l, u]} = 10.
The volumes of the individually and simultaneously convexified sets are computed using the
function NIntegrate in Mathematica 8 [40], and are Vol(R, μ ≤ 10) ≈ 0.325 and
Vol(U f , μ ≤ 10) ≈ 0.014. This yields a gap of 2,120 %.

3.2 Class 2

Next, we consider functions f : [lx , ux ] × [l y, uy] ⊆ Rnx × Rny → R, (x, y) �→ f (x, y),
that are component-wise concave in the x-variables, and that are convex on the space of the
y-variables for every fixed x ∈ vert([lx , ux ]).

The special case of ny = 1 is already covered by Theorem 4. For ny ≥ 2, we proceed as
follows. We set Nx := {1, . . . , nx }, Ny := {1, . . . , ny}, and introduce

– for all J ⊆ Nx , J 	= ∅, the monomials
∏

j∈J x j and the variables z J ∈ R,

– for all k ∈ Ny and for all J ⊆ Nx , the monomials yk
∏

j∈J x j and the variables wk
J ∈ R,

where we define wk := (wk
∅, w

k{1}, . . . , wk
Nx

) which is associated with

yk
(
1, F (n)(x)

) =
⎛
⎝yk, yk x1, . . . , yk xn, yk x1x2, . . . , yk

n∏
j=1

x j

⎞
⎠.

This collection of monomials ensures that for a fixed x all introduced monomials are either
constant or linear. An extended formulation for the convex envelope of f is then given by
the set

E f : = conv
({ (

z, w1, . . . , wny , μ
) ∈ R(2nx −1)+ny ·2nx +1

∣∣ μ ≥ f (x, y),

z = F (nx )(x), wk = yk
(
1, F (nx )(x)

)
, for all k ∈ Ny,

z{ j} = x j ∈ [lx
j , ux

j

]
, j = 1, . . . , nx ,

wk
∅ = yk ∈ [l y

k , uy
k

]
, k = 1, . . . , ny

})
.

By construction and our assumptions on f, E f (x̄,y) corresponds to the epigraph of
vex[l,u][ f (x̄, y)] = f (x̄, y) for every fixed x̄ ∈ vert([lx , ux ]). Similar to the description
of U f which is based on S (n)

[l,u], Lemma 2 of the “Appendix” implies that the description of
the following set is needed for E f .

L (nx ,ny )

[l,u] : = conv
({ (

z, w1, . . . , wny
) ∈ R(2nx −1)+ny ·2nx ∣∣ z = F (nx )(x),

wk = yk
(
1, F (nx )(x)

)
, for all k ∈ Ny,

z{ j} = x j ∈ [lx
j , ux

j

]
, j = 1, . . . , nx ,

wk
∅ = yk ∈ [l y

k , uy
k

]
, k = 1, . . . , ny

})
.

Sherali and Adams analyzed this set in [28] and, in a more general setting, in [2] and showed
that

L (nx ,ny )

[l,u] =
ny⋂

k=1

{(
z, w1, . . . , wny

) | (z, wk) ∈ S (nx +1)

[lx ,ux ]×[l y
k ,l

y
k ]

}
. (11)

According to our definition, points in S (nx +1)

[lx ,ux ]×[l y
k ,l

y
k ] are labeled by subsets J ⊆ {1, . . . , nx +

1}, J 	= ∅, that follow the order of the vector F (nx +1). This labeling might be different to
the order of the vector (z, wk). However, to keep the notation short and simple, we assume
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for Eq. (11) that the components of points (z, wk) are permuted in the correct way when
necessary.

We are now ready to give a description for E f .

