
ar
X

iv
:1

30
1.

46
67

v1
 [

m
at

h.
O

C
]

 2
0

Ja
n

20
13

A New Hybrid Classical-Quantum Algorithm for Continuous

Global Optimization Problems

Pedro C. S. Lara1, Renato Portugal1, and Carlile Lavor2

1Laboratório Nacional de Computação Cient́ıfica, Petrópolis, Brazil,
{pcslara,portugal}@lncc.br

2IMECC/Unicamp, Campinas, Brazil,
clavor@ime.unicamp.br

Abstract

Grover’s algorithm can be employed in global optimization methods providing, in some cases, a

quadratic speedup over classical algorithms. This paper describes a new method for continuous global

optimization problems that uses a classical algorithm for finding a local minimum and Grover’s algorithm

to escape from this local minimum. Simulations with testbed functions and comparisons with algorithms

from the literature are presented.

Keywords: Global optimization, Quantum computing, Continuous functions, Grover’s algorithm.

1 Introduction

In general, we could say that global optimization is about finding the best solution for a given problem.
Global optimization algorithms play an important role in many practical problems. A recent review of
different methods in global optimization can be found in [4].

Recently, some papers addressed the problem of finding the global minimum of discrete [2, 7, 8] and con-
tinuous functions [9, 10] using quantum algorithms, where the method used in the discrete case is an extension
of Dürr and Høyer’s (DH) algorithm [3], which in turn is based on the quantum search algorithm developed
by Boyer et. al. (BBHT) [1]. This was made possible after Lov Grover has discovered the seminal algorithm
for searching one item in an unsorted database with N distinct elements [5]. Grover’s algorithm finds the
position of the desired element querying the database O(

√
N) times, which is a quadratic improvement with

respect to the number of times classical algorithms query the database.
The goal of this work is to present a new method to solve continuous global optimization problems. It

is a hybrid method that uses an efficient classical algorithm for finding a local minimum and a quantum
algorithm to escape from that, in order to reach the global minimum.

The article is organized as follows. In Sec. 2, we describe the relationship between quantum algorithms
and global optimization problems, and we review the DH and Baritompa et. al (BBW) algorithms. In Sec. 3,
we describe the new method proposed in this paper. In Sec. 4, we present the simulations and discuss the
results of this work. Finally, in Sec. 5, we present our conclusions.

2 Quantum Search and Global Optimization Problems

We start by describing the problem that Grover’s algorithm addresses. Consider a boolean function h :
{0, · · · , N − 1} → {0, 1}, where N = 2n and n is some positive integer, such that

h(x) =

{

1, if x ∈ M ;
0, otherwise,

(1)

1

http://arxiv.org/abs/1301.4667v1

where M ⊆ {0, · · · , N − 1}. The goal is to find an element x0 ∈ M by querying function h(x) the least
number of times. Grover [5] described a quantum algorithm that finds x0 when |M | = 1, that is, the only
element in M is x0. Grover’s algorithm finds x0 with probability greater than or equal to 1−1/N by querying
h around π

4

√
N times. Internally, the algorithm uses an initial vector in a Hilbert space that undergoes π

4

√
N

rotations of small angles θ, such that sin(θ/2) = 1/
√
N . The initial vector is the normalized vector obtained

by adding all vectors of the canonical basis (also known by computational basis) of the N -dimensional Hilbert
space, which yields a vector of equal entries, the value of which are 1/

√
N . After π

4

√
N Grover’s rotations,

the final vector has a large overlap with the vector that represents the solution. This is the guarantee one
needs to be sure that a measurement of the quantum computer in this final state will yield x0 with high
probability. One rotation in the algorithm is also called a Grover iteration. In each Grover iteration, function
h is queried one time. The number of times h is queried is the main parameter to measure the efficiency of
hybrid classical-quantum algorithms.

Boyer et. al. generalized Grover’s algorithm in two directions [1]. Firstly, they considered the case |M | > 1
and showed that the number of rotations required to find one element in M with probability greater than or
equal to 1− 1/N is

π

4

√

N

|M | .

The number of Grover iterations decreases when |M | > 1 because the dimension of the subspace of the
Hilbert space spanned by elements in M is |M |. One obtains a large overlap between the final vector state
of the quantum computer with the solution-subspace with less Grover rotations. That is a straightforward
generalization of Grover’s algorithm.

Secondly, the authors addressed the problem of finding one element in M without knowing a priori the
number of elements in M . The main problem in this case is to know what is the best number of rotations.
If the algorithm performs too few or too many rotations, the probability to find the correct results becomes
small. Their strategy is to start the algorithm by performing a small number of Grover rotations followed
by a measurement, which yields an element x ∈ {0, · · · , N − 1}. One checks whether h(x) = 1. If that fails,
start over again and increase the number of Grover rotations. The key point is to determine the increment
rate. Formally, the BBHT algorithm [1], which finds a marked element when the number of solutions is not
known in advance (unknown |M |), can be written in a pseudo-code as Algorithm 1. Boyer et. al. proved that
the expected running time of the algorithm is O(

√
N/|M |) if each query to function h is evaluated in unit

time. They observed that any value of λ in the range 1 < λ < 4/3 is allowed.

