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Abstract This paper presents a new computational approach for solving optimal control problems
governed by impulsive switched systems. Such systems consist of multiple subsystems operating in
succession, with possible instantaneous state jumps occurring when the system switches from one
subsystem to another. The control variables are the subsystem durations and a set of system pa-
rameters influencing the state jumps. In contrast with most other papers on the control of impulsive
switched systems, we do not require every potential subsystem to be active during the time horizon
(it may be optimal to delete certain subsystems, especially when the optimal number of switches is
unknown). However, any active subsystem must be active for a minimum non-negligible duration of
time. This restriction leads to a disjoint feasible region for the subsystem durations. The problem
of choosing the subsystem durations and the system parameters to minimize a given cost function
is a non-standard optimal control problem that cannot be solved using conventional techniques. By
combining a time-scaling transformation and an exact penalty method, we develop a computational
algorithm for solving this problem. We then demonstrate the effectiveness of this algorithm by con-
sidering a numerical example on the optimization of shrimp harvesting operations.

Keywords Optimal Control · Impulsive System · Switched System · Time-Scaling Transformation ·
Exact Penalty Function

1 Introduction

An impulsive switched system is a dynamic system whose state and state dynamics undergo instan-
taneous changes at certain times in the time horizon. These times, called jump times or switching
times, are usually decision variables to be chosen optimally by the system operator. In practical ap-
plications, the goal is to optimize the impulsive switched system by manipulating the jump times, as
well as other control parameters influencing the state dynamics and/or state jumps, to achieve opti-
mal system performance. Impulsive switched systems arise in many practical applications including
switching DC-DC power converters [1,12], shrimp harvesting [20] and communication security [5].
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Consider an impulsive switched system consisting of N subsystems operating in succession. Let
τi denote the ith switching time. Then τi, i = 1, . . . , N , satisfy the following ordering constraints:

0 = τ0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τN . (1)

In the literature on the optimal control of impulsive switched systems, the inequalities in (1) are
usually the only constraints imposed on the switching times (see, for example, references [4,5,10,
15,17–19]). However, the constraints in (1) do not preclude very short operating durations for some
subsystems. In reality, it is physically impossible to switch too frequently, and hence there is often
a minimum duration for which a subsystem must be active. A first attempt at addressing this issue
was made in [16], where a penalty on short subsystem durations was added to the objective function.
However, this is only a heuristic approach, and there is no guarantee that it yields optimal (or even
feasible) results for general impulsive switched systems.

Reference [10] considers an optimal control problem governed by an impulsive system in which
the state variables (but not the state dynamics) experience abrupt jumps at a finite number of jump
times. The magnitudes of the state jumps are controlled through a set of system parameters. To solve
the problem in [10], the authors developed a transformation procedure that involves introducing a
new time variable and mapping the jump times (which are decision variables to be chosen optimally)
into fixed points in a new time horizon. The resulting problem can then be solved using gradient-
based optimal control software such as MISER 3.3 [2]. The technique designed in [10] usually performs
reasonably well in practice, although it is only capable of finding locally optimal solutions. In [18],
this limitation was overcome by combining the gradient-based optimization technique in [10] with a
filled function method for finding globally optimal solutions.

Although the methods in [10,18] usually work well, they do not have the capability to preclude
extremely short operating durations. In fact, the numerical example in [10] has solutions in which
some of the subsystem durations become very short and disappear altogether when the number
of allowed state jumps is increased. Due to the formulation of the problem class in [10,18], when
a subsystem duration becomes zero during the optimization process, the two corresponding state
jumps still occur. But it would be more appropriate in this situation if one of these state jumps is
deleted, so that only one jump occurs at the common jump time. The methods in [10,18] do not
have this capability: they instead impose “multi-jumps” when two or more switching times coincide.
This challenge was overcome in [11] by combining the time-scaling transformation from [10,18] with
a penalty technique. The numerical results in [11] demonstrate that subsystems can be deleted in the
optimal solution without the occurrence of multiple state jumps.