Theorem 5 Let f : [lx , ux ] × [l y, uy] ⊆ Rnx × Rny → R be a function that is component-
wise concave in the x-variables for every fixed y ∈ [l y, uy] and convex on the space of
y-variables for every x̄ ∈ V := vert([l x , ux ]). Then,

E f =
{

(z, w1, . . . , wk, μ)

∣∣∣∣∣
(z, wk) ∈ S (nx +1)

[lx ,ux ]×[l y
k ,u

y
k ], k = 1, . . . , ny,

μ ≥ ϕ(z, w) :=∑v∈V λv f (v, yv)

}
,

where, for all v ∈ V and k ∈ Ny,

λv = ev̂(z)∏nx
i=1(u

x
i − lx

i )
, yv

k =
∑

J⊆Nx
(−1)|J |+α(v̂) F (nx )

Nx \J (v̂)wk
J

ev̂(z)
, (12)

ev̂(z) according to Eq. (6), and v̂ is the vector opposite to v in [lx , ux ].

Proof The constraints (z, wk) ∈ S (nx +1)

[lx ,ux ]×[l y
k ,u

y
k ], k ∈ Ny , are implied by Lemmas 2 of the

“Appendix” and Eq. (11). For the remaining constraint we can argue similar to the proof of
Theorem 4. This way, we obtain for any given (z̄, w̄1, . . . , w̄ny ) ∈ L (nx ,nx )

[l,u] that the corre-
sponding minimal value μ with (z̄, w̄1, . . . , w̄ny , μ) ∈ E f is given by

min
∑

v∈vert([lx ,ux ]) λv f (v, yv)

s.t.
∑

v∈vert([lx ,ux ]) λv F (nx )(v) = z,∑
v∈vert([lx ,ux ]) λv = 1,

λv ≥ 0, v ∈ vert([lx , ux ]),∑
v∈vert([lx ,ux ]) λv yv

k F (nx )(v) = wk, k = 1, . . . , ny

yv ∈ [l y, uy].

(13)

The specific structure of the constraints set implies that the values of the multipliers λv

are uniquely determined by the first three sets of constraints. For fixed λv , the remaining
constraints decompose into ny variable disjoint linear subsystems that can be solved inde-
pendently from each other (see [2,28]). Thus, for each k ∈ {1, . . . , ny}, we can solve the
system

∑
v∈vert([lx ,ux ])

λv F (nx )(v) = z,
∑

v∈vert([lx ,ux ])
λv yv

k F (nx )(v) = wk .

This subsystem is a special case of the system considered in Lemma 3 (with V2 = ∅). This
gives rise to the solution as given in Eq. (12). Note that the solution for the λv-variables does
not depend on the solution for yk-variables and that the restrictions

∑
v∈vert([lx ,ux ]) λv = 1,

λv ≥ 0 and yv
k ∈ [l y

k , uy
k ] follow from the fact that (z̄, w̄1, . . . , w̄ny ) ∈ L (nx ,ny )

[l,u] . 
�

The next example illustrates Theorem 5 and compares the extended formulation to the
convex envelope.

Example 7 Let f := x/(y1 y2), (x, y1, y2) ∈ [l, u] := [0.5, 2] × [0.1, 1] × [1.5, 2]. This is
Example 2 in [16], where the convex envelope of f is described by six different formulas,
each of them valid over a specific subdomain of the box [l, u]. The extended formulation
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E f obtained by the simultaneous convexification with the monomials y1x (= w1{1}) and y2x

(= w2{1}) is given by

E f =
{

(z, w1, w2, μ) ∈ R5

∣∣∣∣∣
(z, w1) ∈ S (2)

[0.5,2]×[0.1,1], (z, w
2) ∈ S (2)

[0.5,2]×[1.5,2],

μ ≥ ϕ(z, w1, w2)

}
,

where

ϕ(z, w1, w2) := lx (ux − z)3

(ux − lx )
(

uxw1
∅ − w1{1}

) (
uxw2

∅ − w2{1}
)

+ ux (z − lx )3

(ux − lx )
(

lxw1
∅ − w1{1}

) (
lxw2

∅ − w2{1}
) .

The variable μ can be bounded from above by max{ f (x, y) | x ∈ [l, u]} = 40/3.
Mathematica 8 computes the volumes of E f and its individual counterpart R as
Vol(E f , μ ≤ 40/3) ≈ 0.263 and Vol(R, μ ≤ 40/3) ≈ 0.269 which implies a gap of
2 %.