Algorithm 1: BBHT Algorithm

1 begin

2 Initialize m = 1 and set λ = 8/7;
3 Choose an integer j uniformly at random such that 0 ≤ j < m;
4 Apply j Grover’s iterations starting from the initial vector;
5 Perform a measurement (let x be the outcome);
6 If h(x) = 1, return the result x;

7 Otherwise, set m to min{λm,
√
N} and go to line 3;

8 end

Using the BBHT algorithm, Dürr and Høyer [3] proposed an algorithm to find the minimum element of
a finite list L, which can be seen either as finding the index of the smallest element in a database or as a
discrete global optimization problem. At the beginning, the algorithm selects at random one element y in L
and searches for elements in set M = {y′ ∈ L|y′ < y} using the BBHT algorithm. If it succeeds, y′ is the new
candidate for minimum value and the BBHT algorithm will be used again and again until the minimum is
found with probability greater than 1/2. In order to use the BBHT algorithm in the way we have described,
we have to suppose that the number of elements of the list is N = 2n and we have to search for the indices of
the elements (instead for the elements themselves), because the domain of function h in Grover’s algorithm

2

is {0, · · · , N − 1}. The details can be found in Ref. [3]. Dürr and Høyer showed that the running time of the
algorithm is O(

√
N) and the probability of finding the minimum is at least 1/2. Their analysis is valid when

all elements of the list are distinct.
Baritompa et. al (BBW) [2] used the DH algorithm to propose a generic structure of a quantum global

optimization algorithm for a discrete function f : {0, · · · , N − 1} → L, where L is a list of N numbers, such
that f(x) is the (x+1)-th element in L. We use the notation h for the oracle function and f for the function
the minimum of which we want to find. Note that in the DH algorithm, the BBHT algorithm is used as a
black box. BBW uses the BBHT algorithm explicitly, and can be written in a pseudo-code as Algorithm 2.
GAS is the basis for the quantum algorithm used in this work.

Algorithm 2: Grover Adaptive Search (GAS)

1 begin

2 Generate x0 uniformly in {0, · · · , N − 1} and set y0 = f(x0).;
3 for i = 1, 2, · · · , until a termination condition is met do

4 Perform ri Grover’s rotations marking points with image ≤ yi−1. Denote outputs by x and y;
5 if y < yi−1 then

6 set xi = x and yi = y;
7 else

8 set xi = xi−1 and yi = yi−1;
9 end

10 end

11 end

GAS reduces to the DH algorithm if: (1) the integer ri is chosen uniformly at random in the range
0 ≤ ri < m, (2) m is incremented as m = λm if y ≥ yi and m = 1 otherwise, where λ = 8/7, as in the BBHT
algorithm, and (3) the termination condition is that the accumulated number of Grover’s rotations is greater
than 22.5

√
N + 1.4 log2 N .

Baritompa et. al improved the prefactor that describes the running time of the BBHT algorithm. They
prove that for λ = 1.34, the expected number of oracle queries for the BBHT algorithm to find and verify a
marked element repeated t times is at most 1.32

√

N/|M |
(

BBHT uses the threshold 8
√

N/|M |
)

. They also
provide a detailed proof of the quadratic speedup of the DH algorithm when there are repeated elements.
They have proposed a new version of the minimization algorithm by changing the method of choosing the
number of Grover’s rotations in each round of the algorithm. Instead of selecting ri at random, they have
proposed a deterministic method in such way that the number of rotations follows a pre-computed sequence of
integers. The BBW version avoids to set m = 1 each time the algorithm finds a new candidate for minimum.
This is also proposed in Ref. [6], which shows that the number of measurement reduces from O(log2 N) in
the DH algorithm to O(logN) in the version that set m = 1 only once at the beginning of the algorithm.
The running time of the BBW deterministic version is 2.46

√
N, when there are no repeated elements while

the running time of the DH algorithm is 22.5
√
N . There is no way to improve the scaling of those algorithms

using quantum computing, as been proved by Bennett et. al [11] and Zalka [12]. Only the prefactor may be
reduced.

3 A New Method for Continuous Functions

The new method proposed in this paper is a hybrid algorithm that employs a classical optimization routine to
find a local minimum and the GAS algorithm to escape from that minimum towards another better candidate.
We consider continuous and differentiable real functions f : D → R with n variables, where the domain D is
a n-dimensional finite box. In order to implement a computer program to find the global minimum point of
a continuous function, we discretize the function domain using intervals of same length ǫ for all variables and
we convert the domain points, which form a n-dimensional array, into a one-dimensional array, generating a

3

list of N points. After this discretization and conversion to one-dimensional representation, the domain of
f can be taken as the set {0, · · · , N − 1}. This process is mandatory because to perform Grover’s rotations
we need an oracle function h with domain {0, · · · , N − 1}. The value of ǫ depends on the structure of the
function and on the optimization problem. This parameter will be used in classical optimization routines to
characterize the precision of local minimum points, and at the end to characterize the precision of the global
minimum point. The general structure of the new algorithm is given in Algorithm 3.