More recently in [8], a new algorithm for solving optimal control problems governed by impulsive
switched systems was developed. This algorithm is based on a new approach to applying the time-
scaling transformation, as well as a new method for computing the cost function’s gradient via the
solution of an auxiliary dynamic system. The disadvantage with the algorithm in [8] is that every
potential subsystem is assumed to operate for a positive duration. Hence, unlike in [11], there is no
scope to remove non-optimal subsystems.

In this paper, we assume that each subsystem either does not operate (duration of zero) or operates
for a minimum non-negligible amount of time (duration is no less than a specified minimum positive
number). This requires that adjacent switching times satisfy the constraint τi − τi−1 ∈ {0} ∪ [ǫi,∞),
where τi is as defined in (1) and ǫi > 0 is the minimum duration of the ith subsystem. Unlike
(1), this constraint defines a disjoint region for the subsystem durations, thus causing problems for
standard optimization algorithms such as sequential quadratic programming [13,14]. In this paper,
we introduce a novel exact penalty function to overcome this challenge.

The class of problems considered in this paper is more general than the class of problems con-
sidered in [11]. In particular, we allow canonical state constraints, whereas no state constraints are
considered in [11]. Furthermore, we develop a transformation procedure that transforms the problem
with disjoint feasible region into an equivalent standard dynamic optimization problem. In contrast,
the approach in [11] is based on an approximation scheme and does not maintain equivalence.

This paper is organized as follows. In Section 2, we define the optimal control problem under
consideration. Then, in Section 3, we use the time-scaling technique [8] to map the variable jump
times to fixed integers in a new time horizon. After this, we implement another transformation by
introducing new binary variables. However, the constraints on the binary variables define a disjoint
feasible region, which poses a challenge for standard optimal control software such as MISER 3.3.
Therefore, we adopt an exact penalty approach in Section 4 to transform the problem into a sequence
of unconstrained problems with fixed jump times. Each of these unconstrained problems is a smooth
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impulsive optimal control problem that can be solved effectively by MISER 3.3. Our numerical
example in Section 5 provides evidence that the proposed method is effective and efficient.

2 Problem Formulation

Consider the following impulsive switched system:

ẋ(t) = f
i(x(t), ζ), t ∈ (τi−1, τi), i = 1, . . . , N, (2)

with jump conditions

x(τ+
i ) =

{
x
0
, if i = 0, (3a)

x(τ−

i )+ φ
i(x(τ−

i ), ζ), if i ∈ {1, . . . , N} and τi − τi−1 ≥ ǫi, (3b)

where

• x(t) ∈ R
n is the state at time t;

• ζ ∈ R
r is a vector of control parameters;

• x0 ∈ R
n is a given initial state;

• τi, i = 1, . . . , N − 1, are jump or switching times, with τ0 = 0 and τN = T ;
• T > 0 is a given terminal time;
• ǫi > 0 is the given minimum duration of the ith subsystem;
• f i : Rn × R

r → R
n and φi : Rn × R

r → R
n, i = 1, . . . , N , are given functions assumed to be

continuously differentiable.

Note that the positive and negative superscripts in (3b) mean x(τ±) = lim
t→τ±

x(t). Note also that if

τi = T in (3b), then τ+
i = T by convention.

System (2)-(3) consists ofN potential subsystems operating in succession. The dynamic behaviour
of the ith subsystem is governed by the function f i. At the switching times τi, i = 1, . . . , N − 1, the
system changes from one subsystem to another, and this causes an instantaneous jump in the system
state according to (3b).

Note that if τi−1 and τi coincide (i.e. τi−1 = τi), then the ith subsystem does not operate. This
is allowed, as running every potential subsystem may not be optimal. The condition τi− τi−1 ≥ ǫi in
(3b) ensures that the state jump occurring at the end of a certain subsystem is only imposed if that
particular subsystem runs for a non-negligible amount of time. This is different to the conventional
impulsive switched systems considered in the literature (see, for example, [10,17,18]), which impose
state jumps even for subsystems that do not operate. For example, if τ1 = τ2 in a conventional
impulsive switched system, then a “double jump”—one for subsystem 1 and another for subsystem 2—
will be imposed at t = τ1 = τ2, even though subsystem 2 does not actually operate. This is usually
not an accurate reflection of the real system under consideration.