3.3 Comparison with available convex envelopes

In Examples 6 and 7, some advantages and disadvantages of the extended formulations U f

and E f compared to the convex envelopes are indicated. The extended formulations have the
disadvantage of introducing additional variables corresponding to certain multilinear mono-
mials. Especially for higher dimensional functions, the exponential growth in the number of
variables can lead to an explosion of the problem size. Nevertheless, for lower dimensional
cases the growth of variables is reasonable and we noticed that the multilinear monomials
often occur in the problem description, see e.g., problems ex734 and ex735 from GLOBAL-

Lib [11] andeniplac,1252,nvs05, andpump from MINLPLib [9]. Therefore, the extended
formulations can lead to improved convex relaxations as indicated in Example 6. Furthermore,
one can check that the formulas describing parts of the convex envelope are only valid over the
specified subdomains. For instance, consider Example 6 and let (x̄1, x̄2, ȳ) = (0, 0.5, 0.7).
Then, vex[l,u][ f ](x̄1, x̄2, ȳ) = ȳ + 0.1x̄1 − 10x̄2 = −4.3 while this is violated by the last
formula, 10 ȳ + 0.1x̄1 − x̄2 − 9.9 = −3.4. Usually, convex relaxations are constructed and
solved over the entire domain. Thus, the formulas of the convex envelope can be used in a
cut-generation algorithm to construct valid linear cuts, but they cannot be added directly to
the convex relaxation whereas this is possible with the extended formulation.

To conclude this section, we emphasize that the convex envelopes for the two classes of
functions considered in this section are not known, in general. As mentioned in the intro-
duction, Khajavirad and Sahinidis [15,16] derived explicit formulas of convex envelopes for
special subclasses in the original space. They considered functions f (x, y) = g(x)h(y),
where

– g(x) is a component-wise concave function such that its restriction to the vertices is
submodular and has the same monotonicity in every argument,

– h(y) is a nonnegative convex function of one of the two forms (i) h(y) = ya, a ∈ R\[0, 1]
or (ii) h(y) = ay, a > 0, and

– g(x) is nonnegative or h(y) is monotone.

For special cases they can relax some conditions but the assumptions above reflect their
general setting.
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First, the formulations presented in this work do not require that f can be written as
f (x, y) = g(x) h(y) as the following example illustrates.

Example 8 Let f : R2 → R, (x, y) �→ f (x, y) = (y + 1) exp(xy) be restricted to [l, u] =
[−1, 1]×[−3,−1] so that the function belongs to Class 1. Thus, Theorem 4 yields (x, z) ∈ U f

if and only if z ∈ S (2)

[l,u] and μ ≥ φ(z), where

φ(z) := 1 − z{1} + z{2} − z{1,2}
2

exp(3) + 1 + z{1} + z{2} + z{1,2}
2

exp

(
z{2} + z{1,2}

1 + z{1}

)
.

Second, Khajavirad and Sahinidis state that the property of component-wise concavity of
g(x) can be relaxed to having a vertex-polyhedral convex envelope in their context. For the
extended formulation, we discuss in the following remark that the component-wise concavity
of g(x) can be relaxed by g(x) ≥ mg(x) for all x ∈ [lx , ux ]. In this case, the assumptions
by Khajavirad and Sahinidis are more general than ours. For example, consider the function
g : [0, 1]2 → R, x �→ g(x) := max{−x1 + 0.5,−x2 + 0.5}, that is vertex-polyhedral,
submodular, when restricted to the vertices of [0, 1]2, and nonincreasing in each variable xi .
However, g(x) < mg(x) = −x1x2 + 0.5 for all x in the interior of the box [0, 1]2.

Remark 1 The condition of being component-wise concave in the x-variables in Theorems 4
and 5 can be relaxed to the condition f (x, ȳ) ≥ m f (x,ȳ)(x) for all x ∈ [lx , ux ] and all fixed
values ȳ ∈ [l y, uy], where m f (x,ȳ)(x) is the multilinear function obtained in Lemma 1. If we
consider the special case of f (x, y) = g(x)h(y) 	= 0 with h(y) nonnegative and convex, we
can strengthen Theorems 4 and 5 as follows. The extended formulation in Theorem 4 is valid
if and only if g(x) ≥ mg(x) for all x ∈ [lx , ux ]. If g(x) is further nonnegative, the extended
formulation in Theorem 5 is valid if and only if g(x) ≥ mg(x) for all x ∈ [lx , ux ].