Algorithm 3: The New Method

1 begin

2 Generate x′ uniformly at random in {0, · · · , N − 1};
3 Use a classical optimization routine with input x′ to find a local minimum x0 and set y0 = f(x0);
4 Set m = 1 and λ = 1.34 (as suggested in BBW);
5 for i = 1, 2, · · · , until a termination condition is met do

6 Define Mi = {x ∈ {0, · · · , N − 1}|f(x) < yi−1};
7 Choose ri uniformly at random in {0, · · · , ⌈m− 1⌉};
8 Apply ri Grover’s rotations;
9 Perform a measurement. Let x′ ∈ {0, · · · , N − 1} be the output;

10 if x′ ∈ Mi then

11 Use the classical optimization routine with input x′ to find a local minimum xi;
12 Set yi = f(xi);

13 else

14 Set xi = xi−1, yi = f(xi), and m = min{λm,
√
N};

15 end

16 end

17 return last value of xi;

18 end

The termination condition determines the running time of the algorithm. In the new method, the ter-
mination condition takes into account the total number of Grover’s rotations and the total number that the
objective function is evaluated when classical optimization routines are employed. The weight of the classical
objective function evaluation is higher by a factor of

√
N/ logN compared to the function evaluation in each

Grover’s rotation. If n1 is the number of Grover’s rotations and n2 is the number of objective function
evaluations in classical optimization routines, then the termination condition is

n1 +

√
N

logn N
n2 > 2.46

√
N, (2)

where n is the number of variables of the objective function. In the worst case, the algorithm has running
time O(

√
N), and in cases for which classical algorithms are able to find the global minimum without using

the quantum part, the running time is O(logn N).
Algorithm 3 is a randomized algorithm. The success probability cannot be calculated until the classical

optimization algorithm is specified. We are assuming that in the worst case the classical algorithm will take
O(logn N) steps to find a local minimum after a initial point is given. The computational results presented
in the next Section confirm that assumption.

4 Computational Results

Baritompa et. al compare their improved version of the minimization algorithm (BBW) to the one of Dürr
and Høyer’s (DH) by displaying performance graphs, that depict the success probability of the algorithms
in terms of the (computational) effort. The effort is the number of objective function evaluations before a
new candidate for minimum point is found plus the number of measurements. The number of measurements

4

does not play an important role for large N , because it scales logarithmically in terms of N . In the first
part of this Section, we use the same technique to show that the new method generates better results. This
kind of analysis was performed in Ref. [13] for adaptive random search, the structure of which is similar
to the Grover adaptive search. The details about the comparison between BBW and DH algorithms using
performance graphs can be obtained in Refs. [2, 7, 8].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200

su
cc

es
s

pr
ob

ab
ili

ty

effort

One-variable Griewank test

New method
BBW

DH
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800

su
cc

es
s

pr
ob

ab
ili

ty

effort

Two-variable Griewangk test

New method
BBW

DH

Figure 1: Performance graphs comparing the new method with Baritompa et. al. (BBW) and Dürr-Hoyer
(DH) using one and two-variable Griewank test functions.

Figs. 1 and 2 show the performance graphs that compare the new method with the BBW and DH
algorithms. We use one, two, and three-variable Griewank test functions with domain −40 ≤ x0, x1, x2 ≤ 40,
which are described in Appendix A. The classical routine used in Algorithm 3 (lines 3 and 11) to find a
local minimum is the BOBYQA routine [25]. To generate those graphs, we create a sample with N function
values taking {0, . . . , N − 1} as the domain set (as described in Sec. 3). The value of N for one-variable
Griewank test is N = 2048, for two-variable is N = 2562, and for three-variable is N = 643. We average out
this process 100,000 times for each graph. We take larger parameter ǫ for the three-variable case, because
to calculate the average is time-consuming. All algorithms are implemented in the C language, and it takes
about half an hour in a 2.2 GHz Intel Core i7 processor to generate the graphs of Fig. 2.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400

su
cc

es
s

pr
ob

ab
ili

ty

effort

Three-variable Griewangk test

New method
BBW

DH

Figure 2: Performance graphs comparing the new method with Baritompa et. al. (BBW) and Dürr-Hoyer
(DH) using three-variable Griewank test function.

The new method is better than the previous methods in all those tests. Note that it becomes even better
when the number of variables increases, as can be seen in Fig. 2. To have a success probability of 50% for

5

the three-variable Griewank function, the effort of the new method is less than 200 and the effort of the
BBW and DH algorithms must be greater than 500. Similar curves are obtained when we use other classical
optimization routines, mainly for one and two-variable objective functions. For three-variable functions, some
optimization routines did not produce good results. We discuss this problem later on, when we compare the
efficiency of different optimization routines.

To compare the new method with BBW and DH in more details, we employ the most used performance
test problems in global optimization, selecting test functions with one to three variables (the list of test
functions is in Appendix A). For our experiments we use the NLopt C library [14]. NLopt is an open-source
library under GNU license for nonlinear optimization with a collection of classical optimization routines. It
can be used both for global and local optimization problems. In this work, we use this library for the latter
case. It is written in C and has interface with many languages. The specific routines that we use in this work
are:

• LBFGS - This routine is based on variable-metric updates via Strang recurrence of the low-storage
BFGS routine [15, 16].

• TNEWT - This routine is based on truncated Newton algorithms for large-scale optimization [17].