The control parameter vector ζ = [ζ1, . . . , ζr]
⊤ ∈ R

r is subject to the following bound constraints:

aj ≤ ζj ≤ bj , j = 1, . . . , r, (4)

where aj and bj are given constants such that aj < bj . Let Z denote the set of all ζ ∈ R
r satisfying

(4).
We also have the following constraints on the switching times:

τi − τi−1 ∈ {0} ∪ [ǫi, T ], i = 1, . . . , N. (5)

Thus, either subsystem i runs for a duration of at least ǫi time units, or it does not run at all.
This means that it is possible to “delete” certain subsystems if it is optimal to do so, which may be
necessary when the optimal number of switches is unknown. Clearly, constraint (5) is more complex
than constraint (1) given earlier, which is a simple ordering constraint on the switching times. In
particular, (1) is convex, but (5) is non-convex. In fact, imposing (5) leads to a disjoint feasible region
for the subsystem durations.

Let Γ denote the set of all τ = [τ1, . . . , τN−1]
⊤ ∈ R

N−1 satisfying constraint (5). Furthermore, let
x(·|τ ,ζ) denote the right-continuous solution of (2)-(3) corresponding to the given pair (τ , ζ) ∈ Γ×Z.
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We suppose that the system is subject to the following canonical constraints:

Gj(τ , ζ) =

N∑

i=1

Φ̂j,i(τi − τi−1,x(τi|τ , ζ), ζ)

{
= 0, j = 1, . . . , qe, (6a)

≥ 0, j = qe + 1, . . . , q, (6b)

where

Φ̂j,i(τi − τi−1,x(τi|τ , ζ), ζ) =

{
Φj,i(x(τi|τ , ζ), ζ), if τi − τi−1 ≥ ǫi, (7a)

0, if τi − τi−1 = 0, (7b)

and Φj,i : R
n × R

r → R are given functions assumed to be continuously differentiable with respect

to each of their arguments. Here, the definition of Φ̂j,i ensures that each distinct switch contributes
exactly once to the jth constraint. More specifically, if τi = τi−1, then the ith term in the summation
on the right-hand side of (6) is set equal to zero to avoid “doubling up” when multiple switching

times coincide. For example, if τ1 = τ2 > 0, then Φ̂j,1 = Φj,1, but Φ̂j,2 = 0; that is, there is no
contribution from the second subsystem to the jth constraint because the second subsystem does not
actually operate.

The system cost function defined below is assumed to take the same canonical form as the con-
straints in (6):

G0(τ , ζ) =

N∑

i=1

Φ̂0,i(τi − τi−1,x(τi|τ , ζ), ζ), (8)

where Φ̂0,i is defined in a similar way to Φ̂j,i in (7).
Note that the canonical functions in (7) and (8) are discontinuous functions of the subsystem

durations. This formulation is in contrast to the usual definition of canonical functions in optimal
control [2,6], and has, to the best of our knowledge, not previously been considered in the literature.

Our problem is to choose (τ , ζ) ∈ Γ ×Z to minimize the cost function given by (8) subject to the
governing impulsive switched system given by (2) and (3), the bounds (4), the non-convex constraints
(5) and the canonical constraints (6). We refer to this problem as Problem A.

3 Problem Transformation

3.1 Time-Scaling Transformation

It is well known in computational optimal control that standard numerical optimization algorithms
are not effective at optimizing variable switching times [3,7]. Thus, in this section, we will apply the
time-scaling transformation described in [6,8,10] to map the variable switching times to fixed times
in a new time horizon. This yields an equivalent problem in which the variable switching times are
replaced by conventional decision parameters.