Third, in the setting of the convex envelope the univariate variable y in the convex function
h(y) can be replaced by cT y+d , where y is multivariate, if g(x) is nonnegative. This extension
is also covered by Theorem 5 because f (x, cT y + d) is the composition of a convex and a
linear function and thus, it is convex [24].

Finally, Theorems 4 and 5 do not require that g(x) is submodular restricted to the vertices
and nondecreasing (or nonincreasing) in every argument. For instance, the convex envelope
of the function f (x, y) = g(x)h(y) = (x1x2)y2 cannot be determined by the framework of
Khajavirad and Sahinidis as g is supermodular (cf. Section 4.1 in [16]) while the function
satisfies all assumptions of Theorem 4. As an example consider the function over [l, u] =
[1, 2]3. Theorem 4 implies that (z, μ) ∈ U f if and only if z ∈ S (3)

[l,u] and

μ ≥
(
4z{3} − 2z{1,3} − 2z{2,3} + z{1,2,3}

)2
4 − 2z{1} − 2z{2} + z{1,2}

+ 2
(
2z{3} − z{1,3} − 2z{2,3} + z{1,2,3}

)2
−2 + z{1} + 2z{2} − z{1,2}

+2
(
2z{3} − 2z{1,3} − z{2,3} + z{1,2,3}

)2
−2 + 2z{1} + z{2} − z{1,2}

+ 4
(
z{3} − z{1,3} − z{2,3} + z{1,2,3}

)2
1 − z{1} − z{2} + z{1,2}

.

4 Computations

The extended formulations presented in the previous sections are based on the introduction of
an exponential amount of additional variables corresponding to multilinear monomials. In this
section we show that the extended description can accelerate computations significantly not
only for instances in which all these multilinear monomials occur in the problem formulation
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but also for instances in which only a few monomials appear. This indicates that the strength
of the extended formulations can compensate the computational obstacles implied by the
introduction of unnecessary variables (at least for low dimensional functions up to dimension
four).

We focus on component-wise concave functions discussed in Sect. 2 because their
extended formulation is polyhedral (see Theorem 1) and thus easier to implement. Yet, the
computational results can hint at the computational behavior of the extended formulations
for the other two classes of functions. In Sect. 4.1, our test set is presented which consists
of instances of the Molecular Distance Geometry Problem. In Sect. 4.2, different relaxation
strategies for this class of problems are investigated. In Sect. 4.3, we show the results of two
separators within the open source, mixed-integer nonlinear optimization software SCIP [1]
based on the relaxations S (n)

[l,u] and U f .

4.1 Molecular distance geometry problem

The molecular distance geometry problem (MDGP) (see e.g., [19]) is to determine the three-
dimensional structure of a molecule consisting of a finite set A = {1, . . . , s} of atoms and
given distances di, j ≥ 0 between two atoms {i, j} ∈ E ⊆ A × A. This leads to the following
unconstrained nonconvex optimization problem

min
∑

{i, j}∈E

(
||ξ i − ξ j ||2 − d2

i j

)2
s.t. ξ := (ξ1, . . . , ξ s) ∈ R3s, (14)

where ξ i := (ξ i
1, ξ

i
2, ξ

i
3) ∈ R3 represents the position of atom i in the three-dimensional

space. A point ξ ∈ R3s is a solution of the MDGP if and only if the corresponding objective
function value at ξ is zero.