• MMA - This routine is based on a globally-convergent method-of-moving-asymptotes algorithm for
gradient-based local optimization, including nonlinear inequality constraints [18].

• COBYLA - This routine is a constrained optimization by linear Approximations algorithm for derivative-
free optimization with nonlinear inequality and equality constraints [19].

• NMEAD - This routine is a simplex method for function minimization (Nelder-Mead simplex algo-
rithm) [20, 21].

• AGL - This routine is a globally convergent augmented Lagrangian algorithm with general constraints
and simple bounds [23, 24].

• BOBYQA - This routine performs derivative-free bound-constrained optimization using an iteratively
constructed quadratic approximation for the objective function [25].

• CCSA - This routine is a conservative convex separable approximation method, which is a variant of
MMA algorithm [18].

In the experiments that compare the optimization routines, we create a sample with N function values
taking {0, . . . , N − 1} as the domain set (as described in Sec. 3). The value of N depends on the number of
variables: for functions with one variable, we take N = 2048, for 2 variables, N = 20482, and for 3 variables,
N = 2563. With this sample, we compute the running time (number of objective function evaluations) of
each algorithm until they find the correct global minimum. We are overriding the termination conditions in
all algorithms in order to check what is the total number of function evaluations until the correct minimum
is found. We average out this process 100 times for each routine.

Table 1 shows the total number of function evaluations for the one-variable case performed by the new
method. The first line lists the optimization routine used in Algorithm 3 (routines with asterisk use function
derivative) and the first column lists the name of the test function. The expression and domain of the test
functions are described in Appendix A. To highlight the best and worst routines described in Table 1, we
highlight the smallest number of evaluations in blue and largest in red for each test function. The results show
that the routine efficiency depends on the test function in general. For one-variable functions, the LBFGS
and BOBYQA routines have the best performance while NMEAD has the worst, except for the Shekel and
Schwefel functions. The timings increase when we increase the number of sample values (smaller ǫ), but the
table structure remains the same. On the other hand, if we decrease too much the number of sample values,
the structure of the table changes significantly, and the information about the best and worst routines is
almost meaningless. From the timings in Table 1, we cannot conclude that routines using function derivative

6

fcn.

rout.
LBFGS∗ TNEWT∗ MMA∗ COBYLA NMEAD SBPLX AGL∗ BOBYQA CCSAQ∗

Neumaier 9.00 17.52 33.00 11.00 193.5 236.2 34.00 11.00 32.67

Griewank 58.63 92.77 104.0 99.21 252.5 214.5 108.8 52.61 108.6

Shekel 12.00 15.00 32.67 11.81 5.05 11.37 33.66 11.00 33.00

Rosenbrock 84.86 110.5 153.8 129.7 220.4 207.9 159.1 101.7 165.5

Michalewicz 55.93 92.71 85.75 131.2 185.7 153.6 89.46 39.06 91.82

Dejong 9.00 15.00 32.67 84.74 133.7 179.7 33.66 11.00 33.00

Ackley 90.39 106.3 129.6 136.6 212.8 210.3 141.6 44.49 145.4

Schwefel 9.00 12.00 66.26 21.95 4.00 25.15 34.00 19.57 33.00

Rastrigin 75.75 91.58 33.00 70.12 244.9 236.6 76.09 36.51 89.57

Raydan 25.87 43.97 33.00 55.94 191.8 178.6 34.00 28.89 36.73

Table 1: Average number of evaluations of one-variable testbed functions using optimization routines specified
in the first line. Smallest number of evaluations in blue and largest in red.

fcn.

rout.
LBFGS∗ TNEWT∗ MMA∗ COBYLA NMEAD SBPLX AGL∗ BOBYQA CCSAQ∗

Neumaier 1126 1671 1434 22.00 8943 9771 1204 122.8 1213

Griewank 1583 1441 1290 612.0 9285 9077 1012 412.2 1036

Shekel 2643 2785 1575 22.00 8.00 22.01 1824 21.78 1933

Rosenbrock 217.3 770.2 1333 5762 7614 9707 1300 1086 1155

Michalewicz 1707 1881 1409 3887 10323 9841 1283 390.4 1258

Dejong 1534 1316 1379 22.00 6174 7356 1477 21.78 1433

Ackley 2385 2083 1487 1958 7611 7232 2001 638.0 2822

Schwefel 2101 1795 1422 356.7 53.71 1502 1306 70.32 1475

Rastrigin 1390 1219 1413 1360 7695 6180 1265 191.4 1153

Raydan 1718 1726 1445 467.0 9430 10211 1540 324.7 1651

Table 2: Average number of evaluations of two-variable testbed functions using optimization routines specified
in the first line. Smallest number of evaluations in blue and largest in red.

are better than routines that do not use derivative. The total simulation time to produce the data in Table 1
is at order of some minutes.

Table 2 shows the total number of function evaluations for the two-variable case performed by the new
method. The results show that the best-performance routines depend heavily on the test function. The
BOBYQA routine has the best performance, while SBPLX has the worst performance. It is remarkable
that the NMEAD routine has the best performance for the Shekel and Schwefel test functions and the worst
performance for the Griewank, Michalewicz, Ackley, and Rastrigin functions. This behavior also occurs with
one-variable functions, as we remarked earlier. All those six functions are multimodal. The total simulation
time to produce the data in Table 2 is about one hour.