We first introduce a new time variable s ∈ [0,N ] and relate s to t through the following differential
equation:

ṫ(s) =

N∑

i=1

θiχ[i−1,i)(s), t(0) = 0, (9a)

and
t(N) = T, (9b)

where θi = τi − τi−1 is the duration of the ith subsystem and, for a given interval I, χI(s) is the
corresponding indicator function defined by

χI(s) =

{
1, if s ∈ I,

0, otherwise.

Constraints (5) can be equivalently expressed in terms of the following inequalities:

(τi − τi−1)(ǫi − τi + τi−1) ≤ 0, i = 1, . . . , N, (10)

and
τi ≥ τi−1, i = 1, . . . , N. (11)



Optimal Control of Impulsive Switched Systems 5

Based on the definition of θi, constraints (10) and (11) become:

θi(ǫi − θi) ≤ 0, i = 1, . . . , N, (12a)

and

θi ≥ 0, i = 1, . . . , N. (12b)

For s ∈ [i− 1, i], it follows from (9) that

t(s) =

∫ s

0

ṫ(η)dη =

i−1∑

k=1

θk + θi(s− i+ 1). (13)

Thus, for each i = 0, . . . , N ,

t(i) =

i∑

k=1

θk =

i∑

k=1

(τk − τk−1) = τi. (14)

In particular, t(N) = τN = T , as required by equation (9b).
Let x̃(s) = x(t(s)), where t(s) is the solution of the differential equation (9a). Since θi ≥ 0, it is

clear that t is a non-decreasing function of s. Thus, if s ∈ (i− 1, i), then

t(s) ∈ [t(i− 1), t(i)] = [θ1 + · · ·+ θi−1, θ1 + · · ·+ θi]. (15a)

In fact, if θi > 0, then

t(s) ∈ (θ1 + · · ·+ θi−1, θ1 + · · ·+ θi), s ∈ (i− 1, i), (15b)

and thus
d

ds

{
x̃(s)

}
=

d

ds

{
x(t(s))

}
= ṫ(s)ẋ(t(s)) = θif

i(x̃(s), ζ), s ∈ (i− 1, i). (16a)

On the other hand, if θi = 0, then t(s) = θ1 + · · ·+ θi−1 for all s ∈ (i− 1, i), and thus

d

ds

{
x̃(s)

}
=

d

ds

{
x(t(s))

}
=

d

ds

{
x(θ1 + · · ·+ θi−1)

}
= 0, s ∈ (i− 1, i). (16b)

Combining (16a) and (16b) shows that, under the time-scaling transformation, the system dynamics
in Problem A become

˙̃x(s) = θif
i(x̃(s), ζ), s ∈ (i− 1, i), i = 1, . . . , N. (17)

Since the time-scaling transformation maps s = i to t = τi (see (14)), the state jumps in the new time
horizon occur at the fixed times s = 1, . . . , N . If θi > 0, then θi ≥ ǫi, and thus t(i)−t(i−1) = θi ≥ ǫi.

It therefore follows from (3b) that

x̃(i+) = x̃(i−) + φ
i(x̃(i−), ζ).

If, on the other hand, θi = 0, then t(i)− t(i− 1) = θi = 0. Hence,

x̃(i+) = x̃(i−).

Consequently, the jump conditions (3) become

x̃(i+) =





x
0
, if i = 0, (18a)

x̃(i−) + φ
i(x̃(i−), ζ), if i ∈ {1, . . . , N} and θi ≥ ǫi, (18b)

x̃(i−), if i ∈ {1, . . . , N} and θi = 0. (18c)

Note that by convention, i+ = N when i = N in (18). Let x̃(·|θ, ζ) denote the unique right-continuous
solution of (17) and (18) corresponding to θ = [θ1, . . . , θN ]⊤ ∈ R

N and ζ = [ζ1, . . . , ζr]
⊤ ∈ R

r. Under
the time-scaling transformation, the canonical constraints given by (6) become

G̃j(θ, ζ) =

N∑

i=1

Φ̂j,i(θi, x̃(i|θ, ζ), ζ)

{
= 0, j = 1, . . . , qe, (19a)

≥ 0, j = qe + 1, . . . , q, (19b)
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where Φ̂j,i is defined by (7). Problem A is thus transformed into the following problem: Choose
(θ, ζ) ∈ R

N × R
r to minimize the transformed cost function

G̃0(θ, ζ) =
N∑

i=1

Φ̂0,i(θi, x̃(i|θ, ζ), ζ) (20)

subject to the dynamics (9) and (17), the constraints (4), (12) and (19) and the jump conditions
(18). We refer to this problem as Problem B.