In the formulation of Eq. (14) the MDGP can be solved instantaneously by solvers like
BARON or SCIP for low dimensional problems. In order to illustrate the impact of the proposed
relaxation methods we follow [10] and analyze the expanded model formulation

min
∑

{i, j}∈E

si, j s.t. si, j ≥ EXPAND

[(
||ξ i − ξ j ||2 − d2

i j

)2
]
, ξ ∈ R3s, (15)

where the operator EXPAND[·] expands each term
(
||ξ i − ξ j ||2 − d2

i j

)2
such that it is given

as the sum of 52 monomials of the following form:

x1, x1x2, x1x2x3, x1x2x3x4, x2
1 , x4

1 , −x2
1 x2x3, −x3

1 x2.

We consider two test sets related to the MDGP. Test set TS1 contains five MDGP instances
lav6–lav20 which are characterized in Table 3. The instances differ in the number of atoms
and edges, and the domains which are chosen such that the instances are feasible. All the
instances (except for the domain) have been randomly generated as described in Lavor [18]
and were given to us by Jon Lee. Test set TS2 consists of 50 randomly generated test instances

Table 3 Lavor instances: Each
instance is characterized by the
number of atoms, the number of
edges between the atoms and the
domain of each component ξi of
an atom

Instance lav6 lav7 lav8 lav10 lav20

# Atoms 6 7 8 10 20

# Edges 13 16 20 28 70

Domain [0, 3] [0, 4] [0, 4] [0, 5] [0, 9]
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where we construct 10 random instances for each of the five Lavor instances. For this it is
decided uniformly at random if a summand is multiplied by zero or one. Thus, the instances
of TS2 are sparser than the instances of TS1.

4.2 Different relaxation strategies applied to TS1

We consider four different linear relaxation strategies which are briefly summarized. Relax-
ation strategy StandRelax follows Cafieri et al. [10], where each term is reformulated into terms
of products of univariate or bilinear/trilinear terms for which the formulas for their envelopes
are applied. QHullRelax additionally computes the convex envelopes for all component-wise
concave monomials by the algorithm Qhull [6]. In S-Relax all multilinear terms, in par-
ticular the quadrilinear terms x1x2x3x4, are relaxed by S (4)

[l,u]. U -Relax is based on S-Relax

and it further employs extended-space underestimators U f for the component-wise concave
monomials f (x) = −x3

1 x2 and f (x) = −x2
1 x2x3.

All computations were accomplished in a SCIP 2.1.1 [1] framework using CPLEX 12.3 [13]
as LP solver on a 2.67 GHz INTEL X5650 with 96GB RAM. Relaxation strategy QHullRelax

uses Qhull 2012.1. The time limit for all computations was 1 h.
Table 4 displays the results of the relaxation strategies in a branch-and-bound algorithm

with respect to the bound obtained at the root node, the final bound, and the number of
iterations. Note that the optimal objective function value for all instances is zero.

Table 4 The table compares the behavior of the relaxation strategies with respect to their root node relaxation,
the final bound, and the number of iterations in the branching procedure. All computations were stopped after
1 h

StandRelax QHullRelax S-Relax U -Relax

lav6

Root −36,871.1 −36,871.1 −14,770.3 −14,777.3

Bound −15,554.0 −21,727.7 −7,212.0 −6,333.0

# iter 14,406 750 13,182 18,147

lav7

Root −141,278.7 −141,278.7 −56,698.8 −56,698.8

Bound −69,754.6 −99,271.3 −32,564.3 −30,002.2

# iter 12,039 365 11,008 15,649

lav8

Root −176,869.1 −176,869.1 −70,946.4 −70,946.4

Bound −100,891.1 −138,822.6 −46,212.7 −43,218.0

# iter 10,090 231 8,839 12,689

lav10

Root −602,754.7 −602,754.7 −241,694.4 −241,694.4

Bound −423,748.9 −520,950.4 −184,078.4 −176,735.0

# iter 6,898 138 6,372 9,703

lav20

Root −15,840,033.3 −15,840,033.3 −6,367,589.5 −6,367,589.5

Bound −13,291,564.3 −14,557,815.3 −5,618,446.6 −5,529,058.1

# iter 2,690 44 2,192 3,360
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Table 5 Final bounds and
computational time by
StandRelax and QHullRelax after
the same number of iterations