Table 3 shows the total number of function evaluations for the three-variable case performed by the new
method. The results show again that the best-performance routines depend heavily on the test function. The
BOBYQA routine has a small advantage while NMEAD and SBPLX have the worst performance. Notice
that we are using N = 2563 in the discretization procedure, which means that we use 256 points in each
axis. This number is rather small and represents the continuous functions in a gross manner. We do not
use larger number of function values, because the total simulation time, which includes the averages, is long.
Using such small number of function values, the best method seems to be BOBYQA and the worst NMEAD,
similar to what happens with two-variable functions. It is also similar to what happens with one-variable
functions, except that LBFGS is not as efficient as in one-variable case. The total simulation time to produce
the data in Table 3 is about five hours.

Table 4 shows the total number of objective function evaluations until the global minimum is found for
the three algorithms used in this work. In this experiment, we use the same discretization parameters used in
the previous tables and we override again the termination condition of the algorithms, that is, the algorithms
run until the correct global minimum is found. When we use the correct termination condition for each

7

fcn.

rout.
LBFGS∗ TNEWT∗ MMA∗ COBYLA NMEAD SBPLX AGL∗ BOBYQA CCSAQ∗

Neumaier 1789 4467 3622 4147 6099 6805 4080 1390 3215

Griewank 2932 2172 1500 1128 11392 12001 3179 711.4 938.7

Shekel 4775 5137 1900 24.00 12.00 24.00 1300 24.00 1742

Rosenbrock 1776 1847 1898 3795 18074 18199 2592 4018 2531

Michalewicz 8051 4843 – 4037 14779 9944 2209 3873 1468

Dejong 2604 2685 1582 1005 9735 6608 1953 23.76 1338

Ackley – 918.3 1674 2944 16455 15680 2390 1098 1249

Schwefel 6988 7549 557.0 141.7 1100 209.3 883.2 172.4 1619

Rastrigin 2578 555.7 1779 1638 11386 9408 1365 925.1 1180

Raydan 2826 2908 1816 726.9 17283 16469 2081 780.1 1628

Table 3: Average number of evaluations of three-variable testbed functions using optimization routines
specified in the first line. Smallest number of evaluations in blue and largest in red.

variables one variable two variables three variables

fcn.

meth.
NEW BBW DH NEW BBW DH NEW BBW DH

Neumaier 9.00 97.50 112.4 22.00 960.8 694.0 1390 371.3 13660

Griewank 52.61 70.21 88.44 412.2 865.1 1119 711.4 884.4 2643

Shekel 5.05 99.04 113.6 8.00 944.0 4588 12.00 528.0 18143

Rosenbrock 84.86 87.68 124.3 217.3 852.8 11017 1776 – 4580

Michalewicz 39.06 90.13 107.7 390.4 739.3 2794 1468 685.5 17334

Dejong 9.00 75.00 97.50 21.78 826.6 3056 23.76 826.9 5886

Ackley 44.49 102.0 114.4 638.0 805.7 875.0 918.3 617.0 4260

Schwefel 4.00 88.38 124.2 53.71 871.1 3675 141.7 685.5 13475

Rastrigin 33.00 74.48 99.45 191.4 792.2 3510 555.7 967.0 1010

Raydan 25.87 93.24 115.2 324.7 609.6 10063 726.9 774.0 4948

Table 4: Total number of objective function evaluations for the new method, the BBW and DH algorithms
using one, two, and three-variable test functions.

algorithm, the number of objective function evaluations is close to the ones showed in the Table 4, but in a
fraction of cases (smaller than 50%) we do not find the correct global minimum point. In this experiment,
the new method uses the most efficient routine for each test function, information that is obtained from
Tables 1, 2, and 3. For one and two-variable test functions, the advantage of the new method is remarkable.
The advantage in the three-variable case is not so impressive, in contradiction to what we have concluded
earlier, when we analyzed the performance graphs in Figs. 1 and 2. For the Neumaier, Michalewicz, and
Ackley functions, the BBW algorithm is better than the new method. This seems to be a consequence of the
small number of functions values in the discretization procedure (N = 2563).

Table 5 shows the success probability of Algorithm 3 when we select the best optimization routine. The
success probability is calculated in the following way: We run Algorithm 3 many times with the termination
condition given by Eq. (2) and we count the number of times that the algorithm finds the correct global
minimum. The success probability is the success rate. Table 5 is built using the data described in Appendix C,
which shows the success probability of Algorithm 3 for all optimization routines. Notice that the success
probabilities improve when we increase the number of variables. This shows that the termination condition
given by Eq. (2) is sound. If the success probability for one variable (0.94) is not high enough for practical
purposes, one can rerun the algorithm many times in order to improve this value. From Appendix C,
we conclude that the BOBYQA routine is the best one on average for the testbed functions with one to
three variables, while the SBPLX routine is the worst on average for one and two-variable functions and
the NMEAD routine is the worst on average for three-variable functions. As an exception, the BOBYQA
routine has a bad performance for the one-variable Rosenbrock function. Similar conclusions were drawn

8

fcn.

vars.
one-variable two-variable three-variable

Neumaier 1.00 1.00 1.00

Griewank 0.87 1.00 1.00

Shekel 0.87 0.96 1.00

Rosenbrock 0.99 1.00 0.99

Michalewicz 1.00 1.00 0.99

Dejong 0.97 0.99 1.00

Ackley 1.00 1.00 1.00

Schwefel 0.98 1.00 1.00

Rastrigin 1.00 1.00 1.00

Raydan 1.00 1.00 1.00

AVERAGE 0.96 0.99 0.99

Table 5: Success probability of Algorithm 3 using the best classical optimization routine.

from Tables 1, 2, and 3. Those coincidences were expected since the experiments are correlated.