Problems A and B are mathematically equivalent. Thus, a solution of Problem A can be used to
generate a solution of Problem B, and vice versa. Note that the variable jump times in Problem A
have been replaced by fixed jump times in Problem B. This makes Problem B much easier to deal
with from a computational point of view, as it is well known that variable jump times cause numerical
difficulties [6,8,10]. However, Problem B still cannot be solved using conventional impulsive control
techniques. This is because the jump conditions (18) and the canonical functions in (19) and (20) are
expressed as discontinuous piecewise functions of θi. In fact, (18) can be written as follows:

x̃(i+) =

{
x
0
, if i = 0, (21a)

x̃(i−) + χ[ǫi,∞)(θi)φ
i(x̃(i−), ζ), if i ∈ {1, . . . , N}, (21b)

where

χ[ǫi,∞)(θi) =

{
1, if θi ≥ ǫi,

0, otherwise.

Clearly, the presence of the indicator function χ[ǫi,∞) causes the jump conditions (21) to be discon-
tinuous. In [11], this difficulty was tackled by approximating the indicator function by a continuously
differentiable function that depends on a smoothing parameter. However, to achieve sufficient accu-
racy, the value of the smoothing parameter must be reduced to the point where it leads to numerical
difficulties.

In the next section, we propose a new approach that involves introducing binary decision variables
to transform the jump conditions and the canonical functions into smooth forms. The advantage of
this new approach is that it yields an equivalent problem, not just an approximation.

3.2 Transforming the Jump Conditions and Canonical Functions

Let vi, i = 1, . . . , N , be new binary decision variables defined as follows:

vi =

{
1, if θi ≥ ǫi, (22a)

0, if θi = 0. (22b)

Using these binary variables, the jump conditions in (18) can be written in a more compact form as

x̃(i+) =

{
x
0
, if i = 0, (23a)

x̃(i−) + viφ
i(x̃(i−), ζ), if i ∈ {1, . . . , N}. (23b)

As in (18), we use the convention N+ = N here.
Let v = [v1, v2, . . . , vN ]⊤. Furthermore, let x̃(·|v,θ, ζ) denote the right-continuous solution of

(17) and (23) corresponding to (v,θ, ζ). Then the canonical constraints in (19) can be written as

G̃j(v,θ, ζ) =

N∑

i=1

viΦj,i(x̃(i|v,θ, ζ), ζ)

{
= 0, j = 1, . . . , qe, (24a)

≥ 0, j = qe + 1, . . . , q. (24b)

Standard optimization algorithms such as interior-point methods and sequential quadratic program-
ming (see [13,14]) cannot handle binary variables in the form of (22). Therefore, to proceed, we drop
the binary requirements and consider each vi as a continuous optimization variable subject to the
following constraints:

0 ≤ vi ≤ 1, i = 1, . . . , N, (25)

and
gi(vi) = vi(1− vi) ≤ 0, i = 1, . . . , N. (26)
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It is clear that (25) and (26) imply vi ∈ {0, 1}. However, we also need to ensure that vi is consistent
with the definition given in (22). Thus, we impose the following additional constraints:

hi(vi, θi) = (ǫi − θi)vi ≤ 0, i = 1, . . . , N, (27)

and

Hi(vi, θi) = θi(1− vi) ≤ 0, i = 1, . . . , N. (28)

We now prove that definition (22) is equivalent to (25)-(28).

Theorem 1 Suppose that vi, i = 1, . . . , N , satisfy constraints (25) and (26). Then for each integer
i ∈ {1, . . . , N}, (22) holds if only if (27) and (28) hold.