Iterations StandRelax QHullRelax

Bound Time (s) Bound Time (s)

lav6 750 −21,730.3 143 −21,727.7 3,600

lav7 635 −99,271.3 80 −99,271.3 3,600

lav8 231 −138,822.6 61 −138,822.6 3,600

lav10 138 −520,950.4 57 −520,950.4 3,600

lav20 44 −14,557,815.3 54 −14,557,815.3 3,600

The following comments are in order. First, the root node relaxations of S-Relax and
U -Relax are twice as good as the relaxations of StandRelax and QHullRelax. As we start with
lower bounds of zeros for the variables in the root node, StandRelax and QHullRelax, and S-Relax

and U -Relax yield the same lower bound. Changing the lower bounds to 1, for instance, reveals
that QHullRelax generates stronger bounds than StandRelax and U -Relax is better than S-Relax.

Second, the final bounds derived by the relaxations based on S-Relax and U -Relax are
also always twice as good as the bound obtained by the relaxations based on StandRelax and
QHullRelax. This shows that the extended-space relaxations are not only stronger but are also
solvable in a reasonable time. For instance, U -Relax performs always the highest number of
iterations among all relaxation strategies and provides the best lower bounds. Compared to
the bounds by S-Relax the bounds by U -Relax are about 10 % better for the smaller Lavor
instances and still 3 % better for the larger instances.

Relaxation strategy QHullRelax returns the worst bounds. This is due to the expensive
computation of the convex envelope by the Qhull algorithm as indicated in Table 5. The table
compares bounds and computation times for StandRelax and QHullRelax after the same number
of iterations. It turns out that StandRelax needs significantly less computation time in all cases,
while the bounds are identical, except for instance lav6 where the bound by QHullRelax is
slightly better.

4.3 A comparison of standard solvers applied to TS2

In this subsection we compare the computational results of the state-of-the-art solver
BARON [39], the open-source solver SCIP [1], and SCIP with two separators based on extended-
space underestimators. The separators are add-ons for SCIP and can be downloaded from
http://www.ifor.math.ethz.ch/staff/balmarti. The separator SimMultMono is based on S (n)

[l,u]
while the separator EdgeConcaveMonomials uses U f , where f is a monomial over a non-
negative domain. We denote the corresponding algorithms S-SCIP and U-SCIP, respectively.

All computations were accomplished in the GAMS 23.9.1 environment with BARON 11.1.0
and SCIP 3.0.0. We used the default settings of the separators except for the parameter “freq”
which is set to 1 in order to apply the separators at every iteration. The current implementation
of the separators requires to reformulate the problems such that additional variables are
introduced corresponding to the monomials which are then linked to the monomials by
additional constraints. We refer to this formulation as reformulated model formulation. Both
BARON and SCIP were tested on the reformulated model and the expanded model formulation
in Eq. (15). As both algorithms perform better on the expanded model formulation, we only
state their results for this formulation subsequently.

Table 6 shows the computational results for test set TS2 consisting of 50 randomly modified
Lavor instances. We compare the algorithms in terms of four criteria: The number of times
a algorithm computes the best lower or upper bound on the problem or is at most 0.01 %
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Table 6 Test set TS2 (50 randomized Lavor instances). The table compares the number of times an algorithm
computes the best lower or upper bound or is in the range of the best bound, and reports the sum of the dual
gaps over all instances where each summand is either bounded by 100 or 1,000 %

BARON SCIP S-SCIP U -SCIP

# best primal bound 18 10 22 22

# best dual bound 0 0 3 50

Dual gap (100 %) 84.65 % 97.73 % 58.50 % 55.19 %

Dual gap (1,000 %) 140.14 % 256.41 % 64.44 % 60.52 %

worse than the best bound. The dual gap is computed with respect to the best known feasible
solution over all algorithms as the arithmetic sum over all instances where the gap for each
instance is either bounded by 100 or 1,000 %.