5 Conclusions

This paper proposed a new method for continuous global optimization problems, using GAS and classical
routines to find efficiently a local minimum. Our numerical simulations show that DH, BBW, and the new
method have very different asymptotic behavior, where the new method presented a better performance.

Acknowledgments

The authors would like to thank FAPESP and CNPq for their financial support. R.P. would like to thank
prof. Benjamı́n Barán for useful suggestions.

References

[1] M. Boyer, G. Brassard, P. Høyer, and A. Tapp. Tight bounds on quantum searching. Fortschritte der
Physik, 46:493–506, 1998.

[2] W.P. Baritompa, D.W. Bulger, and G.R. Wood. Grover’s quantum algorithm applied to global opti-
mization. SIAM Journal of Optimizaton, 15:1170–1184, 2005.

[3] C. Dürr and P. Høyer. A quantum algorithm for finding the minimum,
http://lanl.arxiv.org/abs/quant-ph/9607014, 1999.

[4] C. Floudas and C. Gounaris. A review of recent advances in global optimization. Journal of Global
Optimization, 45:3–38, 2009.

[5] L.K. Grover. QuantumMechanics Helps in Searching for a Needle in a Haystack. Physical Review Letters,
79:325–328, 1997.

[6] L.A.B. Kowada, C. Lavor, R. Portugal, and C.H. Figueiredo. A new quantum algorithm to solve the
minimum searching problem. International Journal of Quantum Information, 6:427–436, 2008.

[7] Y. Liu and G.J. Koehler. Using Modifications to Grover’s Search Algorithm for Quantum Global Opti-
mization. European Journal of Operational Research, 207;620-632, 2010.

9

http://lanl.arxiv.org/-abs/quant-ph/9607014

[8] Y. Liu and G.J. Koehler. A Hybrid Method for Quantum Global Optimization. Journal of Global Op-
timization, 52:607–626, 2011.

[9] V. Protopopescu and J. Barhen. Solving a Class of Continuous Global Optimization Problems using
Quantum Algorithms. Physics Letters A, 296:9–14, 2002.

[10] V. Protopopescu and J. Barhen. Quantum Algorithm for Continuous Global Optimization. Qi Liqun
(ed.) et al., Optimization and control with applications. New York, Springer, 2005.

[11] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh V. Vazirani. Strengths and weaknesses
of quantum computing. SIAM J. Comput., 26(5):1510–1523, 1997.

[12] C. Zalka, Grover’s quantum searching algorithm is optimal, Phys. Rev. A, 60(4):2746–2751, 1999.

[13] Hendrix E.M.T. and Klepper O. On uniform covering, adaptive random search and raspberries. Journal
of Global Optimization, 18(2):143–163, 2000.

[14] Steven G. Johnson, The NLopt nonlinear-optimization package, http://ab-initio.mit.edu/nlopt.

[15] Jorge Nocedal. Updating Quasi-Newton Matrices with Limited Storage. Mathematics of Computation,
35(151):773–782, 1980.

[16] D. C. Liu and J. Nocedal. On the limited memory bfgs method for large scale optimization. Math.

Program., 45(3):503–528, December 1989.

[17] Ron S. Dembo and Trond Steihaug. Truncated-newtono algorithms for large-scale unconstrained opti-
mization. Mathematical Programming, 26:190–212, 1983.

[18] Krister Svanberg. A class of globally convergent optimization methods based on conservative convex
separable approximations. SIAM J. on Optimization, 12(2):555–573, February 2002.

[19] M. J. D. Powell. Direct Search Algorithms for Optimization Calculations. Acta Numerica, 7:287–336,
1998.

[20] J. A. Nelder and R. Mead. A simplex method for function minimization. The Computer Journal,
7:308–313, 1965.

[21] Joel A. Richardson and J. L. Kuester. Algorithm 454: the complex method for constrained optimization
[e4]. Commun. ACM, 16(8):487–489, August 1973.

[22] Thomas Harvey Rowan. Functional stability analysis of numerical algorithms. PhD thesis, Austin, TX,
USA, 1990. UMI Order No. GAX90-31702.

[23] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. A globally convergent augmented
lagrangian algorithm for optimization with general constraints and simple bounds. SIAM J. Numer.

Anal., 28(2):545–572, February 1991.

[24] E. G. Birgin and J. M. Mart́ınez. Improving ultimate convergence of an augmented lagrangian method.
Optimization Methods Software, 23(2):177–195, April 2008.

[25] M. J. D. Powell. The BOBYQA algorithm for bound constrained optimization without derivatives.
August 2009.