Proof First, suppose that (22) is satisfied. Then vi = 0 implies θi = 0 and hi(vi, θi) = 0. Furthermore,
θi = 0 implies Hi(vi, θi) = 0.

Similarly, vi = 1 implies θi ≥ ǫi, hi(vi, θi) = ǫi − θi ≤ 0 and Hi(vi, θi) = 0. Therefore, (27) and
(28) are satisfied.

Conversely, suppose inequalities (27) and (28) are satisfied. By (25) and (26), vi ∈ {0, 1}. If vi = 0,
then by (28),

vi = 0 =⇒ θi = θi(1− vi) ≤ 0. (29)

Since θi, the duration of the ith subinterval, is non-negative, (29) implies that θi must be equal to
zero. Thus, if vi = 0, then θi = 0 as required by (22b).

On the other hand, if vi = 1, then by (27),

vi = 1 =⇒ ǫi − θi = (ǫi − θi)vi ≤ 0 =⇒ θi ≥ ǫi.

Hence, if vi = 1, then θi ≥ ǫi as required by (22a). This completes the proof.

Remark 1 Recall that constraints (12a) ensure that each active subsystem operates for at least the
length of its minimum duration. We now show that, with the new constraints (27) and (28) in place,
constraints (12a) actually become redundant. Suppose that (12b) and (25)-(28) are satisfied and
0 < θi < ǫi. If vi = 0, then (12b) and (28) imply θi = 0, which is a contradiction. If vi = 1, then
(27) implies ǫi − θi ≤ 0, which is also a contradiction. Thus, when (12b) and (25)-(28) hold, it is
impossible for θi to lie in the open interval (0, ǫi). This implies that (12a) is redundant.

With this remark in mind, we now define a new problem as follows: Choose (v, θ, ζ) ∈ R
N ×R

N ×
R

r to minimize the cost function

G̃0(v,θ, ζ) =

N∑

i=1

viΦ0,i(x̃(i|v,θ, ζ), ζ)

subject to the dynamics given by (9) and (17), the jump conditions given by (23), the constraints
given by (12b) and (25)-(28), the canonical constraints given by (24) and the bounds given by (4).
We refer to this problem as Problem C.

By transforming Problem B into Problem C, we obtain smooth jump conditions and smooth
canonical functions. The remaining difficulty is that, as the constraints (25) and (26) define a disjoint
feasible region for vi, i = 1, . . . , N , standard numerical optimization algorithms will struggle to find
an optimal solution. In the next section, we introduce a penalty method to overcome this difficulty.

4 An Exact Penalty Method

The exact penalty approach involves forming a new objective function by adding terms based on the
constraints to the objective. With this approach, Problem C, a constrained optimization problem,
is transformed into an approximate unconstrained problem that can be readily solved using the
optimal control softwareMISER 3.3. MISER 3.3 automatically calculates the gradient of the objective
function using a numerical procedure that involves integrating a costate system backwards in time.
For more details, see [6,10].
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The constraint violation is defined by:

∆(v,θ, ζ) =

qe∑

j=1

[
G̃j(v, θ, ζ)

]2
+

q∑

j=qe+1

[
min {0, G̃j(v,θ, ζ)}

]2

+

N∑

i=1

[
max {0, gi(vi)}

]2
+

N∑

i=1

[
max {0, hi(vi, θi)}

]2

+

N∑

i=1

[
max {0,Hi(vi, θi)}

]2
+ [t(N)− T ]2.

Note that ∆(v,θ, ζ) = 0 if and only if constraints (9b), (24) and (26)-(28) are satisfied.

Using the strategy introduced in [3,9,21,22], an exact penalty function Ĵσ(v,θ, ζ, λ) is defined as
follows:

Ĵσ(v,θ, ζ, λ) =





G̃0(v, θ, ζ), if λ = 0 and ∆(v,θ, ζ) = 0,

G̃0(v, θ, ζ) + λ−α∆(v,θ, ζ) + σλβ , if λ > 0,

+∞, otherwise,

where

• λ is a new decision variable;
• σ > 0 is the penalty parameter;
• α and β are positive constants satisfying 1 ≤ β ≤ α.