Good primal bounds are computed by the algorithms BARON, S-SCIP and U-SCIP. The
primal bounds of all algorithms deviate in average not more than 6 % from the best primal
bound. The best dual bounds are obtained by U-SCIP for all cases. The dual gaps show that
S-SCIP is almost as good as U-SCIP. The dual gaps by algorithms S-SCIP and U-SCIP are two
times better than the dual gap of BARON and four times better than the dual gap of SCIP with
respect to 1,000 %. This comparison shows that SCIP can benefit from the separators and that
using the separators in BARON may even yield better results.

Finally, we remark that the algorithms S-SCIP and U-SCIP introduce variables correspond-
ing to the monomials needed by the relaxations S (n)

[l,u] and U f . In contrast to test set TS1, not
all of the corresponding monomials occur in the problem formulation of TS2. Yet, the results
show that the proposed relaxations accelerate the computations.
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Appendix

The following elementary lemma shows that the facets of S (n)

[l,u] and L (nx ,ny )

[l,u] are also facets of
U f and E f , respectively.

Lemma 2 Let h, gi : D ⊆ Rn → R, i = 1, . . . , m, be continuous functions over a convex,
compact domain D ⊆ Rn, and let g : D ⊆ Rn → Rm be the vector-valued function
given by g(x) := (

g1(x), . . . , gm(x)
)�

. Furthermore, consider the two convex sets L :=
conv({(x, ζ ) ∈ Rn+m | ζ = g(x), x ∈ D}) and U := conv({(x, ζ, μ) ∈ Rn+m+1 | ζ =
g(x), μ ≥ h(x), x ∈ D}). Then, each facet-defining inequality of L also induces a facet
for U .

Proof Let a�x + b�ζ ≤ γ be an arbitrary facet-defining inequality for L with a ∈ Rn, b ∈
Rm, and γ ∈ R. Then, a�x + b�ζ ≤ γ is valid for U . As a�x + b�ζ ≤ γ is facet-defining
for L, there are n + m points xr ∈ D such that the points

(
xr , g(xr )

)
, r = 1, . . . , n + m, are

affinely independent and each point satisfies a�x + b�ζ ≤ γ with equality. Now, consider
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the set of points (xr , ζ r , μr ) := (
xr , g(xr ), h(xr )

) ∈ U, r = 1, . . . , n + m, and the point
(xn+m+1, ζ n+m+1, μn+m+1) := (x1, g(x1), h(x1) + 1

)
. Then, a�xr + b�ζ r = γ holds for

all r = 1, . . . , n + m + 1. Furthermore, the points (xr , ζ r , μr ), r = 1, . . . , n + m + 1 are
affinely independent since the set {(xr , ζ r ) − (x1, ζ 1) | r = 2, . . . , n + m + 1} is linearly
independent. 
�

The next lemma gives the key argument to derive the extended formulations U f and E f for
functions f belonging to Classes 1 and 2. It deals with a slight modification of the equation
systems underlying the works [2,27,28] by Sherali and Adams to derive equivalent extended
linear formulations for certain polynomial mixed-discrete programs. We adapt their proofs
to our setting. For V1 = ∅, the statement of Lemma 3 follows from the fact that the convex
hull of {Fnx +1(v, y) | (v, y) ∈ vert([lx , ux ] × [l y, uy])} equals S (nx +1)

[lx ,ux ]×[l y ,uy ]. The special
case when V2 = ∅ is discussed in Adams and Sherali [2].

Lemma 3 Let [l, u] := [lx , ux ] × [l y, uy] ⊆ Rnx × R be a full-dimensional box, Nx :=
{1, . . . , nx }, Vx := vert([lx , ux ]) and n := nx + 1. Moreover, let V1, V2 ⊆ Vx be a partition
of Vx , i.e., Vx = V1 ∪ V2, V1 ∩ V2 = ∅. For a given z ∈ R2n−1, consider the following
nonlinear system in the variables λv, yv with v ∈ V1, and λv,l , λv,u with v ∈ V2:

z J =
∑
v∈V1

λv F (nx )

J (v) +
∑
v∈V2

(
λv,l F (nx )

J (v) + λv,u F (nx )

J (v)
)
, (16)

z J∪{n} =
∑
v∈V1

λv yv F (nx )

J (v) +
∑
v∈V2

(
λv,l l

y F (nx )