10

http://ab-initio.mit.edu/nlopt

A Test functions

Neumaier

f(x0, . . . , xn−1) =

n−1
∑

i=0

(xi − 1)2 −
n−1
∑

i=1

xixi−1, 0 ≤ xi ≤ 4

Griewank

f(x0, . . . , xn−1) =
1

4000

n−1
∑

i=0

x2
i −

n−1
∏

i=0

cos

(

xi√
i+ 1

)

+ 1, −40 ≤ xi ≤ 40

Shekel

f(x0, . . . , xn−1) =

m−1
∑

i=0

1

ci +
∑n−1

j=0
(xj − aji)2

, −1 ≤ xi ≤ 1

Rosenbrock

f(x0, . . . , xn−1) =
n−2
∑

i=0

(1 − xi)
2 + 100(xi+1 − x2

i)
2, −30 ≤ xi ≤ 30

Michalewicz

f(x0, . . . , xn−1) = −
n−1
∑

i=0

sin(xi) sin
2m

(

ix2
i

π

)

, 0 ≤ xi ≤ 10

Dejong

f(x0, . . . , xn−1) =
n−1
∑

i=0

x2
i , −5.12 ≤ xi ≤ 5.12

Ackley

f(x0, . . . , xn−1) = −20 exp



−1

5

√

√

√

√

1

n

n−1
∑

i=0

x2
i



− exp

(

1

n

n−1
∑

i=0

cos(2πxi)

)

+ 20 + exp(1), −15 ≤ xi ≤ 20

Schwefel

f(x0, . . . , xn−1) = −
n−1
∑

i=0

xi sin
(

√

|xi|
)

, −20 ≤ xi ≤ 20

Rastrigin

f(x0, . . . , xn−1) =

n−1
∑

i=0

(

x2
i − 10 cos(2πxi) + 10

)

, −5.12 ≤ xi ≤ 5.12

Raydan

f(x0, . . . , xn−1) = −
n−1
∑

i=0

(i+ 1)

10
(exp(xi)− xi) , −5.12 ≤ xi ≤ 5.12

11

B Standard Deviation

This Appendix shows the tables of the standard deviation of the number of evaluations for one, two, and
three-variable test functions associated with Tables 1, 2, and 3, respectively. In all tables, the smallest
standard deviations are depicted in blue and largest in red.

fcn.

rout.
LBFGS∗ TNEWT∗ MMA∗ COBYLA NMEAD SBPLX AGL∗ BOBYQA CCSAQ∗

Neumaier 0.00 3.55 0.00 0.00 150.4 210.3 0.00 0.00 3.27

Griewank 22.05 38.36 40.63 90.67 212.7 181.5 37.47 21.55 41.86

Shekel 0.00 0.00 3.27 9.28 2.82 2.60 3.37 0.00 0.00

Rosenbrock 35.08 45.33 52.07 96.28 190.4 146.1 55.62 52.44 50.81

Michalewicz 29.42 39.70 35.52 107.4 136.3 103.4 36.53 23.93 38.09

Dejong 0.00 0.00 3.27 62.03 128.4 139.2 3.37 0.00 0.00

Ackley 48.83 54.81 54.75 91.30 182.4 171.6 54.63 50.23 52.63

Schwefel 0.00 0.00 26.05 13.99 0.00 24.04 0.00 8.44 0.00

Rastrigin 28.23 32.11 0.00 40.89 216.2 207.0 34.35 17.76 34.00

Raydan 5.88 21.42 0.00 27.22 177.9 143.3 0.00 34.48 15.96

Table 6: Standard deviation for one-variable test functions.

fcn.

rout.
LBFGS∗ TNEWT∗ MMA∗ COBYLA NMEAD SBPLX AGL∗ BOBYQA CCSAQ∗

Neumaier 1240 3163 849.5 0.00 9011 8935 712.7 452.5 602.9

Griewank 2757 1394 633.2 475.0 9369 10116 531.5 271.4 412.8

Shekel 2736 2692 1076 0.00 0.00 3.17 1305 2.18 1531

Rosenbrock 307.4 751.4 1258 6865 8471 7946 883.1 1713 714.2

Michalewicz 1817 2190 900.0 3552 9537 9376 670.2 615.7 658.8

Dejong 2625 917.5 909.1 0.00 7359 7635 1042 2.18 817.4

Ackley 1693 1778 1017 4867 7990 6736 1177 918.7 2156

Schwefel 4390 2498 1041 2038 23.94 4840 1030 182.6 851.1

Rastrigin 1006 825.5 856.9 1567 8918 6952 922.0 110.3 679.0

Raydan 2823 2181 791.9 493.0 9429 8425 1068 535.3 1336

Table 7: Standard deviation for two-variable test functions.

fcn.

rout.
LBFGS∗ TNEWT∗ MMA∗ COBYLA NMEAD SBPLX AGL∗ BOBYQA CCSAQ∗

Neumaier 1421 5056 3018 2847 8923 5652 3628 2173 2425

Griewank 3866 2720 801.1 1460 15369 15037 4247 699.2 695.4

Shekel 6247 7481 1599 0.00 0.00 0.00 843.6 0.00 1154

Rosenbrock 2196 1306 1390 3521 17103 15874 1806 3026 1931

Michalewicz 5928 2770 – 4859 13681 8277 2209 4610 1468

Dejong 5084 3581 1082 843.7 14373 9545 1241 2.38 857.6

Ackley – 1299 1674 3644 15637 14966 1797 1654 1026

Schwefel 8141 9863 557.0 343.5 2164 645.1 550.4 870.5 1155

Rastrigin 2024 785.8 1266 1727 12457 12655 868.4 636.2 798.6

Raydan 4042 3778 1325 778.6 15591 16436 1393 877.8 1058

Table 8: Standard deviation for three-variable test functions.