The new decision variable λ is subject to the following bounds:

0 ≤ λ ≤ λ̃, (30)

where λ̃ > 0 is a small positive number.

We now define the following unconstrained penalty problem: Choose (v,θ, ζ) ∈ R
N×R

N ×R
r and

λ ∈ R to minimize Ĵσ(v, θ, ζ, λ) subject to the dynamics given by (9a) and (17), the jump conditions
(23) and the bounds given by (4), (12b), (25) and (30). We refer to this problem as Problem D.

Note that when the penalty parameter σ is large, the third term σλβ in Ĵσ forces λ to be small,
thus causing the second term λ−α∆(v,θ, ζ) to severely penalize any constraint violations. When the
penalty parameter σ is sufficiently large, any solution of the penalty problem (i.e. Problem D) is also
an optimal solution of Problem C [9,21–23].

Problem D is an optimal parameter selection problem involving a switched impulsive system with
fixed jump times. Such problems can be solved using the software package MISER 3.3, which is based
on gradient-descent optimization techniques.

In the next section, we demonstrate the efficiency of the proposed method outlined in this paper
with a numerical example.

5 Numerical Results

We consider the shrimp farming problem formulated by Yu and Leung in [20]. The dynamics in this
problem are described by the following differential equations:

ẋ1(t) = −0.03x1(t), x1(0) = 4.0× 104, (31)

ẋ2(t) = 3.5− 10−5
x1(t)x2(t), x2(0) = 1, (32)

where

• t is the time in weeks;
• x1(t) is the number of remaining shrimp at time t;
• x2(t) is the average weight of an individual shrimp in grams at time t.



Optimal Control of Impulsive Switched Systems 9

Harvest No. x1 x2 Harvest Time Harvesting Fraction

1 32173 6.86360 3.23733 0.113651
2 27769 7.70245 3.94938 0.118238
3 23778 8.67658 4.72935 0.123459
4 20174 9.81421 5.58682 0.129454
5 16933 11.15094 6.53325 0.136460
6 14033 12.73232 7.58251 0.144774
7 11452 14.61674 8.75118 0.154842
8 9168 16.88034 10.05957 0.167346
9 7163 19.62287 11.53240 0.183366
10 6814 22.97670 13.20000 1.000000

Table 1 Results from MISER 3.3 using the method described in [8]

Let N denote the number of shrimp harvests and let T denote the time of the final harvest. In this
example, we take T = 13.2 weeks.

Let τi ∈ [0, T ] denote the time of the ith harvest, with τN = T referring to the final harvest time.
Note that these harvest times satisfy the following ordering constraints:

0 = τ0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τN = T. (33)

Furthermore, let ζi denote the fraction of shrimp stock harvested at time τi. Then

0 ≤ ζi ≤ 1, i = 1, . . . , N. (34)

The first state variable, which represents the number of shrimp, is subject to the following jump
conditions:

x1(τ
+
i )− x1(τ

−

i ) = −ζix1(τ
−

i ), if i ∈ {1, . . . , N} and τi − τi−1 ≥ ǫi, (35)

where ǫi > 0 is the given minimum duration between successive harvests. However, the second state
variable, the average weight of shrimp, does not experience state jumps:

x2(τ
+
i )− x2(τ

−

i ) = 0, i = 1, . . . , N. (36)

The following model is suggested by Yu and Leung [20] for the total revenue over the production
cycle of 13.2 weeks:

R1 =

N∑

i=1

[
(8× 10−3)x1(τ

−

i )x2(τi)ζi − 50
]
. (37)

The above expression for total revenue assumes a sale price of $8 per kilogram for the shrimp and a
fixed cost of $50 per harvest. Note that expression (37) for the revenue will result in the fixed cost
of $50 dollars being imposed at every harvest time, even if multiple harvest times coincide. Thus, we
consider the modified revenue function given by