J (v) + λv,uuy F (nx )

J (v)
)
, (17)

for all J ⊆ Nx . Its solution is given by

λv = ev̂(z
x )∏nx

j=1(u j − l j )
, yv =

∑
J⊆Nx

(−1)|J |+α(v̂) F (nx )

Nx \J (v̂)z J∪{n}
ev̂(zx )

, (18)

for v ∈ V1, where v̂ denotes the vector opposite to v in [lx , ux ], zx denotes the subvector of
z-variables with entries z J , ∅ 	= J ⊆ Nx , and ev̂(z

x ) according to Eq. (6). The solution of
λv,l and λv,u with v ∈ V2 reads

λv,l = e(v̂,uy)(z)∏n
j=1(u j − l j )

and λv,u = e(v̂,l y)(z)∏n
j=1(u j − l j )

. (19)

Proof We prove Lemma 3 in two steps. Initially, we consider subsystem (I) defined by
Eq. (16) and subsystem (II) defined by Eq. (17) for all J ⊆ Nx independently. Afterwards
we combine the solutions of the two subsystems.

Let T be the matrix whose columns are given by the vectors (1, F (nx )(v)), v ∈ V . We can
then bring both subsystems into the form ζ = T ξ . This system has the unique solution (see
[2,17,27])

ξv = ev̂(ζ )∏nx
j=1(u j − l j )

, v ∈ V .

For subsystem (I) we replace
(
λv,l F (nx )

J (v) + λv,u F (nx )

J (v)
)

by (λv F (nx )

J (v)) in Eq. (16).
Hence, we obtain the system (1, zx ) = T λ with unique solution

λv = ev̂(z
x )∏nx

j=1(u j − l j )
, v ∈ V .
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For subsystem (II) we first substitute

(
λv,l ln F (nx )

J (v) + λv,uun F (nx )

J (v)
)

by
(
λv yv F (nx )

J (v)
)

in Eq. (17) and afterwards, λv yv by rv . With ζJ = z J∪{n} for all J ⊆ Nx , subsystem (II) is
of the form ζ = T r with unique solution rv = ev̂(ζ )/

∏nx
j=1(u j − l j ), v ∈ V .

Finally, we consider the original system, where rv = λv yv, v ∈ V1, and rv = λv,l l y +
λv,uuy, λv = λv,l + λv,u, v ∈ V2. To obtain yv, v ∈ V1, we can solve rv = λv yv for yv

if λv 	= 0. Then, yv = rv/λv = ev̂(ζ )/ev̂(z
x ). If λv = 0, yv can take any value as its

corresponding summand cancels out.
To derive λv,l and λv,u, v ∈ V2, we solve the linear system λv yv = λv,l l y + λv,uuy and

λv = λv,l + λv,u . Then, λv,l = λv(uy − yv)/(uy − l y) and λv,u = λv(yv − l y)/(uy − l y).
We prove the formula for λv,l in Eq. (19). An analogous argument holds for λv,u . We get

λv,l = λv(uy − yv)/(uy − l y) = ev̂(z
x )(uy − yv)/

∏
j∈N (ui − li ). To deduce Eq. (19), it

is thus sufficient to show that e(v̂,uy)(z) = ev̂(z
x )(uy − yv). This follows because e(v̂,uy)(z)

can be rewritten as
∑
J⊆N

(−1)|J |+α(v̂)F (n)

N\J (v̂, uy)z J

=
∑

J⊆Nx

(−1)|J |+α(v̂)F (n)

N\J (v̂, uy)z J

+
∑

J=T ∪{n}:T ⊆Nx

(−1)|J |+α(v̂)F (n)

N\J (v̂)z J

=
∑

J⊆Nx

(−1)|J |+α(v̂)uy F (nx )

Nx \J (v̂)z J +
∑

J⊆Nx

(−1)|J |+α(v̂)+1 F (nx )

Nx \J (v̂)z J∪{n}

= uyev̂(z
x ) − yvev̂(z

x ) = ev̂(z
x )(uy − yv).

This concludes the proof. 
�
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