12

C Success Probability

This Appendix shows the tables of success probability of Algorithm 3 with the termination condition given
by Eq. (2) for one, two, and three-variable test functions using the classical optimization routines. In all
tables, the largest probability are depicted in blue and lowest in red. We have performed an average over
100 rounds for each table.

fcn.

rout.
LBFGS∗ TNEWT∗ MMA∗ COBYLA NMEAD SBPLX AGL∗ BOBYQA CCSAQ∗

Neumaier 1.00 1.00 1.00 0.37 0.10 0.12 1.00 1.00 1.00

Griewank 0.85 0.59 0.42 0.83 0.06 0.04 0.42 0.87 0.40

Shekel 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Rosenbrock 0.87 0.50 0.25 0.44 0.13 0.10 0.25 0.27 0.15

Michalewicz 0.82 0.46 0.68 0.21 0.08 0.08 0.68 0.99 0.58

Dejong 1.00 1.00 1.00 0.63 0.22 0.16 1.00 1.00 1.00

Ackley 0.57 0.44 0.32 0.23 0.13 0.10 0.32 0.97 0.34

Schwefel 0.91 0.84 0.79 1.00 1.00 1.00 0.79 1.00 0.88

Rastrigin 0.52 0.53 0.76 0.51 0.03 0.02 0.76 0.98 0.59

Raydan 1.00 1.00 1.00 0.87 0.11 0.08 1.00 1.00 1.00

AVERAGE 0.854 0.736 0.722 0.609 0.286 0.27 0.722 0.908 0.694

Table 9: Success probability for one-variable test functions.

fcn.

rout.
LBFGS∗ TNEWT∗ MMA∗ COBYLA NMEAD SBPLX AGL∗ BOBYQA CCSAQ∗

Neumaier 0.96 0.98 0.92 0.86 0.37 0.28 0.93 1.00 0.98

Griewank 1.00 0.94 0.81 1.00 0.39 0.39 0.84 1.00 0.86

Shekel 0.95 0.94 0.74 1.00 1.00 1.00 0.70 1.00 0.77

Rosenbrock 0.90 0.93 0.95 0.65 0.35 0.30 0.96 0.95 0.95

Michalewicz 0.96 0.97 0.87 0.98 0.42 0.36 0.86 1.00 0.90

Dejong 0.99 0.97 0.93 1.00 0.72 0.52 0.93 1.00 0.93

Ackley 0.71 0.46 0.68 0.99 0.33 0.37 0.79 0.99 0.81

Schwefel 0.97 0.95 0.85 1.00 1.00 0.94 0.87 1.00 0.84

Rastrigin 0.94 0.78 0.88 1.00 0.51 0.41 0.86 1.00 0.91

Raydan 0.99 0.99 0.94 1.00 0.34 0.29 0.90 1.00 0.94

AVERAGE 0.937 0.891 0.857 0.948 0.543 0.486 0.864 0.994 0.889

Table 10: Success probability for two-variable test functions.

fcn.

rout.
LBFGS∗ TNEWT∗ MMA∗ COBYLA NMEAD SBPLX AGL∗ BOBYQA CCSAQ∗

Neumaier 0.94 0.80 0.88 1.00 0.96 0.91 0.89 0.98 0.90

Griewank 0.95 0.96 0.94 1.00 0.57 0.60 0.92 1.00 0.95

Shekel 0.95 0.92 0.93 1.00 1.00 1.00 0.92 1.00 0.91

Rosenbrock 0.69 0.75 0.85 0.72 0.43 0.40 0.89 0.99 0.88

Michalewicz 0.79 0.86 0.78 0.77 0.59 0.68 0.77 0.99 0.80

Dejong 0.99 0.99 0.97 1.00 0.84 0.86 0.99 1.00 0.92

Ackley 0.77 0.68 0.89 0.96 0.46 0.70 0.89 1.00 0.83

Schwefel 0.92 0.88 0.81 0.99 1.00 0.99 0.73 1.00 0.84

Rastrigin 0.78 0.87 0.95 1.00 0.59 0.64 0.94 1.00 0.96

Raydan 0.94 0.94 0.96 0.99 0.39 0.47 0.92 1.00 0.93

AVERAGE 0.872 0.865 0.896 0.943 0.683 0.725 0.886 0.996 0.892

Table 11: Success probability for three-variable test functions.

13

	1 Introduction
	2 Quantum Search and Global Optimization Problems
	3 A New Method for Continuous Functions
	4 Computational Results
	5 Conclusions
	A Test functions
	B Standard Deviation
	C Success Probability