R2 =

N∑

i=1

Φ̂0,i(τi − τi−1, x1(τ
−

i ), x2(τi), ζi), (38)

where Φ̂0,i(τi − τi−1, x1(τ
−

i ), x2(τi), ζi) is defined as:

Φ̂0,i(τi − τi−1, x1(τ
−

i ), x2(τi), ζi) =

{
(8× 10−3)x1(τ

−

i )x2(τi)ζi − 50, if τi − τi−1 ≥ ǫi, (39a)

0, if τi − τi−1 = 0. (39b)

We assume here that N = 10 (9 intermediate harvests and 1 final harvest).
The problem is to minimize J = −R2, where R2 is given by equation (38), subject to the dynamics

(31)-(32), the jump conditions (35)-(36), the bounds (34) and the ordering constraints on τi given by
(33). We first solve this problem using the method in [8], which is implemented in MISER 3.3 and
involves maximizing the revenue function R1. Here, we impose a lower bound of 0.45 weeks on each
of the durations between two consecutive harvests. Note that this is required because of the nature
of the problem class in [8], which does not allow zero subsystem durations.

The results obtained are tabulated in Table 1. The optimal value of the revenue function cor-
responding to the results depicted in Table 1 is 2.9037867× 103. Note that the solution in Table 1
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Harvest No. x1 x2 Harvest Time Harvesting Fraction

1 21535 7.77148 4.27134 0.388030
2 10580 12.64344 7.80877 0.453674
3 9000 22.23958 13.20000 1.000000

Table 2 Results from our new method described in this paper

σ λ∗ Penalty Function Value Constraint Violation

100 1.00000 × 10−1 3.19832213 × 103 8.80240 × 10−2

101 1.00000 × 10−1 3.19806847 × 103 9.10594 × 10−2

102 1.00000 × 10−1 3.19553193 × 103 3.03930 × 10−3

103 1.18314 × 10−3 3.18890576 × 103 1.89485 × 10−9

104 3.53827 × 10−6 3.18893349 × 103 1.87380 × 10−16

105 1.75704 × 10−6 3.18893339 × 103 4.62264 × 10−17

106 3.92612 × 10−7 3.18893340 × 103 0.00000

Table 3 Numerical convergence using α = 2.00 and β = 1.55

includes every potential harvest (i.e. no harvests have been deleted). This is expected, as the algo-
rithm in [8] has no capacity to eliminate non-optimal harvests. Thus, the solution in Table 1 may or
may not be optimal.

Table 2 shows the results obtained using our new algorithm developed in this paper. The notable
feature here is that, by imposing a minimum duration of 0.45 weeks between two consecutive harvests,
we obtained a maximum revenue of 3.1889334× 103 with only 3 harvests taking place. In essence, in
this example, 7 harvests have been removed (recall that we allowed up to N = 10 potential harvests).

The optimal harvest times corresponding to the solution in Table 2 are as follows:

τ1 = 4.27134, τ2 = 4.27134, τ3 = 4.27134, τ4 = 4.27134, τ5 = 7.80877,

τ6 = 7.80877, τ7 = 7.80877, τ8 = 7.80877, τ9 = 7.80877, τ10 = 13.2.

Table 3 shows the progression of the penalty method corresponding to the solution in Table 2.
Note that these results show a clear convergence of the objective function and the constraint violation
as the penalty parameter σ is increased.

Figure 1 shows the number of shrimps at each point in the production cycle for the solutions in
Tables 1 and 2. Note the difference in the solutions in Figure 1, one of which was obtained using
the method in [8] and the other using our new method. As there are no jump conditions imposed on
the average weight of the shrimp (see (36)), the two trajectories depicted in Figure 2 are almost the
same.

6 Concluding Remarks

We have developed an effective computational technique for solving a class of impulsive switched
system optimal control problems, where the objective and constraints depend on the duration of
each subsystem. This technique is based on a novel combination of the time-scaling transformation,
binary relaxation, and exact penalty methods. The algorithm was successfully tested on a shrimp
farming problem arising in aquaculture operations.
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